JPH0213602A - Expansion signal reversal wave interference type sound arrester - Google Patents

Expansion signal reversal wave interference type sound arrester

Info

Publication number
JPH0213602A
JPH0213602A JP16198388A JP16198388A JPH0213602A JP H0213602 A JPH0213602 A JP H0213602A JP 16198388 A JP16198388 A JP 16198388A JP 16198388 A JP16198388 A JP 16198388A JP H0213602 A JPH0213602 A JP H0213602A
Authority
JP
Japan
Prior art keywords
sound
wave
noise
wall
arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16198388A
Other languages
Japanese (ja)
Other versions
JP2606888B2 (en
Inventor
Teiji Okazaki
岡崎 悌次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBIRU KANKYO ENG KK
Original Assignee
SHIBIRU KANKYO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBIRU KANKYO ENG KK filed Critical SHIBIRU KANKYO ENG KK
Priority to JP16198388A priority Critical patent/JP2606888B2/en
Publication of JPH0213602A publication Critical patent/JPH0213602A/en
Application granted granted Critical
Publication of JP2606888B2 publication Critical patent/JP2606888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F8/00Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic
    • E01F8/0005Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic used in a wall type arrangement
    • E01F8/0047Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic used in a wall type arrangement with open cavities, e.g. for covering sunken roads
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F8/00Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic
    • E01F8/0094Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic constructions for generation of phase shifting

Abstract

PURPOSE:To attenuate the diffracted sound at the side of sound receiving point and enhance the efficiency of a sound insulation wall by causing interference between the sound wave induced from the inlet pipe of a sound arrester mounted on the upper edge of a sound insulation wall and the signal reversal wave generated by this arrester. CONSTITUTION:A sound wave intake passage 1, a sound wave outlet passage 2, and an expansion room 3 connected to them constitute a sound arrester. A sound absorption plate 4 and a backside air layer 5 are provided in the expansion room 3 to prevent the reflected sound, and a perforated plate 8 and slits 9 are used in the sound wave intake passage 1 and the sound wave outlet passage 2. Then, a part F2 of the reflection diffusing wave generated in the expansion room 3 is used as the sound reduction interference wave on the side of sound receiving point 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遮音壁の減音効果を向上させる防音装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a soundproofing device that improves the sound reduction effect of a soundproofing wall.

〔従来の技術〕[Conventional technology]

従来の遮音壁は壁の高さで減音効果を得るもので、壁体
ブロックを物量的に積み重ねる古来の工法が踏襲されて
いる、現代においては技術革新から取残された数少ない
ものの1つである。道路及び鉄道の遮音壁は昭和40年
代に出現し、壁の表面に吸音材を付は反射音を防止する
吸音タイプ遮音壁も利用されるようになったが、それと
ても機構的には古来からある建築材料としての穴明き吸
音板を野外遮音壁に転用した嘉こすぎず、それが現代ま
で基本的には何ら変わることなく続いている。
Conventional sound insulation walls achieve a sound reduction effect by changing the height of the wall, and follow the ancient construction method of stacking wall blocks physically.In modern times, they are one of the few that have been left behind by technological innovation. . Sound insulating walls for roads and railways appeared in the 1960s, and sound-absorbing type sound insulating walls with sound-absorbing materials attached to the wall surface to prevent reflected sound came to be used, but they are mechanically based on ancient architecture. It is no wonder that the perforated sound-absorbing board material was used as an outdoor sound-insulating wall, and this has basically continued unchanged to the present day.

昭和40年代は、道路及び鉄道(以下道路で代表)騒音
が急激に公害問題化した時代で、急場をしのぐため、他
分野からの借物の遮音壁でもやむを得なかった側面があ
るが、その時代から20年近くが経過し、道路では遮音
壁の設置が常識化し国費が多量に使われるようになった
今日においても旧態依然とした工法がそのまま続けられ
ている。
The 1960s was a time when road and railway (hereinafter referred to as "road") noise rapidly became a pollution problem, and in order to overcome emergencies, it was unavoidable to use sound insulation walls borrowed from other fields, but 20 years have passed since that time. As time has passed, the installation of soundproof walls on roads has become commonplace, and even today, when large amounts of national funds are being used, the old-fashioned construction methods continue to be used.

すなわち、第1世代の遮音壁が昔のままの状態で続いて
おり、早く第2世代品を生み出し、さらに第3世代品第
4世代品と将来にわたる技術革新の道を切り開いていか
ねばならない状況下におかれている。
In other words, the first generation sound insulation walls continue in the same state as before, and we are in a situation where we must quickly create second generation products, and pave the way for future technological innovation with third and fourth generation products. is placed in

従来の遮音壁は壁の高さで対処するため構造上の制限を
受け、工費も壁の高さの2乗に関係して増大する。遮音
壁に作用する風圧は、支柱に伝透され、最終的にはこの
支柱及びその基礎が受は持ツ形トナルが、支柱の固定端
(下端)モーメントは遮音壁の高さの2乗に比例し、遮
音壁が高くなると、支柱及び基礎はばかでかいものが必
要となり、高架橋等においては、橋本体の耐荷力士、遮
音壁の高さ等に制限を受ける。また、交通量の増大等で
遮音壁の嵩上げが必要になった場合、橋本体の許容応力
に余裕がなければ騒音対策が不可能となることもある。
Conventional sound insulation walls are subject to structural limitations because they are limited by the height of the wall, and construction costs also increase as the square of the wall height. The wind pressure acting on the sound insulating wall is transmitted to the support column, and ultimately the support support and its foundation become fixed-end (lower end) moment proportional to the square of the height of the sound insulating wall. As the sound insulation walls become taller, the pillars and foundations need to be bulkier, and in the case of viaducts, there are restrictions on the load capacity of the bridge itself, the height of the sound insulation walls, etc. Additionally, if it becomes necessary to raise the height of the sound insulating wall due to an increase in traffic volume, etc., noise countermeasures may become impossible if there is no allowance in the allowable stress of the bridge body.

遮音壁を高くすることは、橋本体の工費等を含め、工費
が2乗的に増大することはもとより、走行安全上は遮音
壁による圧迫疲労問題が生じ、また、日照阻害を増大さ
せる。
Increasing the height of the sound insulation wall not only increases the construction cost, including the construction cost of the bridge itself, in a squared manner, but also causes pressure fatigue problems due to the sound insulation wall in terms of driving safety, and increases sunlight obstruction.

高さで勝負する第1世代遮音壁が続く中にあって、第2
世代品の生れるきざしがないわけではない。まだ、試験
施工段階のものもあり、効果が確定し、その設計資料が
整備されるのζこまだ時間がかかり、広く実用化される
かどうかは不明であるが、それ以前に、旧態依然とした
遮音壁に技術革新の活を入れた功績は大きく、このよう
なものが5つも6つも生れ、技術革新の底辺が広がって
こそ、始めて真の第2世代品が確立していくものである
While the first generation sound insulation walls continue to compete based on height, the second generation
This does not mean that there are no signs of generational products emerging. Some of them are still in the trial construction stage, and it will take time to determine their effectiveness and prepare design materials, and it is unclear whether they will be widely put into practical use. Incorporating technological innovation into sound insulating walls has been a great achievement, and only when five or six such products are created and the base of technological innovation expands will true second-generation products be established.

新しい遮音壁技術への試みは2つあるが、その1つは遅
延波干渉型遮音壁である(特公昭61−1566号公報
参照)。これはQuinke (クィンヶ)管と同じ原
理に基づくもので、第5図において管のロムで音叉を鳴
らしておいて、AIRとAnBの路程差を変えると音が
強く聞かれたり、聞えない場合が生じる。
There are two attempts at new sound insulating wall technology, one of which is a delayed wave interference type sound insulating wall (see Japanese Patent Publication No. 1566/1983). This is based on the same principle as the Quinke tube, and as shown in Figure 5, if you strike a tuning fork with the ROM of the tube and change the path difference between AIR and AnB, the sound may be heard strongly or not at all. arise.

この路程差が半波長のとき、クィンケ管の右をまわる音
と左をまわる音が3点で音が消えるように干渉するもの
で、純音(音の周波数一定)かつ定常波(音の波形が前
のものと1つあとから来るものが等しい)に成立する。
When this path difference is half a wavelength, the sound going to the right and the sound going to the left of the Quinke tube interfere at three points so that the sound disappears, and it is a pure tone (sound frequency is constant) and a standing wave (sound waveform is forward). is equal to the one that comes after it).

しかしながら、騒音の場合は、複合音で多数の純音が合
成されたものであり、その純音1つを取り出しても、前
の波形とあとの波形が等しいとは限らず、この純音でみ
られる干渉は騒音全体としてはあり得ない。例えば50
0H2の音に対して干渉するよう路程差を設計しても、
騒音1: it 100OHz、 250Hz、 アル
l、N ハ300H2ノ音もあり、これらが全て管の中
に入るので、増巾されるものもあり、このタイプのもの
は減音効果なしとみるのが一般的である。この例は複数
音源の騒音計算にみられ、各音源から受音点までの距離
は全て異なり、特定の周波数の音については遅延回路を
設けたのと同じことであるが、各音源からの騒音を合成
する場合、特に、干渉効果を考慮に入れないことからも
明らかである。干渉で減るものもあれば、増巾されるも
のもあり、プラスマイナスすれば実用的には特に考慮す
べきほどのことではないというのが騒音計算の前提にな
っている0前記の発明は、第6図に示すように、騒音が
伝播する途中に、音の回り道(11)を設け、これを通
して、半波長連れた波とあとからくる波を干渉させよう
とする試みである。1つ前の波を遅らせて、あとの波と
干渉させる条件に、必ず干渉に好ましい音波があとから
やってくることが前提になるが、そうであったりなかっ
たり、あとから来るものはわからないというのが複数音
源を有する騒音の性質である。また、該発明では複数個
の遅延回路を設けているが、騒音が周波数成分別に回路
を選択できない以上、回路が1個でも複数個で・も同し
ことで、上述したある周波数の音は干渉するが、別の周
波数のものは増巾する現象がつきまとう。
However, in the case of noise, it is a complex sound that is composed of many pure tones, and even if one pure tone is extracted, the previous waveform and subsequent waveform are not necessarily equal, and the interference observed in this pure tone is impossible for the noise as a whole. For example 50
Even if the path difference is designed to interfere with the sound of 0H2,
Noise 1: It has 100OHz, 250Hz, Al, N, and 300H2 noises, and since these all enter the tube, some of them are amplified, and this type of noise is considered to have no sound reduction effect. Common. This example can be seen in noise calculations for multiple sound sources, where the distances from each sound source to the sound receiving point are all different, and it is the same as installing a delay circuit for sounds of a specific frequency, but the noise from each sound source This is also clear from the fact that interference effects are not taken into account when synthesizing. The premise of noise calculation is that some things are reduced due to interference, while others are amplified, and that, in terms of plus or minus, it is not a problem that should be considered in practice. As shown in Figure 6, this is an attempt to create a sound detour (11) in the middle of the noise propagation, and through this to cause the wave with a half wavelength to interfere with the wave that comes later. The condition for delaying the previous wave and making it interfere with the following wave is that a sound wave favorable for interference must come later, but we do not know if that is the case or not, or what will come later. This is the property of noise having multiple sound sources. In addition, although multiple delay circuits are provided in the invention, since it is not possible to select a circuit for each frequency component of noise, it is the same whether there is one circuit or multiple circuits, and the above-mentioned sound of a certain frequency will interfere. However, there is a phenomenon of amplification when using a different frequency.

もう1つの第2世代遮音壁の試みは遮音壁の天端に吸音
材を取付ける方法である(特公昭51−46969号公
報参照)。物理現象には原理法則性があり、これを無視
して実験室の小規模実験のみで判断すると、大きな間違
いを犯すことがあるが、この発明1こよると、音の下が
る原因は、遮音壁上縁を回折する音波が吸音材(12)
で吸収されると推定し、実験でこれを確認している。第
7図に示すように、177L高の鉄板塀(13)の上に
直径8.5crnの円柱体たる吸音材(12)を取付け
、5KH2及(j 10KI4Z (7) 音11N 
ヲ用いて実験が行なわれている。日常問題とされている
騒音の周波数は0.2〜2KH2で高い周波数は壁の回
折効果で減音しやすく、壁設置後は低周波音が残り、こ
の低周波音の処理がやっかいな問題である。
Another attempt at a second-generation sound insulating wall is to attach a sound absorbing material to the top of the sound insulating wall (see Japanese Patent Publication No. 51-46969). Physical phenomena have fundamental laws, and if you ignore them and make judgments based only on small-scale experiments in the laboratory, you may make a big mistake, but according to this invention 1, the cause of the sound reduction is due to the noise on the sound insulation wall. Sound waves diffracted at the edges are absorbed by sound absorbing materials (12)
It is estimated that this is absorbed by the gas, and this has been confirmed through experiments. As shown in Fig. 7, a cylindrical sound absorbing material (12) with a diameter of 8.5 crn is installed on the iron plate fence (13) with a height of 177L, and the sound absorption material (12) is 5KH2 and (j 10KI4Z (7)
Experiments are being conducted using . The frequency of noise that is considered a daily problem is 0.2 to 2KH2, and high frequencies are easily attenuated by the diffraction effect of walls, and low-frequency sounds remain after walls are installed, and processing of this low-frequency sound is a troublesome problem. be.

音響相以律から物体の長さのデイメンジョンと音の周波
数のデイメンジョンを一定にすれば同じ結果が得られ、
例えば、現地の騒音の周波数を500Hzとすると、5
KHzの実験値と同じ結果を現場で得るためには、10
mの塀を立て、その上に85c1nの円柱吸音体を設置
しなければならないことになり250Hzの現地音に対
処するためにはこの倍の規模のものが必要となる。10
mの遮音壁はな(、直径85、や170m  の吸音体
も異常な大きさで、できれば笠木程度の大きさが望まし
い。なお、一般の高速道路は道路中が20m以上あり、
この片側または両側に3mないし5、高程度の遮音壁を
設置するのが一般的であるが、上記実験は壁直近の音源
について行なわれており、現実は音源は壁からもつと離
れている。
From the acoustic phase law, if we keep the dimension of the length of the object and the dimension of the sound frequency constant, we can obtain the same result,
For example, if the local noise frequency is 500Hz, 5
In order to obtain the same result as the experimental value of KHz in the field, 10
This meant that a wall of 250 Hz would have to be erected, and a cylindrical sound absorber of 85 c1n would have to be installed on top of it, which would require something twice this size to deal with the 250 Hz local sound. 10
A sound insulating wall with a diameter of 85 or 170 m is also abnormally large, and preferably the size of a Kasagi.In addition, on general expressways, the length of the road is more than 20 m,
It is common to install a sound insulating wall with a height of 3 m to 5 m on one or both sides, but the above experiment was conducted with the sound source closest to the wall, and in reality the sound source is far away from the wall.

また、模型実験では音響相以律に従って縮小てきないも
のが必ずあり、施工規模のもので確認する必要がある。
In addition, in model experiments, there are always things that do not scale down according to the acoustic phase law, so it is necessary to confirm this on a construction scale.

例えば、吸音体に用いられているグラスウールの繊維の
太さや空ゲキの大きさは縮小てきず、10KH2と5 
KI−IZの結果を比較すると、実験周波数が小さくな
ると、急激に効果が落ちており、騒音の周波帯域、例え
if 500 H2,まで周波数が下がると、効果のほ
どが心配される。
For example, the thickness of the glass wool fibers used in sound absorbers and the size of the air bubbles have not decreased;
Comparing the results of KI-IZ, the effect drops off rapidly as the experimental frequency decreases, and there is concern about the effectiveness as the frequency drops to the noise frequency band, for example, if 500 H2.

模型実験における直径8.5 crsの吸音体(12)
を現地サイズになおすと少なくとも1rrL程度となる
が、第7図において、IWL高の鉄板(13)とこれを
直径1rrLの吸音体(12)に置き変えた場合につい
て遮音効果を比較すると、吸音材(12)は音の透過損
失が皆無に等しく、実験するまでもなく、鉄板(13)
の方が遮音効果があり、該発明の実験による判断と矛盾
する。
Sound absorber with diameter 8.5 crs in model experiment (12)
If converted to the local size, it will be at least about 1rrL, but in Figure 7, when comparing the sound insulation effect when replacing the iron plate (13) with IWL height with a sound absorbing material (12) with a diameter of 1 rrL, it is found that the sound absorbing material (12) has almost no sound transmission loss, and there is no need to experiment with iron plate (13).
has a better sound insulation effect, which contradicts the experimental judgment of the invention.

上記、遮音壁上縁吸音材取付法は、実験で減音効果の可
能性が得られたという段°階で、実施に当っては問題も
多くでてくる可能性もある。実施に当っては、現実の騒
音源に対する防音効果とともに、耐久性の問題もある。
Although the above-mentioned method of attaching sound-absorbing material to the upper edge of a sound insulating wall has been experimentally shown to have the potential to reduce sound, many problems may arise when implementing it. In implementation, there are issues of durability as well as soundproofing effects against actual noise sources.

道路構造物については10年20年の耐久性を要し、吸
音材についてはそのまま外気にさらさず、耐候性フィル
ムでグラスウールをつつみ、そ−の外に金属性の穴空き
保護板を設けているのが吸音タイプの遮音壁の現状であ
る。
Road structures require durability of 10 to 20 years, and sound-absorbing materials are not exposed to the outside air, but are wrapped in glass wool with a weather-resistant film and have a perforated metal protective plate on the outside. This is the current state of sound-absorbing type sound insulation walls.

しかしながら、上記2つの防音技術に関する新しい試み
は問題があるとしても、その技術革新にとっては意義の
深いものである。
However, even if the above two new attempts at soundproofing technology have problems, they are of deep significance for technological innovation.

d発明が解決しようとする課題〕 道路騒音及び鉄道騒音に対する防音技術の現状は、その
高さで対処する古来からの方法が延延と続いていると言
って過言ではない。
d) Problems to be Solved by the Invention] It is no exaggeration to say that the current state of soundproofing technology for road noise and railway noise is that the age-old method of dealing with it based on its height continues to prolong.

この発明は、古典的な遮音壁の技術に、新たなる血をそ
そぎ、高さのみの物量戦術だけではなく、少しでも効率
的な防音技術を開発することにより、道路騒音に対する
防音技術の近代化ならびに技術革新の道を切り開こうと
するものである。
This invention injects new blood into the classic sound insulation wall technology, and modernizes sound insulation technology against road noise by developing sound insulation technology that is as efficient as possible, rather than just using volume tactics based on height alone. It aims to pave the way for technological innovation.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するための手段を、機構説明図である第
1図を用いて説明する。
Means for solving the above problem will be explained with reference to FIG. 1, which is an explanatory diagram of the mechanism.

(a)  音波取入管(1)と受音点側音波取出管(2
)を大断面の膨張室(3)に接続して3方向分岐管を構
成する。
(a) Sound wave intake pipe (1) and sound wave extraction pipe on the sound receiving point side (2)
) is connected to the large-section expansion chamber (3) to form a three-way branch pipe.

(b)  上記装置により、取入管(1)より侵入する
進行波F1の波動エネルギーを用いて、進行波F1とは
符号が反対(Flが圧縮から膨張、Flが膨張ならば圧
縮)の反動波F2を発生させる。
(b) Using the wave energy of the traveling wave F1 entering from the intake pipe (1), the above device generates a reaction wave whose sign is opposite to that of the traveling wave F1 (Fl expands from compression, and if Fl expands, it compresses). Generate F2.

(C)  上記装置を遮音壁の上縁附近に設け、音源か
ら遮音壁の上縁をまわる音波FQの一部を取入管a)を
通して取入れ、この装置により発生した符号反転波F2
を用いて、音波FOと干渉させ、受音点(7)側にまわ
る回折音の音のエネルギーを減衰させる。
(C) The above device is installed near the upper edge of the sound insulation wall, a part of the sound wave FQ that goes around the upper edge of the sound insulation wall from the sound source is taken in through the intake pipe a), and the sign-inverted wave F2 generated by this device is
is used to interfere with the sound wave FO and attenuate the sound energy of the diffracted sound that goes around to the sound receiving point (7).

という技術的手段を講じている。We are taking technical measures.

〔作用〕[Effect]

音は波の一種で、その現象変化は波動方程式で表わされ
、管路を伝わる波の方程式は次式のよう書こなる。
Sound is a type of wave, and the changes in its phenomena are expressed by a wave equation.The equation for waves traveling through a pipe can be written as the following equation.

ここに、 u2変位   V:体積弾性係数 【二時間   、:密度 X:距離 波動方程式(1)の解は u、−=f(x−ct)   (進行波〕u、=g(x
−)ct)   (後退波〕f9gは波形を表わす関数
で、壬がXの正の方向に進む進行波、gがXの負の方向
に進む後退波を意味している。
Here, u2 displacement V: Bulk elastic modulus [2 hours,: Density
-) ct) (Backward wave) f9g is a function representing a waveform, where tsu means a traveling wave that moves in the positive direction of X, and g means a backward wave that moves in the negative direction of X.

音圧F、 Gは、圧縮波を正とすると F (x−ct )=−v−=−pc2E’ (x−c
t)θX G (x−)−c t )==−V””= pC’g’
 (x+ct)X ここに、f′はf (L))のZに関する微分関数であ
る。
The sound pressures F and G are F (x-ct)=-v-=-pc2E' (x-c
t) θX G (x-)-c t )==-V""= pC'g'
(x+ct)X Here, f' is the differential function of f (L)) with respect to Z.

一方、粒子速度F1及びG1 は u1 Fl = −= −c f’ (x−ct )t となり、音圧と粒子速度の関係は F=pcF1.  G=−PcG1 となる。すなわち、音圧は粒子速度に比例し、進行波は
符号が変わらず、後退波は符号が反転する。
On the other hand, the particle velocities F1 and G1 are u1 Fl = -= -c f' (x-ct)t, and the relationship between sound pressure and particle velocity is F=pcF1. G=-PcG1. That is, the sound pressure is proportional to the particle velocity, the sign of the traveling wave does not change, and the sign of the backward wave reverses.

第1図において、管路を進行する波F1が断面が変化す
る境界に達すると、一部は反射(F2)L、残りは透過
(F3)する。膨張室(3)に侵入した彼(F3)は進
行波となって、膨張室(3)を伝播するが、この中空体
(3)が無限に長いか、その途中に反射波を防ぐ吸音処
理(4及び5で4は吸音材、5は背後空気層)を施すと
、膨張室(3)内の反射波(または後退波)はなくなり
、第1図における波の種類はFl。
In FIG. 1, when a wave F1 traveling through a pipe reaches a boundary where the cross section changes, part of the wave F1 is reflected (F2) L, and the rest is transmitted (F3). The wave (F3) that has entered the expansion chamber (3) becomes a traveling wave and propagates through the expansion chamber (3), but this hollow body (3) is either infinitely long or there is sound absorption treatment to prevent reflected waves along the way. (In 4 and 5, 4 is a sound absorbing material and 5 is a rear air layer), the reflected wave (or backward wave) in the expansion chamber (3) disappears, and the type of wave in FIG. 1 is Fl.

F2及びF3の3種類となる。なお、膨張室(3)の入
口で発生する反射波は、音波取入通路(1)にも′一部
分配されるが、これと取出通路(2)に向うものを総称
して、反射波(F2)とする。
There are three types: F2 and F3. Note that some of the reflected waves generated at the entrance of the expansion chamber (3) are also distributed to the sound wave intake passage (1), but this and those directed to the extraction passage (2) are collectively referred to as reflected waves ( F2).

音波取入通路(1)の断面積をAI、取出通路(2)及
び膨張室(3)の断面積をA2及びA3とし、A=Al
+A2 とすると、膨張室(3)の入口における音圧及び体積速
度(=粒子速度×断面積)のつり合い条件からFl +
F2 =F3 A (FI  F2 ) =A3.F3° となり、両
式より −A3 F2=−FI A−)−A3 A F 3 = −F I A+A3 となる。上式において、入射波(F1)と透過波(F3
)及び反射波(F2)の符号に着目すると、透過波(F
3)は入射波(F1)と同じ符号であるが、反射波(F
2)は膨張室(3)の断面積A3がAより大きいとき、
符号が変わり、入射波(F1)が圧縮ならば引張、引張
波ならば圧縮波となる。すなわち、音波取入通路(1)
取出通路(2)及び膨張室(3)の断面積を調整するこ
とにより、反射波(F2)の符号を直接波(FO)を消
すように変え、また、この断面積の調整により最も効率
的な反射波(F2)の発生量を設計することができる。
The cross-sectional area of the sound wave intake passage (1) is AI, the cross-sectional areas of the extraction passage (2) and the expansion chamber (3) are A2 and A3, and A=Al.
+A2, then from the balance condition of sound pressure and volume velocity (=particle velocity x cross-sectional area) at the entrance of the expansion chamber (3)
F2 = F3 A (FI F2 ) = A3. F3°, and from both equations, -A3 F2=-FI A-)-A3 AF 3 = -FI A+A3. In the above equation, the incident wave (F1) and the transmitted wave (F3
) and the sign of the reflected wave (F2), the transmitted wave (F
3) has the same sign as the incident wave (F1), but the reflected wave (F
2) When the cross-sectional area A3 of the expansion chamber (3) is larger than A,
The sign changes, and if the incident wave (F1) is compression, it becomes a tension wave, and if it is a tension wave, it becomes a compression wave. That is, the sound wave intake passage (1)
By adjusting the cross-sectional area of the take-out passage (2) and the expansion chamber (3), the sign of the reflected wave (F2) can be changed to eliminate the direct wave (FO), and by adjusting the cross-sectional area, the most efficient It is possible to design the amount of reflected waves (F2) generated.

直接波(FO)に対して、取出通路(2)からの反射波
(F2)は回わり道をする分だけ遅延する。第4図に示
すように、直接波(FO)と反射波(F2)は位相差e
をもって干渉し、部分的に増巾されるところがあるが、
この位相差eが波長に比べて小さいと、全体的には音を
消し合うように干渉する。すなわち、周波数の低い音は
ど波長か長く、位相差eの影響が小さくなり、効果的と
なる。そして、1つ前に出た波を遅延させて、あとから
くる波と干渉させるのではなく、自分自身の符号反転波
“との干渉であるから、あとから来る波の影響は受けな
い。
Compared to the direct wave (FO), the reflected wave (F2) from the extraction passage (2) is delayed by the detour. As shown in Figure 4, the direct wave (FO) and reflected wave (F2) have a phase difference e
There are places where it interferes and is partially amplified,
If this phase difference e is small compared to the wavelength, the sounds will interfere so as to cancel each other out as a whole. That is, the wavelength of a low-frequency sound is longer, and the influence of the phase difference e becomes smaller, making it more effective. Instead of delaying the previous wave and causing it to interfere with the wave that comes after, it interferes with its own sign-inverted wave, so it is not affected by the waves that come after.

周波数の高い音では、この位相差の影響か大きくなり、
あとから来る波と干渉して、増えたり減ったりする率が
増える。そして、その出入は差引き0またはそれ以下と
なる。周波数が高くなると径路の曲がりによる減衰等種
々の減衰が大きく、エネルギー的には直接波(FO)の
一部が取入口(1)があるがため、回わり道をした番こ
すぎない。
For high-frequency sounds, the effect of this phase difference increases,
Interference with later waves increases the rate of increase or decrease. Then, the difference between the input and output will be 0 or less. As the frequency increases, various types of attenuation such as attenuation due to bends in the path become large, and since a part of the direct wave (FO) has an intake port (1) in terms of energy, it does not take too much of a detour.

壁など音の障害物による回折減衰は、音の周波数fの常
用対数の10倍(1010g f )に比例し、周波数
が倍になれば、3ホン効果が大きいという性質があり、
遮音壁による防音対策において、効率が悪いのは周波数
の低い音である。本発明による装置はこれを補完するも
ので、周波数の高い音は遮音壁の高さで落し、低い音は
高さとこの装置で落そうとするもので、従来の遮音壁の
ネックである低周波域の減音効果に対する非効率さを大
巾に改善するものである。
Diffraction attenuation due to sound obstacles such as walls is proportional to 10 times the common logarithm of the sound frequency f (1010g f ), and as the frequency doubles, the three-phone effect becomes larger.
When implementing soundproofing measures using soundproof walls, it is the low-frequency sounds that are inefficient. The device according to the present invention complements this by reducing high-frequency sounds at the height of the sound insulating wall, and lowering low-frequency sounds by increasing the height of the sound insulating wall. This greatly improves the inefficiency of sound reduction effects.

〔実施例〕〔Example〕

以下に、この発明の好適な一実施例を図面に基づいて説
明する。
A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明による防音装置の断面図で、断面的に
みて、1つの音波取入通路(1)と1つの゛音波取出通
路(2)を有するもので、これに接続して、両道路の断
面積の和よりも大きい断面を有する膨張室(3)を設け
たものである。膨張室(3)の中には、反射音を防ぐた
め、吸音材1)と背後空気層(5)を設ける。
FIG. 1 is a cross-sectional view of a soundproofing device according to the present invention, which has one sound wave intake passage (1) and one sound wave extraction passage (2), which are connected to An expansion chamber (3) having a cross section larger than the sum of the cross-sectional areas of both roads is provided. Inside the expansion chamber (3), a sound absorbing material 1) and a back air layer (5) are provided to prevent reflected sound.

第2図及び第3図は、音波取入通路(1)と取出通路(
2)に穴明板(8)やスリット板(9)を用いたもので
、取入通路(1)と取出通路(2)の見分けがつかない
タイプもあるが、音源(6)側を取入通路(1)部分、
受音点(7)側部分を取出通路(2)とみなすもので、
膨張室(2)で生じる反射散乱波の1部(F2)を受音
点(7)側減音干渉波として用いるものである。
Figures 2 and 3 show the sound wave intake passage (1) and the extraction passage (
There is a type that uses a perforated plate (8) or a slit plate (9) for 2), making it difficult to distinguish between the intake passage (1) and the output passage (2), but there is a type that uses the sound source (6) side. Entrance passage (1) part,
The part on the side of the sound receiving point (7) is regarded as the extraction passage (2).
A part (F2) of the reflected and scattered waves generated in the expansion chamber (2) is used as a sound-reducing interference wave on the side of the sound receiving point (7).

〔発明の効果〕〔Effect of the invention〕

道路及び鉄道の遮音壁は、その高さのみで減音効果を得
るというのが従来の考え方であるが、音の性質上、始め
の1部高は良(減音するが、次の1rrL高は減音効果
が急減する特性を有し、遮音壁が冒くなるほど壁高効果
は悪くなり、周波数の高い騒音は壁高効果で減衰してし
まい、低周波帯域の騒音が残る。本発明の防音装置は、
遮音壁の高さで対処する場合のネックを除き、遮音壁の
効率性を増大させる。
The conventional idea is that sound insulation walls for roads and railways achieve a sound reduction effect only by their height, but due to the nature of sound, the first height is good (noise is reduced, but the next 1rrL height is It has the characteristic that the sound reduction effect rapidly decreases, and the more the sound insulation wall becomes damaged, the worse the wall height effect becomes.High frequency noise is attenuated by the wall height effect, and noise in the low frequency band remains.The soundproofing device of the present invention teeth,
This eliminates the bottleneck in dealing with the height of the sound insulation wall and increases the efficiency of the sound insulation wall.

遮音壁既設地域は、増大する交通量に伴う騒音の上昇な
らびにさらによりよい環境を求める沿道住民のニーズか
ら、騒音対策の追加をせまられているところも多い。こ
のようなところに、本発明の防音装置を用いると、遮音
パネルの上1枚を本発明の防音装置に置き換えるたけで
すむ場合もあり、支柱の取変え、ならびに道路構造物本
体に荷重負担をかけずして、騒音対策が可能となる。
In many areas where noise barriers have already been installed, additional noise countermeasures are required due to the rise in noise levels associated with increasing traffic volume and the needs of roadside residents who are seeking a better environment. If the soundproofing device of the present invention is used in such places, it may be possible to just replace the top of the soundproofing panel with the soundproofing device of the present invention, which eliminates the need to replace the pillars and transfer the load to the road structure itself. Noise countermeasures can be taken without any noise.

本発明の防音装置は、従来の穴明き吸音板パネルの構造
と比較して、特に複雑なものではなく、コスト的には従
来の吸音パネルと特に変わらず、防音のための投資効率
は非常に高いものかある。
The soundproofing device of the present invention is not particularly complex compared to the structure of conventional perforated sound-absorbing panels, and the cost is not particularly different from conventional sound-absorbing panels, so the investment efficiency for soundproofing is very high. There are some expensive ones.

ハイテク技術の開発のみに我国の生きる道があり、各分
野において新しい技術開発にしのぎが削られている。遮
音壁の大半は公共事業に使われるが、遮音壁の分野のみ
、物及び金について昔ながらの多消費型の工法が続いて
いる。本発明による技術開発は、それに−石を投じ、刺
激を与えることから、今後の遮音壁に関する技術開発に
対して意義深いものがある。
The only way for our country to live is through the development of high-tech technology, and competition is fierce in developing new technologies in each field. The majority of sound insulation walls are used for public works projects, but only in the field of sound insulation walls, old-fashioned construction methods that consume a lot of material and money continue to be used. The technological development according to the present invention is significant for future technological development regarding sound insulating walls, since it challenges and stimulates this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による防音機構を説明する装置縦断側面
図で本発明の実施例と兼用、第2図及び第3図は本発明
の実施例を示す略示側面図、第4は遮音壁上縁附近にお
ける音の干渉状況説明図、第5図はクインケ管による音
の干渉実験装置、第6図は従来の遅延波干渉型防音装置
の略示側面図、第7図は従来の遮音壁上縁吸音材料取付
型防音壁の略示側面図である。
Fig. 1 is a vertical sectional side view of a device illustrating a soundproofing mechanism according to the present invention, which is also used as an embodiment of the present invention, Figs. An explanatory diagram of the sound interference situation near the edge, Fig. 5 is a sound interference experimental device using a Quinke tube, Fig. 6 is a schematic side view of a conventional delayed wave interference type soundproofing device, and Fig. 7 is the upper edge of a conventional sound insulating wall. FIG. 2 is a schematic side view of a soundproof wall equipped with a sound absorbing material.

Claims (1)

【特許請求の範囲】[Claims] 遮音壁の上縁附近に、音波取入通路(1)と音波取出通
路(2)を膨張室(3)に接続した構造を有し、取入通
路(1)から音波(F_1)が膨張室(3)に入るとき
生ずる符号反転反射波(F_2)を取出通路(2)から
取出し、遮音壁の上縁をまわる直接波(F_0)と干渉
させて減音効果を得ることを特徴とする膨張符号反転波
干渉型防音装置。
Near the upper edge of the sound insulating wall, there is a structure in which the sound wave intake passage (1) and the sound wave extraction passage (2) are connected to the expansion chamber (3), and the sound wave (F_1) is transmitted from the intake passage (1) to the expansion chamber ( 3) Expansion sign inversion characterized by taking out the sign inversion reflected wave (F_2) generated when entering the room from the extraction passage (2) and making it interfere with the direct wave (F_0) going around the upper edge of the sound insulating wall to obtain a sound reduction effect. Wave interference type soundproofing device.
JP16198388A 1988-06-29 1988-06-29 Expansion sign-reversed wave interference type soundproofing device Expired - Lifetime JP2606888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16198388A JP2606888B2 (en) 1988-06-29 1988-06-29 Expansion sign-reversed wave interference type soundproofing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16198388A JP2606888B2 (en) 1988-06-29 1988-06-29 Expansion sign-reversed wave interference type soundproofing device

Publications (2)

Publication Number Publication Date
JPH0213602A true JPH0213602A (en) 1990-01-18
JP2606888B2 JP2606888B2 (en) 1997-05-07

Family

ID=15745800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16198388A Expired - Lifetime JP2606888B2 (en) 1988-06-29 1988-06-29 Expansion sign-reversed wave interference type soundproofing device

Country Status (1)

Country Link
JP (1) JP2606888B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020060429A (en) * 2001-01-11 2002-07-18 유인균 Joint of reinforced concrete column and steel beam and a method of the same
CN108755469A (en) * 2018-06-21 2018-11-06 安徽中源环保科技有限公司 A kind of highway noise barrier
US20210225354A1 (en) * 2020-12-16 2021-07-22 Signal Essence, LLC Acoustic lens for safety barriers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020060429A (en) * 2001-01-11 2002-07-18 유인균 Joint of reinforced concrete column and steel beam and a method of the same
CN108755469A (en) * 2018-06-21 2018-11-06 安徽中源环保科技有限公司 A kind of highway noise barrier
US20210225354A1 (en) * 2020-12-16 2021-07-22 Signal Essence, LLC Acoustic lens for safety barriers
US11682378B2 (en) * 2020-12-16 2023-06-20 Signal Essence, LLC Acoustic lens for safety barriers

Also Published As

Publication number Publication date
JP2606888B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
Toyoda et al. Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers
US20210237394A1 (en) Acoustic material structure and method for assembling same and acoustic radiation structure
JPWO2012086680A1 (en) Soundproof board that does not obstruct airflow
US5678364A (en) Soundproof wall
WO2005116990A1 (en) Sound absorbing device for ultra-low frequency sound
JPH0213602A (en) Expansion signal reversal wave interference type sound arrester
Yamamoto Japanese experience to reduce road traffic noise by barriers with noise reducing devices
Huang A theoretical study of passive control of duct noise using panels of varying compliance
JP3898110B2 (en) Soundproof structure and soundproof wall
JPH07502088A (en) noise barrier
JPH01165808A (en) Soundproof wall
JPH03293409A (en) Sound absorbing, screening and isolating panel
JP3159667B2 (en) Road sound absorbing structure
JPH1113026A (en) Silencing wall
Li et al. Optimized design research of fully enclosed noise barrier
Zheng et al. Performance of V-shaped perforated noise barriers
Lee et al. A study on the sound resonating barrier
CN216108163U (en) Closed sound barrier
CN208594496U (en) A kind of new and effective top noise reduction barrier
Aygun Vibrational and Acoustical Wave Propagation Through Fibreglass Plate for Different Boundary Conditions
CN110671124B (en) Acousto-optic gradual change structure of tunnel portal
JPS5921438Y2 (en) noise control device
Aygun Sound radiation from composite plates
Sui A disquisition on traffic noise pollution and its effective control as countermeasures
JPH10183539A (en) Sound absorbing structure for preventing traffic noise