JPH021353B2 - - Google Patents

Info

Publication number
JPH021353B2
JPH021353B2 JP57036590A JP3659082A JPH021353B2 JP H021353 B2 JPH021353 B2 JP H021353B2 JP 57036590 A JP57036590 A JP 57036590A JP 3659082 A JP3659082 A JP 3659082A JP H021353 B2 JPH021353 B2 JP H021353B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
electrode active
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57036590A
Other languages
Japanese (ja)
Other versions
JPS58154172A (en
Inventor
Shigeto Okada
Masami Kakuchi
Akihiko Yamaji
Takashi Sanppongi
Masayuki Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57036590A priority Critical patent/JPS58154172A/en
Publication of JPS58154172A publication Critical patent/JPS58154172A/en
Publication of JPH021353B2 publication Critical patent/JPH021353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、小型にして充放電容量の大きなリチ
ウム二次電池、詳細にはリチウムを負極活物質と
して用いる電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lithium secondary battery that is small in size and has a large charge/discharge capacity, and more particularly to a battery that uses lithium as a negative electrode active material.

従来からリチウムを負極活物質として用いる高
エネルギー密度電池に関する提案は多くなされて
おり、例えば正極活物質として黒鉛およびフツ素
のインターカレーシヨン化合物、負極活物質とし
てリチウム金属をそれぞれ使用した電池が知られ
ている(米国特許第3514337号明細書参照)。ま
た、フツ化黒鉛を正極活物質としたリチウム電池
(松下電器製)および二酸化マンガンを正極活物
質としたリチウム電池(三洋電機製)がすでに市
販されている。しかしながら、これらの電池は充
電不能で二次電池として使用できないという欠点
がある。
Many proposals have been made for high energy density batteries that use lithium as a negative electrode active material, for example, batteries that use graphite and fluorine intercalation compounds as positive electrode active materials and lithium metal as negative electrode active materials are known. (See US Pat. No. 3,514,337). In addition, lithium batteries using graphite fluoride as a positive electrode active material (manufactured by Matsushita Electric) and lithium batteries using manganese dioxide as a positive electrode active material (manufactured by Sanyo Electric) are already on the market. However, these batteries have the disadvantage that they are not rechargeable and cannot be used as secondary batteries.

また、正極活物質としてチタン、ジルコニウ
ム、ハフニウム、ニオビウム、タンタル、バナジ
ウムの硫化物、セレン化物、テルル化物を用いた
二次電池(米国特許第4089052号明細書参照)お
よび酸化クロム、セレン化ニオビウム等を用いた
二次電池〔J.Electrochem.Soc、vol.124.No.7号第
968頁および第325頁(1977年)〕等が提案されて
いるが、これらの電池はその電池特性から必ずし
も十分であるとはいえなかつた。
In addition, secondary batteries using sulfides, selenides, and tellurides of titanium, zirconium, hafnium, niobium, tantalum, and vanadium as positive electrode active materials (see U.S. Pat. No. 4,089,052), chromium oxide, niobium selenide, etc. Secondary battery using [J.Electrochem.Soc, vol.124.No.7
p. 968 and p. 325 (1977)], but these batteries could not necessarily be said to be sufficient due to their battery characteristics.

本発明は、このような現状に鑑みてなされたも
のであり、その目的は、小型にして優れた充放電
特性を有する二次電池を提供することである。
The present invention has been made in view of the current situation, and its purpose is to provide a secondary battery that is small in size and has excellent charge/discharge characteristics.

本発明につき概説すれば、本発明の電池は正極
活物質はMX5(M:Zr、Hf;X:Te)であり、
負極活物質はリチウムであり、電解質は正極活物
質およびリチウムに対して化学的に安定であり、
かつリチウムイオンが正極活物質と電気化学反応
をするための移動を行う物質であることを特徴と
するリチウム−MX5二次電池である。
To summarize the present invention, in the battery of the present invention, the positive electrode active material is MX 5 (M: Zr, Hf; X: Te),
The negative electrode active material is lithium, the electrolyte is chemically stable with respect to the positive electrode active material and lithium,
The present invention is a lithium- MX5 secondary battery characterized in that lithium ions are a substance that moves to perform an electrochemical reaction with a positive electrode active material.

本発明によれば、正極活物質として一般式:
MX5で示される化合物を用いることにより、小
型で良好な充放電特性を有する二次電池を作製す
ることができる。
According to the present invention, the positive electrode active material has the general formula:
By using the compound represented by MX 5 , a secondary battery that is small and has good charge and discharge characteristics can be produced.

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

本発明によるリチウム−MX5二次電池に用い
る正極活物質は前述のように、MX5(ただし、M
はZrおよび/またはHf、XはTeを表す)で示さ
れる化合物である。
As described above, the positive electrode active material used in the lithium- MX5 secondary battery according to the present invention is MX5 (However, M
is a compound represented by Zr and/or Hf, X represents Te).

この化合物は、第1図(S.Okada他J.phys.
Soc.Japan vel.49、August(1980)P839による)
に示すように、ジルコニウムあるいはハフニウム
とテルルの一次元的な三角柱鎖状構造とテルルの
二次元的な層状構造の絡みあつた独特な構造をし
ており、その電気伝導度は、いわゆる鎖状あるい
は層状の異方的結晶構造を特徴とする低次元物質
の中でも特に高い(常温で700Ω-1cm-1以上)。
This compound is shown in Figure 1 (S. Okada et al. J. phys.
Soc.Japan vel.49, August (1980) P839)
As shown in the figure, it has a unique structure in which zirconium or hafnium and tellurium are intertwined with a one-dimensional triangular prism chain structure and a two-dimensional layered structure of tellurium. It is particularly high among low-dimensional materials characterized by a layered anisotropic crystal structure (more than 700Ω -1 cm -1 at room temperature).

すなわち、遷移金属カルコゲナイドにおいて
MX2の一次元針状構造、MX3の二次元層状構造
は比較的ポピユラーで、これらは数十種以上に及
ぶ遷移金属カルコゲナイドに共通の構造である。
That is, in transition metal chalcogenides
The one-dimensional needle-like structure of MX 2 and the two-dimensional layered structure of MX 3 are relatively popular, and these structures are common to more than a dozen types of transition metal chalcogenides.

一方、MX5は針状の“MX3”チエンが残りの
“X−X”分子によつて層状にリンクした針状と
層状のハイブリツド構造を持つており、この構造
の繊維金属カルコゲナイドは現在までに、ZrTe5
とHfTe5の2種しか見つかつていない独特の構造
をしている。
On the other hand, MX 5 has an acicular and layered hybrid structure in which the acicular "MX 3 " chains are linked in a layered manner by the remaining "X-X" molecules, and to date, fiber metal chalcogenides with this structure have In, ZrTe 5
It has a unique structure, of which only two types, HfTe 5 and HfTe 5 , have been found.

ここで“MX3”チエンとは第1図Bにおいて
MX3の化学式で示される三角柱部分(B′に示す)
であり、“X−X”分子とはB″に示す部分であ
る。
Here, the “MX 3 ” chain in Figure 1B is
The triangular prism part shown by the chemical formula of MX 3 (shown as B')
The "X-X" molecule is the part shown in "B".

MX5は一次元的“MX3”チエンと二次元的
“X−X”レイヤーが組み合わさつたハイブリツ
ド構造をとつている。
MX 5 has a hybrid structure that combines a one-dimensional "MX 3 " chain and a two-dimensional "XX" layer.

なお第1図中、白丸、黒丸はx=0、x=0.5
(1/2height)を示し、挿入Liは図中の斜線部のフ
アンデルワールスギヤツプ領域にはいる。
In Figure 1, white circles and black circles indicate x=0 and x=0.5.
(1/2height), and the inserted Li is in the van der Waals gap area shown by the shaded area in the figure.

本発明における正極活物質として、MX5で示
される化合物を用いて正極を形成する場合、正極
はMX5で示される化合物粉末またはこれらとポ
リテトラフルオロエチレンのごとき結合剤粉末と
の混合物をニツケル、ステンレス等の支持体上に
膜状に圧着成形する。あるいは、MX5で示され
る化合物粉末に、より導電性を付与するためアセ
チレンブラツクのような導電体粉末を混合し、場
合によつてはさらにポリテトラフルオロエチレン
のごとき結合剤粉末を加え、この混合物を金属容
器に入れ、あるいは前記混合物をニツケル、ステ
ンレス等の支持体上に圧着成形する等の手段によ
つて形成される。
When forming a positive electrode using a compound represented by MX 5 as the positive electrode active material in the present invention, the positive electrode is made of powder of the compound represented by MX 5 or a mixture of these and a binder powder such as polytetrafluoroethylene. It is pressure-molded into a film shape on a support such as stainless steel. Alternatively, a conductor powder such as acetylene black may be mixed with the compound powder represented by MX 5 to provide more conductivity, and in some cases, a binder powder such as polytetrafluoroethylene may be further added to the mixture. It is formed by placing the mixture into a metal container, or by pressure-molding the mixture onto a support such as nickel or stainless steel.

負極活物質であるリチウムは一般のリチウム電
池のそれと同様にシート状として、またはそのシ
ートをニツケル、ステンレス等の導電体網に圧着
して負極として形成される。
Lithium, which is the negative electrode active material, is formed in the form of a sheet, as in general lithium batteries, or by pressing the sheet onto a conductor network made of nickel, stainless steel, etc. to form the negative electrode.

電解質としては、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン、ジメ
チルスルホキシド、アセドトリル、ホルムアミ
ド、ジメチルホルムアミド、ニトロメタン等の非
プロトン性有機溶媒とLiClO4、LiAlCl4
TLiBF4、LiCl、LiPF6、LiAsF6等のリチウム塩
との組合せまたはLi+を導電体とする固体電解質
あるいは溶融塩など、一般にリチウムを負極活物
質として用いた電池で使用される既知の電解質物
質を用いることができる。
As the electrolyte, aprotic organic solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acedotril, formamide, dimethylformamide, nitromethane, and LiClO 4 , LiAlCl 4 ,
Known electrolyte materials commonly used in batteries using lithium as negative electrode active material, such as combinations with lithium salts such as TLiBF 4 , LiCl, LiPF 6 , LiAsF 6 or solid electrolytes or molten salts with Li + as the conductor. can be used.

また、電池構成上、必要ならば多孔質のポリプ
ロピレン等より成る隔膜を使用してもよい。
Furthermore, if necessary due to the battery structure, a diaphragm made of porous polypropylene or the like may be used.

前述のMX5とLi+の反応の詳細は未だ明確でな
いが、おそらくLi+はMX5のフアンデルワールス
ギヤツプ(第1図斜線部)に入り、トポケミカル
に反応するものと考えている。すなわち可逆的な
正極反応はデスプロプーシヨンとトポケミカルの
2つに大別される。前者は反応に際して正極結晶
構造が対称性も含めて大きく変化する(たとえば
CuF2など)のに対し、後者は構造変化がほとん
どないか、あつてもわずか(格子定数の伸長な
ど)である(例えば遷移金属カルコゲナイドな
ど)。MX5の場合も他の遷移金属カルコゲナイド
と同等に層間にフアンデルワールスギヤツプを持
つており、充放電に際し、Liがこの中に出入りす
るトポケミカル型正極である。
Although the details of the aforementioned reaction between MX 5 and Li + are still unclear, it is thought that Li + probably enters the Van der Waals gap (shaded area in Figure 1) of MX 5 and reacts topochemically. That is, reversible positive electrode reactions can be roughly divided into two types: deproposition and topochemical reactions. In the former case, the positive electrode crystal structure changes significantly during the reaction, including its symmetry (for example,
(e.g., CuF 2 ), whereas the latter undergo little or only slight structural changes (e.g., lattice constant elongation) (e.g., transition metal chalcogenides). Like other transition metal chalcogenides, MX 5 also has a Van der Waals gap between its layers, and is a topochemical type positive electrode in which Li enters and exits during charging and discharging.

このフアンデルワールスギヤツプは初期充電を
施したり、充放電サイクルを繰り返すことにより
Li+の受け入れサイト(位置)を増大させ、それ
による放電容量およびエネルギー密度の増大を図
ることができる。Liの挿入サイトとなるフアンデ
ルワールスギヤツプは充放電サイクルを経ると初
期状態よりも大きくなり、Liの出入りが容易にな
るため1サイクル目より数サイクル目の方が放電
容量が大きくなる現象がある。もちろんあるサイ
クル数を越えると今度は正極構造劣化の要因の方
が多くなつて、容量が低下することは避けられな
い。
This van der Waals gap can be made by applying an initial charge or repeating charge/discharge cycles.
It is possible to increase the number of Li + accepting sites (positions), thereby increasing the discharge capacity and energy density. The Van der Waals gap, which is the insertion site for Li, becomes larger than the initial state after charge/discharge cycles, and as it becomes easier for Li to enter and exit, the discharge capacity becomes larger in the first few cycles than in the first cycle. There is. Of course, once a certain number of cycles is exceeded, the factors that cause deterioration of the positive electrode structure become more prevalent, and a decrease in capacity is unavoidable.

次に、本発明の実施例について説明するが、本
発明はこれらによりなんら限定されるものではな
い。なお、実施例において電池の作製および測定
はAr雰囲気下のドライボツクス中で行つた。
Next, examples of the present invention will be described, but the present invention is not limited to these in any way. In addition, in the examples, battery preparation and measurements were performed in a dry box under an Ar atmosphere.

実施例 1 第2図は本発明による電池の一具体例であるコ
イン型電池の断面図であり、図中1はステンレス
製封口板、2はポリプロピレン製ガスケツト、3
はステンレス製正極ケース、4はリチウム負極、
5はポリプロピレン製微孔性セパレータ、6は正
極合剤ペレツトを示す。
Example 1 FIG. 2 is a sectional view of a coin-type battery that is a specific example of the battery according to the present invention, in which 1 is a stainless steel sealing plate, 2 is a polypropylene gasket, and 3 is a coin-type battery.
is a stainless steel positive electrode case, 4 is a lithium negative electrode,
5 is a polypropylene microporous separator, and 6 is a positive electrode mixture pellet.

正極活物質として、ZrTe5は以下の方法で合成
したZrTe5を用いた。出発原料としてZrとTeを
1:5の組成で石英管の中に真空封入し、この混
合物を450℃で7日間加熱してZrTe5の目的多結
晶を得た(S.Turuseth他Actachem.Scand.27
(1973)P2367)。得られたMX5結晶を導電剤(ア
セチレンブラツク粉末)結着剤(ポリテトラフル
オロエチレン)と共に、78:18:4の重量比で混
合の上、ロール成型し、正極合剤ペレツト6(厚
さ0.5mm、直径17mm、250mg/cell)とした。まず、
封口板1上に金属リチウム負極4を加圧載置した
ものをガスケツト2の凹部に挿入し、金属リチウ
ム負極4の上にセパレータ5、正極合剤ペレツト
6をこの順序に載置し、電解液としての1規定の
LiClO4/プロピレンカーボネート(PC)+1,2
−ジメトキシエタン(DME)〔1:1vol〕(等容
積混合溶媒)を適量注入して含浸させた後に、正
極ケース3をかぶせてかしめることにより、厚さ
2mm、直径23mmのコイン型電池を作製した。放電
容量は、開回路電圧(0.5mA/cm2で7時間放電
の後、50時間休止後測定)および0.5mA/cm2
1.5mA/cm2、5mA/cm2の各電流密度により測
定した。第3図は放電試験の結果を示す図であ
る。その放電容量(第一放電平坦部)は、放電電
流密度の増加につれて減少するが、開回路電圧の
第一放電平坦部は、ZrTe51モル当たり7電子の
反応量(260Ah/Kg)に相当する。
ZrTe 5 synthesized by the following method was used as the positive electrode active material. As a starting material, Zr and Te were vacuum-sealed in a quartz tube with a composition of 1:5, and this mixture was heated at 450°C for 7 days to obtain the desired polycrystal of ZrTe 5 (S. Turuseth et al., Actachem. .27
(1973) P2367). The obtained MX 5 crystals were mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene) at a weight ratio of 78:18:4, and then roll-molded to form positive electrode mixture pellets 6 (thickness: 0.5 mm, diameter 17 mm, 250 mg/cell). first,
A metal lithium negative electrode 4 placed under pressure on a sealing plate 1 is inserted into the recess of the gasket 2, a separator 5 and a positive electrode mixture pellet 6 are placed in this order on the metal lithium negative electrode 4, and the electrolyte is 1 stipulation as
LiClO 4 /propylene carbonate (PC) +1,2
- After injecting and impregnating an appropriate amount of dimethoxyethane (DME) [1:1 vol] (equal volume mixed solvent), a coin-shaped battery with a thickness of 2 mm and a diameter of 23 mm was fabricated by covering and caulking the positive electrode case 3. did. The discharge capacity is determined by the open circuit voltage (measured after discharging for 7 hours at 0.5 mA/cm 2 and resting for 50 hours) and 0.5 mA/cm 2 ,
Measurements were made at current densities of 1.5 mA/cm 2 and 5 mA/cm 2 . FIG. 3 is a diagram showing the results of the discharge test. Its discharge capacity (first discharge plateau) decreases as the discharge current density increases, but the first discharge plateau of the open circuit voltage corresponds to a reaction amount of 7 electrons per mole of ZrTe 5 (260Ah/Kg). do.

この反応量は、下式のようにMX5の各元素の
還元モデル(D.W.Murphy他Journal of Crystal
Growth 39(1977)P185)からの予想値、7電
子と一致している。
This reaction amount can be estimated using the reduction model of each element of MX 5 (DWMurphy et al. Journal of Crystal
Growth 39 (1977) P185) agrees with the predicted value of 7 electrons.

M4+(X2-)(X2 2-)X2+7Li++7e- →(Li+7M3+(X2-5 7電子以降の放電で表される第2放電平坦部
(1.7V)は、電解質溶媒プロピレンカーボネート
の還元電位であると考えられる。
M 4+ ( X 2- ) ( X 2 2- ) _ 1.7V) is considered to be the reduction potential of the electrolyte solvent propylene carbonate.

実施例 2 正極活物質として、HfTe5を用い、実施例1と
同様の方法で同一の電池を作製し、この電池につ
いて0.5mA/cm2の放電電流密度で放電試験を行
つた。
Example 2 The same battery was prepared in the same manner as in Example 1 using HfTe 5 as the positive electrode active material, and a discharge test was conducted on this battery at a discharge current density of 0.5 mA/cm 2 .

第4図は放電試験の結果を実施例1のZrTe5
共に示したものである。双方の放電プロフアイル
はよく類似しており、両者に共通するMX5構造
が、この電池反応に重要な役割を果たしているこ
とがわかる。
FIG. 4 shows the results of the discharge test together with ZrTe 5 of Example 1. The discharge profiles of both are very similar, indicating that the MX5 structure common to both plays an important role in this battery reaction.

実施例 3 正極活物質としてZrTe5を用い、実施例1と同
様の方法で同一の電池を作製し、この電池につい
て、0.5mA/cm2の放電電流密度で定容量サイク
ル試験を行つた。第5図はZrTe51モル当たり1
電子関与の充放電深さのサイクル結果であり、同
じく第6図、第7図はそれぞれ2電子関与、3電
子関与深さのサイクル結果である。充放電の深さ
が深くなるとサイクル回数は急激に減少するが1
電子関与の充放電深さでは、180サイクルが可能
であつた。
Example 3 Using ZrTe 5 as the positive electrode active material, the same battery was produced in the same manner as in Example 1, and a constant capacity cycle test was performed on this battery at a discharge current density of 0.5 mA/cm 2 . Figure 5 shows 1 mole of ZrTe 5
These are the cycle results for charge/discharge depth involving electrons, and similarly, FIGS. 6 and 7 are the cycle results for depths involving 2 electrons and 3 electrons, respectively. As the depth of charging and discharging increases, the number of cycles decreases rapidly, but 1
At the charge/discharge depth involving electrons, 180 cycles were possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の電池は小型にし
て充放電容量が大きく、かつ充放電寿命が長く、
しかも大電流取得可能な二次電池として種々の分
野に使用できるという利点を有する。
As explained above, the battery of the present invention is small in size, has a large charge/discharge capacity, and has a long charge/discharge life.
Moreover, it has the advantage that it can be used in various fields as a secondary battery that can obtain a large current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AはMX5で示される化合物の結晶構造
の(010)面、第1図Bは同じく(100)面への投
影図、第2図は本発明の一実施例であるコイン型
電池の特性測定用セル断面概略図、第3図、第4
図は本発明の実施例1、2における電池の放電電
圧変化を示した図、第5図、第6図、第7図は本
発明の実施例3にける電池の充放電繰り返し数と
充放電時の電圧変化を示した図である。ここで各
曲線に付した数字は充放電の繰り返し数を示す。 1……封口板、2……ガスケツト、3……正極
ケース、4……金属リチウム負極、5……セパレ
ータ、6……正極合剤ペレツト。
Figure 1A is a (010) plane of the crystal structure of the compound represented by MX 5 , Figure 1B is a projection of the crystal structure onto the (100) plane, and Figure 2 is a coin-type battery that is an embodiment of the present invention. Schematic cross-sectional diagrams of cells for measuring characteristics, Figures 3 and 4
The figure shows the discharge voltage change of the battery in Examples 1 and 2 of the present invention, and Figures 5, 6, and 7 show the number of charging/discharging cycles and the charging/discharging cycle of the battery in Example 3 of the present invention. FIG. The numbers attached to each curve here indicate the number of repetitions of charging and discharging. DESCRIPTION OF SYMBOLS 1... Sealing plate, 2... Gasket, 3... Positive electrode case, 4... Metal lithium negative electrode, 5... Separator, 6... Positive electrode mixture pellet.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質として一般式MX5(ただし、Mは
Zrおよび/またはHf、XはTeを示す)、負極活
物質としてリチウム、電解質として正極活物質お
よびリチウムに対して化学的に安定であり、かつ
リチウムイオンが正極活物質と電気化学反応をす
るための移動を行いうる物質より構成されている
ことを特徴とするリチウム−MX5二次電池。
1 As a positive electrode active material, the general formula MX 5 (where M is
Zr and/or Hf; 1. A lithium- MX5 secondary battery comprising a material capable of transferring .
JP57036590A 1982-03-10 1982-03-10 Lithium-mx5 secondary battery Granted JPS58154172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57036590A JPS58154172A (en) 1982-03-10 1982-03-10 Lithium-mx5 secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57036590A JPS58154172A (en) 1982-03-10 1982-03-10 Lithium-mx5 secondary battery

Publications (2)

Publication Number Publication Date
JPS58154172A JPS58154172A (en) 1983-09-13
JPH021353B2 true JPH021353B2 (en) 1990-01-11

Family

ID=12473987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57036590A Granted JPS58154172A (en) 1982-03-10 1982-03-10 Lithium-mx5 secondary battery

Country Status (1)

Country Link
JP (1) JPS58154172A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945334A (en) * 1972-07-24 1974-04-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945334A (en) * 1972-07-24 1974-04-30

Also Published As

Publication number Publication date
JPS58154172A (en) 1983-09-13

Similar Documents

Publication Publication Date Title
KR100570677B1 (en) Rechargeable lithium battery
US8852818B2 (en) Non-aqueous secondary battery
JP4503824B2 (en) Cathode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP5221660B2 (en) Battery negative electrode and lithium ion battery using the same
JP4985524B2 (en) Lithium secondary battery
JP4837614B2 (en) Lithium secondary battery
US10347941B2 (en) Lithium metal battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
KR100469163B1 (en) Anode-activating materials and non-aqueous electrolyte secondary cells
JP4332845B2 (en) Non-aqueous electrolyte battery
US5491041A (en) Solid-state secondary batteries with graphite anodes
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
WO2006090607A1 (en) Electric cell
JP2002151154A (en) Lithium secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2001256978A (en) Positive pole active material for lithium secondary battery and its manufacturing method
JP2550990B2 (en) Non-aqueous electrolyte battery
JPH10302766A (en) Lithium ion secondary battery
JP3456363B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JPS6311748B2 (en)
JPH10308235A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH021353B2 (en)
JPH0381268B2 (en)
JP2559055B2 (en) Lithium battery