JPH0213554B2 - - Google Patents

Info

Publication number
JPH0213554B2
JPH0213554B2 JP57099247A JP9924782A JPH0213554B2 JP H0213554 B2 JPH0213554 B2 JP H0213554B2 JP 57099247 A JP57099247 A JP 57099247A JP 9924782 A JP9924782 A JP 9924782A JP H0213554 B2 JPH0213554 B2 JP H0213554B2
Authority
JP
Japan
Prior art keywords
voltage
motor
speed
electromotive force
back electromotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57099247A
Other languages
Japanese (ja)
Other versions
JPS58218889A (en
Inventor
Teruo Yaginuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Electric Corp
Original Assignee
Yamamoto Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Electric Corp filed Critical Yamamoto Electric Corp
Priority to JP57099247A priority Critical patent/JPS58218889A/en
Publication of JPS58218889A publication Critical patent/JPS58218889A/en
Publication of JPH0213554B2 publication Critical patent/JPH0213554B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/293Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC using phase control

Description

【発明の詳細な説明】 本発明は小型直巻電動機の速度制御装置に関
し、特に回転起電力の検出値に基づき低速運転制
御を行う改良された速度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed control device for a small series-wound motor, and more particularly to an improved speed control device that performs low-speed operation control based on a detected value of rotational electromotive force.

従来、サイリスタを用いた位相制御方式により
小型直巻電動機の位相制御を行う速度制御装置に
おいて、電動機の回転数に比例した信号を発生す
る装置、例えば電動機の回転子に直結した回転発
電機を備え、回転発電機の出力電圧を回転数設定
信号と共に回転信号検出増幅器に与えて回転数設
定信号と回転電機の出力電圧とを比較し両者の差
を示す信号をサイリスタ位相制御装置に与えるこ
とにより、サイリスタの通電位相を電動機の回転
速度が設定信号により定まる定速度に保たれるよ
う安定に制御する方法が知られている。しかしこ
の制御方法においては、電動機の回転速度を示す
信号を取り出すために回転発電機等を用いている
ためコストが高くなるという欠点が存在した。ま
た、サイリスタの通電位相を制御するものにあつ
ては、電動機の起動時にサイリスタが急激に大き
な通電位相で導通し電動機が突入回転するおそれ
があつた。
Conventionally, a speed control device that performs phase control of a small series-wound motor using a phase control method using a thyristor is equipped with a device that generates a signal proportional to the rotation speed of the motor, such as a rotary generator directly connected to the rotor of the motor. By applying the output voltage of the rotary generator together with the rotation speed setting signal to the rotation signal detection amplifier, comparing the rotation speed setting signal and the output voltage of the rotating electrical machine, and providing a signal indicating the difference between the two to the thyristor phase control device, A method is known in which the energization phase of a thyristor is stably controlled so that the rotational speed of the motor is maintained at a constant speed determined by a setting signal. However, this control method has the drawback of increasing costs because a rotary generator or the like is used to extract a signal indicating the rotational speed of the electric motor. Further, in the case where the energization phase of the thyristor is controlled, there is a risk that the thyristor suddenly conducts at a large energization phase when the motor is started, causing the motor to rotate suddenly.

本発明の目的は、従来の速度制御装置の上記欠
点を除去することにあり、回転発電機等を用いる
ことなしに電動機の速度を示す信号を取り出して
定速度制御を安定に行い得る電動機の速度制御装
置を提供するにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of conventional speed control devices, and to obtain a signal indicating the speed of the motor without using a rotary generator or the like, and to stably perform constant speed control of the motor. Provides control equipment.

本発明はこのような目的を達成するため電動機
の回転速度を示す信号として電動機の逆起電力を
簡単な構成で検出し、この検出値に基づき電動機
の回転速度を負帰環制御しまた電動機の起動時に
サイリスタの通電位相を制御して電動機の突入回
転が生じないようにしたものである。
In order to achieve such an object, the present invention uses a simple configuration to detect the back electromotive force of the motor as a signal indicating the rotational speed of the motor, and based on this detected value, performs negative feedback control on the rotational speed of the motor. At startup, the energization phase of the thyristor is controlled to prevent inrush rotation of the motor.

以下本発明を添付図面を参照して詳細に説明す
る。
The present invention will now be described in detail with reference to the accompanying drawings.

第1図は本発明による電動機の速度制御装置の
典型的実施例の回路図、第2図、第3図は第1図
の回路の動作を説明するための各部の信号波形を
示すタイムチヤートである。
FIG. 1 is a circuit diagram of a typical embodiment of a speed control device for an electric motor according to the present invention, and FIGS. 2 and 3 are time charts showing signal waveforms at various parts to explain the operation of the circuit shown in FIG. be.

第1図において、参照番号2は交流電源、3は
メインスイツチ、4は直流電動機、6は直流電動
機の界磁巻線、8はフライホイールダイオード、
10,12は交流電源から直流電動機に与えられ
る電動機電流の通電位相制御用サイリスタ、2
0,37は電動機4の逆起電力を取り出すための
整流用ダイオード、40は逆起電力検出用抵抗、
46は電動機の速度設定用可変抵抗、50は抵抗
40で検出された逆起電力と可変抵抗46で設定
された速度を示す電圧とを入力にこれらに基づい
て速度指示電圧を出力する線形増幅器、54,5
6は電動機の乱調を防ぐよう線形増幅器の出力を
安定にするための抵抗及びコンデンサ、66はそ
の非反転入力に端子70を介して鋸歯状波電圧を
入力し、反転入力に線形増幅器50の出力電圧を
入力する比較器、80は比較器の出力に応答して
導通するスイツチ素子例えばSBS素子、82は一
次巻線がSBS素子の出力に接続されると共に二次
巻線がサイリスタ10,12のゲート電極に接続
されたパルストランス、90は線形増幅器、比較
器及び抵抗48,78に電源電圧Vccを与える直
流電源である。
In FIG. 1, reference number 2 is an AC power supply, 3 is a main switch, 4 is a DC motor, 6 is a field winding of the DC motor, 8 is a flywheel diode,
10 and 12 are thyristors for controlling the energization phase of the motor current given to the DC motor from the AC power supply;
0 and 37 are rectifying diodes for extracting the back electromotive force of the motor 4; 40 is a resistor for detecting the back electromotive force;
46 is a variable resistor for setting the speed of the motor; 50 is a linear amplifier that inputs the back electromotive force detected by the resistor 40 and the voltage indicating the speed set by the variable resistor 46, and outputs a speed instruction voltage based on these; 54,5
6 is a resistor and a capacitor for stabilizing the output of the linear amplifier to prevent disturbances in the motor; 66 is a non-inverting input to which a sawtooth wave voltage is input via a terminal 70; and an inverting input is the output of the linear amplifier 50. A comparator to which a voltage is input; 80 is a switch element such as an SBS element that conducts in response to the output of the comparator; 82 has a primary winding connected to the output of the SBS element, and a secondary winding connected to the thyristors 10 and 12; A pulse transformer 90 connected to the gate electrode is a DC power supply that provides a power supply voltage Vcc to the linear amplifier, comparator, and resistors 48 and 78.

ここで抵抗18は電動機の逆起電力を検出する
ためであり、抵抗24,28,32,36、コン
デンサ22,26はサイリスタ10,12のゲー
ト電極を保護する作用を有し、抵抗52は抵抗4
4とで定まる比により線形増幅器のゲインを決定
するものである。また抵抗72〜78は抵抗78
を介して与えられる直流電圧を分圧して線形増幅
器50の出力電圧と共に比較器66の反転入力に
与え、これにより線形増幅器の出力電圧が零のと
きも比較器の反転入力にわずかな所定の補正用分
圧電圧を与えてサイリスタの通電を保証するもの
である。また、ダイオード88はパルストランス
82の逆起電力を吸収するものである。コンデン
サ56、ダイオード60、スイツチ62、直流電
源64は電動機を起動する際にサイリスタが急に
大きい通電位相で導通されるのを防ぐための回路
である。
Here, the resistor 18 is for detecting the back electromotive force of the motor, the resistors 24, 28, 32, 36 and the capacitors 22, 26 have the function of protecting the gate electrodes of the thyristors 10, 12, and the resistor 52 is a resistor. 4
The gain of the linear amplifier is determined by the ratio determined by 4 and 4. Also, resistors 72 to 78 are resistors 78
By dividing the DC voltage applied through the linear amplifier 50 and applying it to the inverting input of the comparator 66 together with the output voltage of the linear amplifier 50, a slight predetermined correction is applied to the inverting input of the comparator even when the output voltage of the linear amplifier is zero. This ensures that the thyristor is energized by providing a divided voltage for the thyristor. Further, the diode 88 absorbs the back electromotive force of the pulse transformer 82. The capacitor 56, diode 60, switch 62, and DC power supply 64 are a circuit for preventing the thyristor from suddenly becoming conductive at a large current conduction phase when starting the motor.

以下、第1図の回路の動作を説明する。 The operation of the circuit shown in FIG. 1 will be explained below.

先ず電動機4の逆起電力の検出方法について述
べる。パルストランス82からの出力パルスによ
りサイリスタ10,12が通電すると、交流電源
2の出力電流は図中に実線矢印で示すように、例
えば正の半サイクルにおいてはメインスイツチ
3、サイリスタ12、電動機4、ダイオード2
0,14を介して流れ、負の半サイクルにおいて
はサイリスタ10、電動機4、ダイオード20,
16、そしてメインスイツチ3を介して流れる
が、ダイオード20,37があるため抵抗38,
40には流れない。従つて電動機には第2図イに
示す全波整流電流が供給されることになる。サイ
リスタの通電により電動機が回転するとその端子
間には逆起電力が発生し、この逆起電力により発
生する電流が点線矢印で示すように、電動機の一
端から抵抗18、ダイオード37、抵抗38,4
0を介して電動機の他端へと流れる。
First, a method for detecting the back electromotive force of the electric motor 4 will be described. When the thyristors 10 and 12 are energized by the output pulse from the pulse transformer 82, the output current of the AC power source 2 is as shown by the solid arrow in the figure. diode 2
0, 14, and in the negative half cycle thyristor 10, motor 4, diode 20,
16, and flows through the main switch 3, but due to the presence of diodes 20 and 37, the resistance 38,
It doesn't go to 40. Therefore, the full-wave rectified current shown in FIG. 2A is supplied to the motor. When the motor rotates due to the energization of the thyristor, a back electromotive force is generated between its terminals, and the current generated by this back electromotive force flows from one end of the motor to the resistor 18, the diode 37, the resistors 38 and 4, as shown by the dotted arrow.
0 to the other end of the motor.

従つて電動機4の端子間電圧は位相制御された
とき第2図ロに示すように、サイリスタ10,1
2が遮断している期間(t1〜t2)では逆起電力の
みが現われ、サイリスタが通電している期間(t2
〜t3)では交流電源電圧が現われるが、このうち
の交流電源電圧分はダイオード20,37によつ
て阻止されるため抵抗40の端子間には逆起電力
のみが第2図ハに示すように現われ、従つて逆起
電力が抵抗40により検出されることとなる。
Therefore, when the voltage between the terminals of the motor 4 is phase controlled, as shown in FIG.
During the period when thyristor 2 is cut off (t 1 to t 2 ), only the back electromotive force appears, and during the period when thyristor is energized (t 2
~t 3 ), an AC power supply voltage appears, but since the AC power supply voltage is blocked by the diodes 20 and 37, only a back electromotive force is generated between the terminals of the resistor 40, as shown in FIG. Therefore, a back electromotive force is detected by the resistor 40.

抵抗40の端子間端圧は抵抗44を介して線形
増幅器50の入力50bに印加される。一方、入
力50aには直流電源電圧+Vccを抵抗48及び
可変抵抗46で設定された速度設定電圧Vsが抵
抗42を介して印加される。従つて増幅器50の
出力電圧は速度設定電圧にほぼ比例した電圧にな
ると共に、抵抗40で検出された逆起電力に依存
して逆起電力が小さい程低く、また大きい程高い
値に変動する。即ち、増幅器50は入力50aに
印加される速度設定電圧Vsに対する入力50b
に印加される逆起電力(電動機検出速度を示す)
の差を増幅して速度誤差を示す信号として出力す
るものである。尚、可変抵抗46で設定された速
度設定用電圧Vsはその値が高い程電動機の高速
回転を指示するものである。また増幅器50の入
力50aと出力の間に並列に接続された抵抗54
とコンデンサ56は増幅器の入力が急激に変化し
た場合に出力の変動を緩やかにするもので、従つ
て電動機の乱調を防ぐことができる。増幅器の出
力電圧は抵抗74を介して与えられる補正用電圧
V0と重畳されて速度指示電圧として比較器66
の反転入力に与えられ、端子70から抵抗68を
介して非反転入力に与えられる鋸歯状波電圧(第
3図ロ)と比較される。この鋸歯状波電圧の位相
は交流電源2の出力電圧(第3図イ)の各半サイ
クルと同期しているものである。また、増幅器5
0の出力電圧と補正用電圧との和である速度指示
電圧をVaとすると、Vaは可変抵抗46の値を変
えることによりV0から鋸歯状波電圧の最大値Vn
まで変化する。今、可変抵抗46で決定された
V0よりやや大きい速度指示電圧をVa1とすると、
比較器66は鋸歯状波電圧の値が速度指示電圧
Va1に達すると(第3図ハ)、その時(時刻t1)に
第3図ニに示す矩形波信号を出力し、SBS素子8
0は抵抗84、コンデンサ86の作用によつて時
刻t1よりわずかに遅れた時刻t1′にパルストランス
82の一次巻線に第3図ホに示す鋭いパルス状の
電流を流す。従つて二次巻線にパルス信号が誘起
されてダイオード30,34及び抵抗32,36
を介してサイリスタ10,12の各ゲートにトリ
ガ信号として印加され各サイリスタを通電する
(第3図ヘ)。従つてメインスイツチ3が投入され
ていればサイリスタは速度指示電圧Va1で定まる
大きい導通角で通電されて電動機を高速運転する
こととなる。
The terminal voltage of the resistor 40 is applied to the input 50b of the linear amplifier 50 via the resistor 44. On the other hand, a speed setting voltage Vs , which is a DC power supply voltage + Vcc set by a resistor 48 and a variable resistor 46, is applied to the input 50a via a resistor 42. Therefore, the output voltage of the amplifier 50 becomes a voltage substantially proportional to the speed setting voltage, and varies depending on the back electromotive force detected by the resistor 40, such that the smaller the back electromotive force is, the lower the value becomes, and the larger the back electromotive force is, the higher the value becomes. That is, the amplifier 50 has an input 50b for a speed setting voltage V s applied to the input 50a.
Back emf applied to (indicates motor detection speed)
The difference is amplified and output as a signal indicating the speed error. Incidentally, the higher the value of the speed setting voltage V s set by the variable resistor 46, the higher the speed of rotation of the electric motor is instructed. Also, a resistor 54 connected in parallel between the input 50a and the output of the amplifier 50
The capacitor 56 is used to moderate fluctuations in the output when the input to the amplifier changes suddenly, and therefore can prevent disturbances in the motor. The output voltage of the amplifier is a correction voltage applied via a resistor 74.
The comparator 66 is superimposed with V 0 as the speed indication voltage.
It is applied to the inverting input of , and is compared with the sawtooth wave voltage (FIG. 3b) applied from the terminal 70 to the non-inverting input via the resistor 68. The phase of this sawtooth voltage is synchronized with each half cycle of the output voltage of the AC power supply 2 (FIG. 3A). Also, the amplifier 5
If the speed instruction voltage that is the sum of the output voltage of 0 and the correction voltage is V a , V a can be changed from V 0 to the maximum value of the sawtooth wave voltage V n by changing the value of the variable resistor 46.
changes up to. Now, determined by variable resistor 46
If the speed command voltage slightly larger than V 0 is V a1 , then
The comparator 66 determines that the value of the sawtooth wave voltage is the speed instruction voltage.
When V a1 is reached (Fig. 3 C), the rectangular wave signal shown in Fig. 3 D is output at that time (time t 1 ), and the SBS element 8
By the action of the resistor 84 and the capacitor 86 , a sharp pulse - like current shown in FIG. Therefore, a pulse signal is induced in the secondary winding, and the diodes 30, 34 and resistors 32, 36
The trigger signal is applied as a trigger signal to each gate of the thyristors 10 and 12 via the trigger signal, thereby energizing each thyristor (FIG. 3). Therefore, if the main switch 3 is turned on, the thyristor will be energized at a large conduction angle determined by the speed instruction voltage V a1 and the motor will operate at high speed.

次に可変抵抗46の値を減少して速度指示電圧
の値を大きくしてVa2とすると、比較器からの出
力矩形波に応答してSBS素子80は時刻t2、即ち
対応する電源電圧の半サイクルの遅い位相でパル
ス信号を出力し、従つて各サイリスタは小さい導
通角で通電し電動機を低速運転させることとな
る。
Next, when the value of the variable resistor 46 is decreased to increase the value of the speed instruction voltage to V a2 , the SBS element 80 responds to the output rectangular wave from the comparator at time t 2 , that is, the value of the corresponding power supply voltage. A pulse signal is output at a slow half-cycle phase, so each thyristor is energized at a small conduction angle, causing the motor to operate at a low speed.

このように、可変抵抗46の値を変えることに
より速度指示電圧Vaを最小値V0から最大値Vn
で連続的に変化してサイリスタの導通角を0度か
らほぼ180度まで変化させて電動機の速度を低速
から高速まで連続的に制御できるものである。
尚、増幅器50の出力電圧が零のときも比較器6
6の反転入力にわずかな補正用電圧V0が印加さ
れるようになつているのは、サイリスタは位相が
0度(導通角180度)でゲートパルスを与えても
導通せずある所定の位相まで遅らせてゲートパル
スを与えると通電開始されるため、補正用電圧
V0をその通電開始位相に対応させて増幅器50
の出力電圧が零の場合でも導通角を180度まで進
ませないように作用させることによりサイリスタ
の通電を確実にするためである。
In this way, by changing the value of the variable resistor 46, the speed instruction voltage V a is continuously changed from the minimum value V 0 to the maximum value V n , and the conduction angle of the thyristor is changed from 0 degrees to approximately 180 degrees. The speed of the electric motor can be controlled continuously from low to high speed.
Note that even when the output voltage of the amplifier 50 is zero, the comparator 6
The reason why a slight correction voltage V 0 is applied to the inverting input of 6 is because the thyristor has a phase of 0 degrees (conduction angle of 180 degrees) and does not conduct even if a gate pulse is applied. If the gate pulse is delayed until
V 0 corresponds to the energization start phase of the amplifier 50.
This is to ensure that the thyristor is energized by acting so that the conduction angle does not advance to 180 degrees even when the output voltage of the thyristor is zero.

このようにして抵抗46で決定された速度設定
電圧Vsにより定まる速度で電動機が運転されて
いるとき、負荷の変動等により電動機の回転速度
が変動した場合について述べる。今、負荷が増加
して回転速度が減少したとすると、電動機の逆起
電力は減少し抵抗40の端子間電圧が減少するた
め増幅器50の出力電圧は減少し速度指示電圧
Vaも減少する。従つてサイリスタの通電位相は
進み、電動機の回転速度を上昇して速度設定電圧
Vsにより定まる速度に維持することとなる。ま
た負荷が減少して回転速度が増加すると、逆起電
力が増加するため増幅器50の出力電圧は増加
し、速度指示電圧Vaも増加する。従つてサイリ
スタの通電位相は遅れ、電動機の回転速度を減少
して元の回転速度に保持する。
A case will be described in which when the motor is operated at a speed determined by the speed setting voltage V s determined by the resistor 46 in this manner, the rotational speed of the motor fluctuates due to load fluctuations or the like. Now, if the load increases and the rotational speed decreases, the back electromotive force of the motor decreases and the voltage across the terminals of the resistor 40 decreases, so the output voltage of the amplifier 50 decreases and the speed instruction voltage
V a also decreases. Therefore, the energization phase of the thyristor advances, increasing the rotational speed of the motor and increasing the speed setting voltage.
The speed will be maintained at a speed determined by V s . Further, when the load decreases and the rotational speed increases, the back electromotive force increases, so the output voltage of the amplifier 50 increases, and the speed instruction voltage V a also increases. Therefore, the energization phase of the thyristor is delayed, and the rotational speed of the motor is reduced and maintained at the original rotational speed.

従つて、負荷や電源電圧の変動等によつて電動
機の回転速度が変動してもそれを逆起電力により
検出して負帰還制御することにより、回転速度を
常に速度設定電圧Vsにより定まる速度に安定に
維持できるものである。しかも、本発明において
は電動機の速度を示す信号として回転発電機の出
力信号を用いるものでは無く、電動機の回転起電
力を用いそれを簡単な構成で検出しているもので
あり、構成の簡単な安価な速度制御装置が提供で
きる。
Therefore, even if the rotational speed of the motor fluctuates due to changes in the load or power supply voltage, this is detected by the back electromotive force and negative feedback control is performed, so that the rotational speed is always maintained at the speed determined by the speed setting voltage V s . can be maintained stably. Moreover, the present invention does not use the output signal of the rotary generator as a signal indicating the speed of the electric motor, but uses the rotational electromotive force of the electric motor and detects it with a simple configuration. An inexpensive speed control device can be provided.

次に電動機の起動・停止について説明する。
今、直流電源64から、停止を指示する所定値の
電流をスイツチ62を閉成して抵抗72を介して
比較器66の反転入力に印加すると、反転入力電
圧が非反転入力電圧の最大値以上となるため比較
器は出力せず、電動機は駆動されない。起動を指
示するスイツチ62が開放され電流値零の信号が
与えられると、比較器の反転入力の電圧は速度指
示電圧Vaのみが与えられ非反転入力電圧の最大
値未満となり、電動機は起動されて抵抗46で定
まる設定速度で駆動される。ところで電動機の起
動時において、電動機の回転数が目的の設定回転
数に達するまでは、抵抗46で定まる速度設定電
圧Vsに比較して非反転入力50aに入力する電
圧が小さいため、増幅器50の出力電圧は小さく
速度指示電圧Vaも小さいため、サイリスタが極
めて早い位相で通電され電動機に大きい電流が流
れ急激に駆動される恐れがある。このようなこと
を防止するため抵抗54、コンデンサ56、ダイ
オード60から成る回路が付加されている。次に
この回路の作用を説明する。
Next, starting and stopping of the electric motor will be explained.
Now, when the switch 62 is closed and a current of a predetermined value instructing to stop is applied from the DC power supply 64 to the inverting input of the comparator 66 via the resistor 72, the inverting input voltage becomes higher than the maximum value of the non-inverting input voltage. Therefore, the comparator does not output and the motor is not driven. When the switch 62 instructing start is opened and a signal with a current value of zero is given, the voltage at the inverting input of the comparator is given only the speed instruction voltage V a and becomes less than the maximum value of the non-inverting input voltage, and the motor is started. It is driven at a set speed determined by the resistor 46. By the way, when starting the electric motor, until the rotational speed of the electric motor reaches the target set rotational speed, the voltage input to the non-inverting input 50a is small compared to the speed setting voltage V s determined by the resistor 46, so the voltage input to the non-inverting input 50a is Since the output voltage is small and the speed instruction voltage V a is also small, there is a risk that the thyristor will be energized at an extremely early phase, causing a large current to flow to the motor and driving it rapidly. To prevent this from happening, a circuit consisting of a resistor 54, a capacitor 56, and a diode 60 is added. Next, the operation of this circuit will be explained.

先ず電動機の停止状態において、起動スイツチ
62を閉成し直流電源64から抵抗72を介して
比較器66の反転入力に非反転入力に与えられる
鋸歯状波電圧の最大値Vnを越える電圧を加えて
おくと、比較器66の出力が得られない為サイリ
スタ10,12は、非導通を保ち電動機は停止状
態を続ける。このときコンデンサ56は、直流電
源64により充電されている。
First, when the motor is stopped, the start switch 62 is closed, and a voltage exceeding the maximum value V n of the sawtooth wave voltage applied to the non-inverting input is applied from the DC power supply 64 to the inverting input of the comparator 66 via the resistor 72. If this happens, the output of the comparator 66 will not be obtained, so the thyristors 10 and 12 will remain non-conductive and the motor will continue to be stopped. At this time, the capacitor 56 is being charged by the DC power supply 64.

こゝで起動スイツチ62を開放すると比較器6
6の反転入力の電位は、抵抗76によつて与えら
れる電圧V0まで低下することになるがコンデン
サ56の充電々荷は抵抗74,76,46,4
4,54を介して徐々に放電されるため、速度指
示電圧Vaは最大値Vnから徐々に減少し始めてサ
イリスタは小さい導通角で通電を開始する。従つ
て、電動機はゆつくりと起動され所定の回転数ま
で上昇する。こうして電動機の突入回転が防止さ
れる。
When the start switch 62 is opened, the comparator 6
The potential at the inverting input of the capacitor 56 will drop to the voltage V0 given by the resistor 76, but the charge on the capacitor 56 will be
4 and 54, the speed instruction voltage V a starts to gradually decrease from the maximum value V n and the thyristor starts to conduct current at a small conduction angle. Therefore, the electric motor is started slowly and increases to a predetermined rotation speed. In this way, rush rotation of the electric motor is prevented.

またダイオード60はコンデンサ56の充電電
荷が抵抗58,52を通して放電を早めることを
防止するために用いられる。
Diode 60 is also used to prevent the charge on capacitor 56 from discharging quickly through resistors 58 and 52.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による直流電動機の速度制御装
置の典型的実施例の回路図、第2図及び第3図は
第1図の装置の動作を説明するための各部の信号
波形を示すタイムチヤートである。 符号の説明、2……交流電源、3……メインス
イツチ、4……直流電動機、50……線形増幅
器、66……比較器、80……SBS素子、82…
…パルストランス、90……直流電源。
FIG. 1 is a circuit diagram of a typical embodiment of a speed control device for a DC motor according to the present invention, and FIGS. 2 and 3 are time charts showing signal waveforms of various parts to explain the operation of the device in FIG. 1. It is. Explanation of symbols, 2... AC power supply, 3... Main switch, 4... DC motor, 50... Linear amplifier, 66... Comparator, 80... SBS element, 82...
...Pulse transformer, 90...DC power supply.

Claims (1)

【特許請求の範囲】 1 交流電源からメインスイツチと制御電極付半
導体手段を介して直流電動機に電動機電流を供給
する主電導機回路と、 前記電動機の逆起電力を検出する逆起電力検出
手段であつて、前記電動機に並列に接続された第
1抵抗と、前記主電動機回路の中で該第1抵抗の
一端と前記電動機の間に電動機電流に対して順方
向に接続された第1ダイオードと、該第1ダイオ
ードに並列に接続された第2ダイオードと第2抵
抗の直列体とを有し、該第2ダイオードのアノー
ドは前記第1ダイオードのカソードに接続され、
前記第2抵抗の両端に逆起電力電圧を発生する逆
起電力検出手段と、 前記電動機の速度設定用可変電圧を発生する手
段と、 前記逆起電力検出手段により検出された逆起電
力電圧と前記速度設定用可変電圧とを入力し該二
入力の差に対応した電圧を増幅して速度指示電圧
として出力する線形増幅器と、前記交流電源の出
力電圧の各半サイクルと位相が同期した鋸歯状波
電圧と前記速度指示電圧とを入力し、該鋸歯状波
電圧が前記速度指示電圧に達するとパルス信号を
出力する比較器と、 前記線形増幅器の入出力間に接続されたコンデ
ンサと、前記増幅器の出力と前記コンデンサ間に
順方向に接続されたダイオードと、前記ダイオー
ドのカソードに開閉スイツチを介して接続された
直流電源とを有し、前記スイツチを閉成すること
により前記コンデンサは充電されその充電電圧が
前記速度指示電圧に重畳されて前記比較器に印加
されて前記鋸歯状波電圧を超える値とし、また、
前記スイツチを開放することにより前記コンデン
サの充電電荷は放電され前記速度指示電圧に重畳
された充電電圧が徐々に減少して前記速度指示電
圧を減少させる電動機の急激な起動防止回路と、 前記比較器の出力に一次巻線が接続されると共
に二次巻線が前記半導体手段のゲートに接続さ
れ、前記比較器の出力パルスに応答して前記半導
体手段をトリガするパルストランスとを備え、前
記線形増幅器は前記逆起電力が増加すると前記速
度指示電圧を増加して前記半導体手段の通電位相
を遅らせ、前記逆起電力が減少すると前記速度指
示電圧を減少して前記半導体手段の通電位相を進
めることにより前記電動機の回転速度を安定に制
御することを特徴とする直流電動機の速度制御装
置。
[Scope of Claims] 1. A main conductor circuit that supplies a motor current from an AC power source to a DC motor via a main switch and a semiconductor means with a control electrode, and a back electromotive force detection means that detects a back electromotive force of the motor. a first resistor connected in parallel to the motor; and a first diode connected in a forward direction with respect to the motor current between one end of the first resistor and the motor in the main motor circuit. , a series body of a second diode and a second resistor connected in parallel to the first diode, an anode of the second diode connected to a cathode of the first diode,
a back electromotive force detection means for generating a back electromotive force voltage across the second resistor; a means for generating a variable voltage for speed setting of the motor; a back electromotive force voltage detected by the back electromotive force detection means; a linear amplifier that inputs the variable voltage for speed setting, amplifies a voltage corresponding to the difference between the two inputs, and outputs the amplified voltage as a speed instruction voltage; a comparator that inputs the wave voltage and the speed instruction voltage and outputs a pulse signal when the sawtooth wave voltage reaches the speed instruction voltage; a capacitor connected between the input and output of the linear amplifier; and the amplifier. has a diode connected in the forward direction between the output of the diode and the capacitor, and a DC power supply connected to the cathode of the diode via an on/off switch, and when the switch is closed, the capacitor is charged and the capacitor is charged. A charging voltage is superimposed on the speed indication voltage and applied to the comparator to a value exceeding the sawtooth voltage, and
A sudden start prevention circuit for a motor, in which the charge in the capacitor is discharged by opening the switch, and the charge voltage superimposed on the speed instruction voltage gradually decreases, thereby reducing the speed instruction voltage; and the comparator. a pulse transformer having a primary winding connected to the output of the linear amplifier and a secondary winding connected to the gate of the semiconductor means for triggering the semiconductor means in response to an output pulse of the comparator; When the back electromotive force increases, the speed instruction voltage is increased to delay the energization phase of the semiconductor means, and when the back electromotive force decreases, the speed instruction voltage is decreased to advance the energization phase of the semiconductor means. A speed control device for a DC motor, characterized in that it stably controls the rotational speed of the motor.
JP57099247A 1982-06-11 1982-06-11 Speed controller for dc motor Granted JPS58218889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099247A JPS58218889A (en) 1982-06-11 1982-06-11 Speed controller for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099247A JPS58218889A (en) 1982-06-11 1982-06-11 Speed controller for dc motor

Publications (2)

Publication Number Publication Date
JPS58218889A JPS58218889A (en) 1983-12-20
JPH0213554B2 true JPH0213554B2 (en) 1990-04-04

Family

ID=14242366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099247A Granted JPS58218889A (en) 1982-06-11 1982-06-11 Speed controller for dc motor

Country Status (1)

Country Link
JP (1) JPS58218889A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235091A (en) * 1975-09-11 1977-03-17 Katsumi Miyake Heating and supplying apparatus for fuel oil
JPS5662085A (en) * 1979-10-23 1981-05-27 Fuji Electric Co Ltd Controlling circuit for speed of motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235091A (en) * 1975-09-11 1977-03-17 Katsumi Miyake Heating and supplying apparatus for fuel oil
JPS5662085A (en) * 1979-10-23 1981-05-27 Fuji Electric Co Ltd Controlling circuit for speed of motor

Also Published As

Publication number Publication date
JPS58218889A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
EP0113503B1 (en) Three-phase power factor controller with induced emf sensing
US4369403A (en) Power factor controller for induction motor
US4453115A (en) DC Motor control system
US3555386A (en) Control apparatus for motors and the like
US4246521A (en) DC Motor speed control system
JPH0213554B2 (en)
JPH089567A (en) Output control and output controller of ac generator for vehicle
JPH0648400U (en) Control device for vehicle alternator
JPS6245799B2 (en)
US3422332A (en) Full-wave inductive load control
JPH0528954Y2 (en)
US4748389A (en) Motor speed control apparatus
JP3754130B2 (en) Motor speed control circuit
JP3528525B2 (en) Motor speed control circuit
US3739249A (en) Speed control circuit for a single phase alternating current motor
JP3476654B2 (en) AC motor phase control circuit
SU1117811A1 (en) D.c.drive
JPS6233917B2 (en)
JPH06315292A (en) Equipment for controlling speed of motor
JPH0633709Y2 (en) Pulse high voltage generator
JPS6338956B2 (en)
JPH04290A (en) Constant speed controller for dc motor
SU688975A1 (en) Device for regulating dc motor speed
JP2777615B2 (en) Control device for synchronous motor
JPS6028236B2 (en) braking device