JPH02137718A - Far infrared ray emitting material - Google Patents

Far infrared ray emitting material

Info

Publication number
JPH02137718A
JPH02137718A JP63289179A JP28917988A JPH02137718A JP H02137718 A JPH02137718 A JP H02137718A JP 63289179 A JP63289179 A JP 63289179A JP 28917988 A JP28917988 A JP 28917988A JP H02137718 A JPH02137718 A JP H02137718A
Authority
JP
Japan
Prior art keywords
alumina
far
far infrared
infrared ray
metastable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63289179A
Other languages
Japanese (ja)
Inventor
Masato Yoshikawa
正人 吉川
Takehisa Inoue
井上 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63289179A priority Critical patent/JPH02137718A/en
Publication of JPH02137718A publication Critical patent/JPH02137718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an inexpensive far infrared ray emitting material, excellent in far infrared ray emissivity and suitable for uses in drying, treating, heating, cooking, etc., by addition thereof to coatings, etc., by composing the material from metastable alumina as a principal ingredient. CONSTITUTION:A far infrared ray emitting material is produced by using metastable alumina as a principal ingredient. Furthermore, the metastable alumina is an intermediate in producing alpha-alumina and can be produced by heating hydrated alumina at about 200-1100 deg.C temperature. The metastable alumina includes seven kinds of kappa-, theta-, delta-, gamma-, eta-, chi- and rho-aluminas and all thereof exhibit a high far infrared ray emissivity. Among them, the delta-, gamma- and eta-aluminas showing a broad peak in an X-ray diffraction pattern are preferably used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、すぐれた遠赤外線放射性を有する新規な遠赤
外線放射材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel far-infrared emitting material having excellent far-infrared emitting properties.

〈従来の技術〉 遠赤外線は、その波長がほぼ2.5〜25μと、可視光
線よりも長波長の電磁波であり、物体に吸収されやすく
、一般に吸収された物体を加熱する性質を有しているた
め、この性質を利用してたとえば乾燥、治療、暖房、食
品加工および調理などの種々の分野に実用されている。
<Prior art> Far infrared rays are electromagnetic waves with a wavelength of approximately 2.5 to 25 μ, longer than visible light, and are easily absorbed by objects, and generally have the property of heating the objects in which they are absorbed. Therefore, this property is utilized in various fields such as drying, medical treatment, heating, food processing, and cooking.

そして、遠赤外線を放射する物質は遠赤外線放射材料と
呼ばれ、従来からシリカ、チタニア、α−アルミナおよ
びジルコニアなどのセラミック物質が知られており、中
でもジルコニアが最も遠赤外線放射率が高いとされてい
る。
Substances that emit far-infrared rays are called far-infrared emitting materials, and ceramic materials such as silica, titania, α-alumina, and zirconia have been known, and among them, zirconia is said to have the highest far-infrared emissivity. ing.

〈発明が解決しようとする課題〉 しかしながら、ジルコニアは一般に高価であり、遠赤外
線放射用途に使用する場合には、価格の問題から使用量
が制限され、結果として遠赤外線放射量の絶対量を少な
くせざるを得なかった。
<Problem to be solved by the invention> However, zirconia is generally expensive, and when used for far-infrared radiation, the amount used is limited due to price issues, and as a result, the absolute amount of far-infrared radiation must be reduced. I had no choice but to do it.

また、シリカやα−アルミナなどは、安価ではあるもの
の、その遠赤外線放射率が低く、十分な効果を発揮し得
ないという問題があった。
Further, although silica and α-alumina are inexpensive, they have a problem in that they have low far-infrared emissivity and cannot exhibit sufficient effects.

そこで、本発明は上述した従来技術における問題点の解
決を課題として検討した結果達成されたものである。
Therefore, the present invention has been achieved as a result of studies aimed at solving the problems in the prior art described above.

したがって、本発明の目的は、安価でしかも遠赤外線放
射率の高い遠赤外線放射材料を提供することにある。
Therefore, an object of the present invention is to provide a far-infrared emitting material that is inexpensive and has a high far-infrared emissivity.

上記本発明の目的は、意外にもα−アルミナを製造する
際の中間体である準安定アルミナが、高い遠赤外線放射
率を有することを知見した結果に基ずき達成することが
できた。
The above object of the present invention was unexpectedly achieved based on the finding that metastable alumina, which is an intermediate in the production of α-alumina, has a high far-infrared emissivity.

く課題を解決するための手段〉 すなわち、本発明は、準安定アルミナを主成分とするこ
とを特徴とする遠赤外線放射材料を、その要旨とするも
のである。
Means for Solving the Problems> That is, the gist of the present invention is a far-infrared emitting material characterized by containing metastable alumina as a main component.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の遠赤外線放射材料における主成分たる準安定ア
ルミナとは、以前γ−アルミナとして総称されたアルミ
ナであり、現在一般に認められているアルミナからα−
アルミナを除いた、に−アルミナ、θ−アルミナ、δ−
アルミナ、γ−アルミナ、θ−アルミナ、χ−アルミナ
およびθ−アルミナの7種のアルミナを意味する(「触
媒便覧」昭和47年地人書館社刊第28頁)。
The metastable alumina, which is the main component in the far-infrared emitting material of the present invention, is alumina that was previously collectively known as γ-alumina, and is alumina that is currently generally recognized as α-alumina.
excluding alumina, Ni-alumina, θ-alumina, δ-
It refers to seven types of alumina: alumina, γ-alumina, θ-alumina, χ-alumina, and θ-alumina ("Catalyst Handbook", published by Jijinshokansha, 1972, p. 28).

これらアルミナの構造は、Xf1回折によって同定され
、一般にα−アルミナと準安定アルミナとの区別は容易
であるが、準安定アルミナ同志の区別は非常に困難であ
り、構造もα−アルミナ以外は確定していない。
The structures of these aluminas were identified by Xf1 diffraction, and it is generally easy to distinguish between α-alumina and metastable alumina, but it is very difficult to distinguish between metastable aluminas, and the structures of all but α-alumina have been determined. I haven't.

いずれにせよ、本発明においては、アルミナ水和物が脱
水してα−アルミナになる中間の多くのアルミナを総称
して準安定アルミナと呼ぶ。
In any case, in the present invention, many intermediate aluminas that become α-alumina through dehydration of alumina hydrate are collectively referred to as metastable alumina.

本発明で用いる準安定アルミナは、アルミナ水和物を種
々の雰囲気で200 ’C以上1100℃以下の温度に
加熱することによって得ることができる。たとえばベー
マイトを大気中もしくは真空中で加熱することによって
γ−アルミナ、δ−アルミナおよびθ−アルミナを得る
ことができる。また、ベーマイトゲルを大気中で加熱す
ることによってθ−アルミナおよびθ−アルミナを得る
ことができる。さらに、に−アルミナやχ−アルミナは
、ジブサイトを大気中で加熱することによって得ること
ができる。
The metastable alumina used in the present invention can be obtained by heating alumina hydrate to a temperature of 200'C to 1100C in various atmospheres. For example, γ-alumina, δ-alumina and θ-alumina can be obtained by heating boehmite in air or vacuum. Furthermore, θ-alumina and θ-alumina can be obtained by heating boehmite gel in the atmosphere. Furthermore, ni-alumina and χ-alumina can be obtained by heating gibbsite in the atmosphere.

これら準安定アルミナの遠赤外線放射率は、フーリエ変
換型赤外分光光度計(FT−IR)を用いて測定するる
ことができる。
The far-infrared emissivity of these metastable aluminas can be measured using a Fourier transform infrared spectrophotometer (FT-IR).

本発明で用いる準安定アルミナはいずれも高い遠赤外線
放射率を示すが、中でもX線回折図がブロードなピーク
を示すδ−アルミナ、γ−アルミナおよびθ−アルミナ
が好ましく用いられる。
All of the metastable aluminas used in the present invention exhibit high far-infrared emissivity, but among them, δ-alumina, γ-alumina, and θ-alumina, which exhibit broad peaks in their X-ray diffraction diagrams, are preferably used.

本発明の遠赤外線放射材料の使用形態はとくに限定され
ないが、たとえば塗料などに準安定アルミナの粉末を混
合して布、綿および乾燥機などに塗布することにより、
遠赤外線放射性被膜を形成することができる。
The form of use of the far-infrared emitting material of the present invention is not particularly limited, but for example, by mixing metastable alumina powder with paint etc. and applying it to cloth, cotton, dryer, etc.
A far-infrared emissive coating can be formed.

〈実施例〉 以下、実施例により本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 ベーマイトゲル(コンデア社、アルフォール・アルミナ
SB)を大気中で、500℃、2時間焼成することによ
りθ−アルミナとなし、FT−IRにより60℃での遠
赤外線放射率を測定した結果、第1図に(A)として示
したように、きわめて高い遠赤外線放射率を有していた
Example 1 Boehmite gel (Condea, Alfort Alumina SB) was baked in the air at 500°C for 2 hours to form θ-alumina, and the far-infrared emissivity at 60°C was measured by FT-IR. As a result, as shown in FIG. 1 (A), it had an extremely high far-infrared emissivity.

実施例2 実施例1で使用したベーマイトゲルを150℃で水熱処
理して得られたベーマイトを大気中で、500℃、2時
間焼成することによりγ−アルミナとなし、FT−IH
により60°Cでの遠赤外線放射率を測定した結果、第
1図に(B)として示したように、きわめて高い遠赤外
線放射率を有していた。
Example 2 Boehmite obtained by hydrothermally treating the boehmite gel used in Example 1 at 150°C was fired in the air at 500°C for 2 hours to form γ-alumina, and FT-IH
As a result of measuring the far-infrared emissivity at 60°C, it was found that the material had an extremely high far-infrared emissivity, as shown in FIG. 1 (B).

比較例1 実施例1のベーマイトゲルを大気中1200℃で、2時
間焼成することによりα−アルミナとなし、FT−I 
Hにより60°Cでの遠赤外線放射率を測定した結果、
第1図に(C)として示したように、10〜18μm間
の波長における遠赤外線放射率の落ち込みが観察され、
上記実施例1および2に比較して遠赤外線放射性の劣る
ものであった。
Comparative Example 1 The boehmite gel of Example 1 was calcined in the air at 1200°C for 2 hours to form α-alumina, and FT-I
As a result of measuring the far infrared emissivity at 60°C with H,
As shown in FIG. 1 (C), a drop in far-infrared emissivity at wavelengths between 10 and 18 μm was observed,
Compared to Examples 1 and 2 above, far-infrared radiation was inferior.

実施例3 実施例1および2で得られた準安定アルミナの粉末を、
エマルジョン型アクリル樹脂塗料に50重量%配合し、
これを塗布なところ、得られた塗膜はすぐれた遠赤外線
放射性を有していた。
Example 3 The metastable alumina powder obtained in Examples 1 and 2 was
Contains 50% by weight of emulsion type acrylic resin paint,
When applied, the resulting coating film had excellent far-infrared radiation.

〈発明の効果〉 以上説明したように、本発明の新規な遠赤外線放射材料
は、α−アルミナの中間体である準安定アルミナを主成
分としているため、安価で、しかもすぐれた遠赤外線放
射性を有しており、たとえば塗料などに添加混合するこ
とにより、乾燥、治療、暖房、食品加工および調理など
の種々の分野に有効に使用することができる。
<Effects of the Invention> As explained above, the novel far-infrared emitting material of the present invention is inexpensive and has excellent far-infrared emissivity because it mainly contains metastable alumina, which is an intermediate of α-alumina. For example, by adding it to paints and the like, it can be effectively used in various fields such as drying, treatment, heating, food processing, and cooking.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例および比較例において得られたア
ルミナについて、FT−IRにより60゛Cでの遠赤外
線放射率を測定した結果を示すチャートである。 特 許 出 願 人 東 し 株 式
The drawing is a chart showing the results of far-infrared emissivity measured at 60°C by FT-IR for alumina obtained in Examples and Comparative Examples of the present invention. Patent applicant Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 準安定アルミナを主成分とすることを特徴とする遠赤外
線放射材料。
A far-infrared emitting material characterized by having metastable alumina as its main component.
JP63289179A 1988-11-16 1988-11-16 Far infrared ray emitting material Pending JPH02137718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289179A JPH02137718A (en) 1988-11-16 1988-11-16 Far infrared ray emitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289179A JPH02137718A (en) 1988-11-16 1988-11-16 Far infrared ray emitting material

Publications (1)

Publication Number Publication Date
JPH02137718A true JPH02137718A (en) 1990-05-28

Family

ID=17739793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289179A Pending JPH02137718A (en) 1988-11-16 1988-11-16 Far infrared ray emitting material

Country Status (1)

Country Link
JP (1) JPH02137718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044231A (en) * 1998-06-25 2000-02-15 Inst Fr Petrole New alumina, its preparation, and its use as catalyst, catalyst carrier or adsorbent
JP2007201406A (en) * 2005-12-27 2007-08-09 Tokyo Electron Ltd Deposition device, depositing method, pre-coat layer and its forming method
JP2014072113A (en) * 2012-10-01 2014-04-21 Hitachi Appliances Inc Fluorescent lamp and lighting device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044231A (en) * 1998-06-25 2000-02-15 Inst Fr Petrole New alumina, its preparation, and its use as catalyst, catalyst carrier or adsorbent
JP2007201406A (en) * 2005-12-27 2007-08-09 Tokyo Electron Ltd Deposition device, depositing method, pre-coat layer and its forming method
JP2014072113A (en) * 2012-10-01 2014-04-21 Hitachi Appliances Inc Fluorescent lamp and lighting device using the same

Similar Documents

Publication Publication Date Title
ES2053021T3 (en) SINTERED TECHNICAL MATERIAL BASED ON ALUMINUM OXIDE, PROCEDURE FOR ITS PREPARATION AND USE.
MX2021003112A (en) Methods of preparing a catalyst.
JPH072211B2 (en) Far infrared radiator manufacturing method
JP2016139451A5 (en)
BR9609435A (en) Composition based on zirconium oxide comprising cerium oxide process of preparation of the same coating with catalytic properties catalytic system and use of a composition
ES2041365T3 (en) ALUMINUM PIGMENTS COATED BY METALLIC OXIDE.
JPS63112663A (en) Thin plate-shaped pigment based on iron oxide and its production
DE3868331D1 (en) CATIONICALLY SET PIGMENT DISPERSION AND COLOR.
JPH02137718A (en) Far infrared ray emitting material
JPH02216751A (en) Ultraviolet ray suppressive light source, application agent for it, and its manufacture
CA2103844A1 (en) Modified aluminas and the use thereof in fcc catalysts
GB1190520A (en) Luminescent Materials
Dalpasquale et al. Citrus pectin as a template for synthesis of colorful aluminates
ATE350155T1 (en) STABILIZATION OF TRANSITIONAL ALUMINUM OXIDE
JPH02137719A (en) Far infrared ray emitting material
IE40814L (en) Titanium dioxide pigment composition
López et al. Preparation of a complete series of single phase homogeneous sol-gels of Al2O3 and MgO for basic catalysts
DK160487D0 (en) CATALYST COMPONENT AND PROCEDURES FOR PREPARING THEREOF
JPS61232268A (en) Far infrared radiation ceramic
JP2009056606A (en) Recording material for laser beams
KR980001961A (en) Zirconia colored ceramics
JP2004238210A (en) Titanium dioxide/strontium titanate combined fine particle useful as ultra-violet light shielding agent and method of manufacturing the same
ITFI950045A1 (en) ALUMINATES OF Yttrium AND / OR RARE EARTH WITH PEROVSKITIC STRUCTURE, THEIR PREPARATION AND USE AS PIGMENTS
DE3781761D1 (en) SOLVENT FOR PAINT PAINTINGS.
SU833817A1 (en) Violet ceramic pigment