JPH02135265A - Far-infrared ray radiating coating - Google Patents

Far-infrared ray radiating coating

Info

Publication number
JPH02135265A
JPH02135265A JP28917888A JP28917888A JPH02135265A JP H02135265 A JPH02135265 A JP H02135265A JP 28917888 A JP28917888 A JP 28917888A JP 28917888 A JP28917888 A JP 28917888A JP H02135265 A JPH02135265 A JP H02135265A
Authority
JP
Japan
Prior art keywords
coating
ceramic particles
paint
far
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28917888A
Other languages
Japanese (ja)
Inventor
Masato Yoshikawa
正人 吉川
Akinori Moto
元 秋則
Takehisa Inoue
井上 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28917888A priority Critical patent/JPH02135265A/en
Publication of JPH02135265A publication Critical patent/JPH02135265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the title coating having good coating workability and excellent adhesion strength of coating film without clogging spray gun by adding specific crystalline zirconia based ceramic particles to coating. CONSTITUTION:The aimed coating obtained by adding crystalline zirconia based ceramic particles having <=15nm crystalline diameter obtained from half value width of powdery X ray diffraction (111) face peak using formula of Scherrer to a coating (preferably emulsion type synthetic resin based coating). Furthermore, crystallinity of the above-mentioned ceramic particle is preferably >=80%.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、遠赤外線放射効果のすぐれた塗料に関するも
のであり、さらに詳しくは塗装作業性および塗膜の接着
強度がすぐれた遠赤外線放射性塗料に関するものである
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a paint with an excellent far-infrared radiation effect, and more specifically, a far-infrared radiation-emitting paint with excellent painting workability and coating adhesive strength. It is related to.

〈従来の技術〉 ジルコニア系セラミックスは生体に好影響を及ぼすとい
われている波長8〜14μmの遠赤外線を高い効率で放
射する特性を有しており、られているが、この特性を利
用してジルコニア系セラミックスを通常の塗料に混合し
、この塗料を各種素材に塗布することにより、遠赤外線
放射性を付与させることが試みられている。
<Prior art> Zirconia ceramics have the property of emitting far-infrared rays with a wavelength of 8 to 14 μm, which are said to have a positive effect on living organisms, with high efficiency. Attempts have been made to impart far-infrared radiation by mixing zirconia-based ceramics with ordinary paint and applying this paint to various materials.

〈発明が解決しようとする課題〉 しかしながら、上記従来の遠赤外線放射性塗料において
は、含有されるジルコニア系セラミックス粒子の粒子径
が大きく、しかもその粒子径分布が広いことに起因して
、たとえば塗料をスプレー塗布する場合にノズルの目詰
まりを起こしやすく、塗装作業性が劣るばかりか、とく
に大きな粒子が混在する場合には、塗膜の接着強度が阻
害されるという問題があった。
<Problems to be Solved by the Invention> However, in the conventional far-infrared emissive paint described above, the particle size of the zirconia ceramic particles contained is large and the particle size distribution is wide, so that, for example, the paint cannot be used. When spray coating, the nozzle is easily clogged, resulting in poor coating workability, and especially when large particles are present, the adhesive strength of the coating film is impaired.

したがって、上記の問題を回避するためにジルコニア系
セラミックス粒子の塗料に対する混合割合を低く設定す
る必要があり、このために十分な遠赤外線放射性を発揮
し得ないという不具合があった。
Therefore, in order to avoid the above-mentioned problems, it is necessary to set the mixing ratio of zirconia ceramic particles to the paint at a low level, which causes the problem that sufficient far-infrared radiation cannot be exhibited.

そこで本発明の課題は、塗装作業性および塗膜の接着強
度がすぐれた遠赤外線放射性塗料を提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a far-infrared emitting paint that has excellent coating workability and adhesive strength of a coating film.

く課題を解決するための手段〉 すなわち、本発明は、粉末X線回折(111)面ピーク
の半値幅から、5cherrerの式を用いて求めた結
晶子径が15r+n+以下の結晶性ジルコニア系セラミ
ックス粒子を、塗料に含有せしめてなることを特徴とす
る遠赤外線放射性塗料を、その要旨とするものである。
Means for Solving the Problems> That is, the present invention provides crystalline zirconia ceramic particles having a crystallite diameter of 15r+n+ or less, which is determined from the half-width of the (111) plane peak in powder X-ray diffraction using the 5cherrer formula. The gist thereof is a far-infrared emissive paint characterized by containing the following.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する結晶性ジルコニア系セラミックス粒子
は、ジルコニア単独のもの以外に、ジルコニアに固溶し
得る元素、たとえばカルシウム、マグネシウムなどのア
ルカリ土類金属、イツトリウムなどの粘土族およびセリ
ウムなどの希土類元素の酸化物を含有したものも包含さ
れる。
In addition to zirconia alone, the crystalline zirconia-based ceramic particles used in the present invention include elements that can be solid-dissolved in zirconia, such as alkaline earth metals such as calcium and magnesium, clay group elements such as yttrium, and rare earth elements such as cerium. Also included are those containing oxides of.

そして、本発明で使用する結晶性ジルコニア系セラミッ
クス粒子は、その粒子の結晶子径が15nm以下、とく
に10nm以下にあることが重要である。
It is important that the crystalline zirconia ceramic particles used in the present invention have a crystallite diameter of 15 nm or less, particularly 10 nm or less.

ここでいう結晶子径とは、粉末X線回折(111)面ピ
ークの半値幅から、5cherrerの式を用いて求め
た値であり、用いる結晶性ジルコニア系セラミックス粒
子の結晶子径が15nmを越える場合には、塗料中で微
細な粒子を形成し得す、しかも粒子の粒子径分布か大き
くなって、塗料の塗装作業性および塗膜の接着強度など
が十分に改良し得ないため好ましくない。
The crystallite diameter here is a value determined from the half-value width of the (111) plane peak in powder X-ray diffraction using the 5cherrer formula, and the crystallite diameter of the crystalline zirconia ceramic particles used exceeds 15 nm. In such cases, fine particles may be formed in the coating material, and the particle size distribution of the particles becomes large, making it impossible to sufficiently improve the coating workability of the coating material and the adhesive strength of the coating film, which is undesirable.

結晶性ジルコニア系セラミックス粒子の結晶形態は、単
斜晶、正方品および立方晶のいずれでもよいが、結晶性
の度合いは50%以上、とくに80%以上であって、い
わゆる結晶性を呈していることが必要である。
The crystal form of the crystalline zirconia ceramic particles may be monoclinic, tetragonal, or cubic, but the degree of crystallinity is 50% or more, particularly 80% or more, and exhibits so-called crystallinity. It is necessary.

なお、ここでいう結晶性の度合いとは、0.3モル/U
の水酸化ジルコニウムを含む水性懸濁液を、200℃で
24時間耐圧容器中で加熱処理して生成したジルコニア
を、100%結晶化物として用い、X!1回折測定によ
り得られたチャートの、ジルコニアの(111)面ピー
クの面積を比較して相対値で示したものをいう。
In addition, the degree of crystallinity here is 0.3 mol/U
An aqueous suspension containing zirconium hydroxide of It refers to a comparison of the areas of the (111) plane peaks of zirconia in charts obtained by one diffraction measurement, and is expressed as a relative value.

結晶性ジルコニア系セラミックス粒子の結晶性の度合い
が50%よりも低い場合には、粒子の安定性が劣り、こ
れを混合した塗料の粘度が異常に高くなったり、ゲル化
が進行するなどの不具合を生ずるため好ましくない。
If the degree of crystallinity of the crystalline zirconia ceramic particles is lower than 50%, the stability of the particles will be poor, and problems such as abnormally high viscosity of paints mixed with the particles and progress of gelation may occur. This is undesirable because it causes

本発明で用いる結晶化ジルコニア系セラミックス粒子の
製造方法は特に限定されないが、たとえば水熱結晶化法
により好ましく製造することができる。
Although the method for producing the crystallized zirconia ceramic particles used in the present invention is not particularly limited, they can preferably be produced by, for example, a hydrothermal crystallization method.

すなわち、水熱結晶化方法の代表例について説明すれば
、ジルコニウムの塩を塩基で中和させるか、あるいはジ
ルコニウムとそれに固溶し得る池の元素との塩の混合水
溶液を、アルカリ性水溶液で中和し、水酸化物を共沈さ
せて、耐圧容器中、100〜300℃程度の温度で処理
し、結晶化させる。
In other words, typical examples of hydrothermal crystallization methods include neutralizing a zirconium salt with a base, or neutralizing a mixed aqueous solution of a salt of zirconium and an element that can form a solid solution with an alkaline aqueous solution. Then, the hydroxide is co-precipitated and treated in a pressure vessel at a temperature of about 100 to 300°C to crystallize it.

このようにして製造した粒子を水洗し、不純物の塩を除
去すると、粒子が均一の大きさで分散し、しかも粒子径
を小さく形成することができる。
When the particles produced in this manner are washed with water to remove salt impurities, the particles can be dispersed in a uniform size and have a small particle size.

さらに粒子の分散性を向上させたい場合には、酸もしく
はアミンなどのアルカリを添加することが望ましい、た
とえば酢酸を用いて解膠させることにより、0.03μ
m程度の平均粒子径にすることができる。
If you want to further improve the dispersibility of particles, it is desirable to add an alkali such as an acid or an amine. For example, by peptizing with acetic acid, 0.03μ
The average particle diameter can be set to about m.

このように水熱結晶化法により得られたジルコニア系セ
ラミックス粒子は、所望のPHを有するゾル状物として
調製することができる。
The zirconia ceramic particles obtained by the hydrothermal crystallization method in this manner can be prepared as a sol having a desired pH.

本発明の遠赤外線放射性塗料は、上記の結晶性ジルコニ
ア系セラミックス粒子を塗料と混合することにより得ら
れるが、一般にセラミックス粒子の分散剤として知られ
ている化合物、たとえばポリアクリル酸ナトリウムやポ
リアクリル酸アンモニウムなどを必要に応じて同時に混
合することができる。
The far-infrared emissive paint of the present invention can be obtained by mixing the above-mentioned crystalline zirconia ceramic particles with a paint, but compounds generally known as dispersants for ceramic particles, such as sodium polyacrylate and polyacrylic acid Ammonium etc. can be mixed at the same time if necessary.

また、結晶性ジルコニア系セラミックス粒子の分散性を
改良するために、一般に知られている、油脂原料による
表面被覆処理、界面活性剤処理および金属石鹸処理など
を施してから塗料に混合することもできる。
In addition, in order to improve the dispersibility of crystalline zirconia-based ceramic particles, they can be mixed into paints after being subjected to generally known surface coating treatments using oil and fat raw materials, surfactant treatments, and metal soap treatments. .

本発明で使用する塗料は、好ましくはエマルジョン型合
成樹脂塗料である。これらエマルジョン型合成樹脂塗料
の具体例としては、エマルジョン型アクリル樹脂および
エマルジョン型ウレタン樹脂などがあげられる。
The paint used in the present invention is preferably an emulsion type synthetic resin paint. Specific examples of these emulsion type synthetic resin paints include emulsion type acrylic resins and emulsion type urethane resins.

塗料に対する結晶性ジルコニア系セラミックス粒子の混
合割合は、固形分換算で塗料中の樹脂分100重量部に
対し、結晶性ジルコニア系セラミックス粒子50へ一3
00重量部、とくに100〜200重量部の割合が好適
であり、本発明で用いる結晶性ジルコニア系セラミック
ス粒子はその結晶子径が小さく、しかし粒子径分布が狭
いため、従来よりも塗料に対する混合割合を高く設定し
、−層すぐれた遠赤外線放射効果を発揮することができ
る。
The mixing ratio of the crystalline zirconia ceramic particles to the paint is 50 parts by weight of the crystalline zirconia ceramic particles to 13 parts by weight of the resin content in the paint in terms of solid content.
00 parts by weight, especially 100 to 200 parts by weight, is preferred.The crystalline zirconia ceramic particles used in the present invention have a small crystallite size, but have a narrow particle size distribution, so the mixing ratio in the paint is lower than in the past. By setting a high value, it is possible to exhibit an excellent far-infrared radiation effect.

結晶性ジルコニア系セラミックス粒子と塗料との混合は
、種々の方法で行なうことができるが、なかでもジルコ
ニア系セラミックス粒子を含有する水性のスラリーまた
はゾルと、塗料を含有する水性懸濁液とを、液−液の形
で混合する方法が好適である。
The crystalline zirconia ceramic particles and the paint can be mixed by various methods, but among them, an aqueous slurry or sol containing the zirconia ceramic particles and an aqueous suspension containing the paint are mixed. A method of mixing in liquid-liquid form is preferred.

〈実施例〉 以下、実施例により本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 1.2M塩化ジルコニル水溶液4000 ccと、4.
8Mアンモニア水4000 ccとを撹拌しながら、混
合し、次いで耐圧容器中に入れ、150℃で24時間加
熱処理した。
Example 1 4000 cc of 1.2M zirconyl chloride aqueous solution, 4.
The mixture was mixed with 4000 cc of 8M ammonia water with stirring, then placed in a pressure container and heat-treated at 150° C. for 24 hours.

生成したスラリーを、塩素イオン含量がジルコニア粒子
固形分に対して0.1重量%以下となるように蒸溜水で
十分に水洗した。
The produced slurry was thoroughly washed with distilled water so that the chlorine ion content was 0.1% by weight or less based on the solid content of the zirconia particles.

ここで、生成した結晶性ジルコニア系セラミックス粒子
の一部を乾燥し、その結晶性の度合いを測定した結果、
85%以上の結晶化度を示した。
Here, as a result of drying a part of the crystalline zirconia ceramic particles produced and measuring the degree of crystallinity,
It showed a degree of crystallinity of 85% or more.

また、結晶性ジルコニア系セラミックス粒子の結晶子径
10n11であり、ストークス径の平均粒子径は0.5
μmであった。
In addition, the crystallite diameter of the crystalline zirconia ceramic particles is 10n11, and the average particle diameter of the Stokes diameter is 0.5.
It was μm.

このようにして得た結晶性ジルコニア系セラミックス粒
子のケーク(含水率:60%)lkrに、アンモニア水
20CC1水1000 ccおよび分散剤としてポリア
クリル酸アンモニウム(アロンA−30・・・東亜合成
1■製)20gを添加し、さらに固形分45%のエマル
ジョン型アクリル樹脂塗料1゜8に+rを添加、混合し
た。
To the thus obtained cake of crystalline zirconia ceramic particles (water content: 60%) lkr, 20 cc of ammonia water, 1000 cc of water and ammonium polyacrylate (Aron A-30...Toagosei 1) were added as a dispersant. Co., Ltd.) was added thereto, and +r was further added to 1°8 of an emulsion type acrylic resin paint with a solid content of 45% and mixed.

このようにして得られた遠赤外線放射性塗料について、
スプレー塗布テストを行なった結果、スプレーガンの目
詰まりもなく塗装作業性がきわめて良好であり、沈降物
の残存も認められなかった。
Regarding the far-infrared emissive paint obtained in this way,
As a result of a spray application test, there was no clogging of the spray gun, the coating workability was very good, and no sediment was observed.

また、塗膜の接着強度も良好であり、すぐれた遠赤外線
放射効果を発揮した。
The adhesive strength of the coating film was also good, and it exhibited excellent far-infrared radiation effects.

比較例1 中和法で生成した水酸化ジルコニウムを1000°Cで
2時間仮焼し、粉砕して得られたジルコニア粉末につい
て、その結晶性の度合いを測定した結果、100%以上
の結晶化度を示した。
Comparative Example 1 The degree of crystallinity of zirconia powder obtained by calcining and pulverizing zirconium hydroxide produced by a neutralization method at 1000°C for 2 hours was measured, and the crystallinity was 100% or more. showed that.

また、結晶性ジルコニア系セラミックス粒子の結晶子径
27nnであり、ストークス径の平均粒子径は0.5μ
mであった。
In addition, the crystallite diameter of the crystalline zirconia ceramic particles is 27 nn, and the average particle diameter of the Stokes diameter is 0.5 μm.
It was m.

このジルコニア粉末を実施例1と同様の組成となるよう
にエマルジョン型アクリル樹脂塗料に混合し、スプレー
塗装テストを行なった結果、スプレーガンの目詰まりが
著しく、沈降物も多いという問題を有していた。
This zirconia powder was mixed with an emulsion-type acrylic resin paint to have the same composition as in Example 1, and a spray coating test was conducted. As a result, the spray gun was significantly clogged and there were many sediments. Ta.

〈発明の効果〉 以上説明したように、粉末X線回折(11,1)面ピー
クの半値幅から、5cherrerの式を用いて求めた
結晶子径が15r+1以下の結晶性ジルコニア系セラミ
ックス粒子を、塗料に含有せしめてなる本発明の遠赤外
線放射性塗料は、従来のジルコニア含有塗料に比較して
、スプレーガンの目詰まりもなく塗装作業性がきわめて
良好であり、塗膜の接着強度もすぐれるという利点を有
しており、しかも高い遠赤外線遮断効果を特徴する
<Effects of the Invention> As explained above, crystalline zirconia ceramic particles having a crystallite diameter of 15r+1 or less determined from the half-width of the powder X-ray diffraction (11,1) plane peak using the 5cherrer formula, Compared to conventional zirconia-containing paints, the far-infrared emissive paint of the present invention, which is incorporated into paints, has extremely good coating workability without clogging spray guns, and has excellent adhesive strength of the paint film. It has many advantages and features a high far-infrared blocking effect.

Claims (2)

【特許請求の範囲】[Claims] (1)粉末X線回折(111)面ピークの半値幅から、
Scherrerの式を用いて求めた結晶子径が15n
m以下の結晶性ジルコニア系セラミックス粒子を、塗料
に含有せしめてなることを特徴とする遠赤外線放射性塗
料。
(1) From the half-value width of the powder X-ray diffraction (111) plane peak,
The crystallite diameter determined using Scherrer's formula is 15n.
A far-infrared emissive paint characterized by containing crystalline zirconia-based ceramic particles with a size of less than m.
(2)塗料がエマルジョン型合成樹脂系塗料であること
を特徴とする請求項(1)に記載の遠赤外線放射性塗料
(2) The far-infrared emissive paint according to claim (1), wherein the paint is an emulsion type synthetic resin paint.
JP28917888A 1988-11-16 1988-11-16 Far-infrared ray radiating coating Pending JPH02135265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28917888A JPH02135265A (en) 1988-11-16 1988-11-16 Far-infrared ray radiating coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28917888A JPH02135265A (en) 1988-11-16 1988-11-16 Far-infrared ray radiating coating

Publications (1)

Publication Number Publication Date
JPH02135265A true JPH02135265A (en) 1990-05-24

Family

ID=17739780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28917888A Pending JPH02135265A (en) 1988-11-16 1988-11-16 Far-infrared ray radiating coating

Country Status (1)

Country Link
JP (1) JPH02135265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890457B2 (en) * 2002-09-20 2005-05-10 Toshiyuki Waragai Adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890457B2 (en) * 2002-09-20 2005-05-10 Toshiyuki Waragai Adhesive

Similar Documents

Publication Publication Date Title
US6197277B1 (en) Process for producing alumina particles having high dispersibility and plasticity
AU596390B2 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and production of the same
RU2137715C1 (en) Complex metal oxide powder, yttrium-aluminum garnet powder (versions), and method for preparing complex metal oxide
US5702519A (en) Flaky aluminum oxide and pearlescent pigment, and production thereof
US4820593A (en) Stabilised metallic oxides
DE102006011965A1 (en) Process for producing fine alpha-alumina particles
JP2008024555A (en) Zirconia fine powder, its manufacturing method and its use
TW201843110A (en) Black near-infrared reflective pigment and method for producing same
DE102004024146A1 (en) Process for producing an α-alumina powder
JP3759208B2 (en) Method for producing alumina particles
DE102004008943A1 (en) Process for producing an α-alumina powder
DE102004010208A1 (en) Process for producing a particulate α-alumina
KR101551616B1 (en) Preparing method for micro-platelet alumina
JP2018515632A (en) Aluminum hydroxide-containing composite pigment and method for producing the same
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
JPH02135265A (en) Far-infrared ray radiating coating
KR100364188B1 (en) Composition Based On Samarium Sesquisulphide, Preparation Method and Use as Colouring Pigment
JP2002249315A (en) THIN-CHIP FOAM alpha-ALUMINA PARTICLE AND METHOD FOR PRODUCING THE SAME
JPH04295014A (en) Stabilized metal oxide composition and method of preparing same
US6036763A (en) KOH neutralized metatitanic acid mixture and complex inorganic pigments containing the same
JP6257243B2 (en) Rare earth titanate powder, method for producing the same, and dispersion containing the same
US5312613A (en) Process for producing ceramic precursor powders without gel formation
JPH03190972A (en) Coating composition having excellent masking power
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPH01301520A (en) Production of alumina-zirconia multiple powder