JPH02135130A - Hollow fiber membrane made of regenerated cellulose - Google Patents

Hollow fiber membrane made of regenerated cellulose

Info

Publication number
JPH02135130A
JPH02135130A JP1142222A JP14222289A JPH02135130A JP H02135130 A JPH02135130 A JP H02135130A JP 1142222 A JP1142222 A JP 1142222A JP 14222289 A JP14222289 A JP 14222289A JP H02135130 A JPH02135130 A JP H02135130A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
fiber membrane
water
albumin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1142222A
Other languages
Japanese (ja)
Inventor
Takuya Yamamoto
卓也 山本
Joji Nishikido
條二 錦戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to ES89113145T priority Critical patent/ES2061820T5/en
Priority to EP89113145A priority patent/EP0351773B2/en
Priority to US07/381,253 priority patent/US4919809A/en
Priority to DE68919142T priority patent/DE68919142T3/en
Priority to KR1019890010302A priority patent/KR920000560B1/en
Publication of JPH02135130A publication Critical patent/JPH02135130A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose

Abstract

PURPOSE:To control the loss of useful protein by forming a hollow fiber membrane made of regenerated cellulose and having a hollow part piercing through the membrane in the axial direction of the fiber and also having a specified water-contg. void volume at the time of wetting and a specified coefft. of sieving of albumin at the time of filtering blood. CONSTITUTION:A cuprammonium rayon spinning soln. having 4-12% concn. of cellulose and a hollow part forming agent which solidifies the spinning soln. slightly are ejected from a double spinneret, passed through a nonsolidifying atmosphere, introduced into a solidifying liq. and solidified to obtain a hollow fiber membrane made of regenerated cellulose. This membrane has a hollow part piercing through the membrane in the axial direction of the fiber and also has such characteristic values as 76-95% water-contg. void volume at the time of wetting and <=0.15 coefft. of sieving of albumin at the time of filtering blood.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルブミン等の血中有用蛋白質の逸失を抑え
、かつ分子量10000以上の血中服毒物質を効率良く
除去する膜に関する。詳しくは、血液浄化療法において
特にβ2−マイクログロブリンに代表される高分子量領
域物質をアルブミンに対して選択的に除去する膜に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a membrane that suppresses the loss of useful proteins in the blood such as albumin and efficiently removes toxic substances in the blood having a molecular weight of 10,000 or more. Specifically, the present invention relates to a membrane that selectively removes high molecular weight substances such as β2-microglobulin relative to albumin in blood purification therapy.

〔従来の技術] 慢性腎不全等により血液浄化療法を継続的に受けている
患者には、高頻度で貧血、高血圧、色素沈着、骨・関節
障害等の合併症が認められ、その原因究明と対応策の研
究が進められている。一般には、生体側以外の合併症発
症要因として血液浄化膜の物質除去能が取り上げられて
いる。すなわち、血液浄化膜によって除去できない物質
または生体側の産生■に比して著しく除去可能量が小さ
い物質が体内に蓄積する結果、種々の合併症が引き起こ
されると考えられている。しかしながら、病因物質の同
定を含めた合併症発症機序が明らかにされた例はなく、
分子量60の尿素をはじめ、せいぜい分子量5000程
度の服毒物質までを効率良く除去できる膜が従来一般に
は求められたに過ぎない。この要求をよく満足する血液
浄化膜として再生セルロース製中空糸膜(平均孔半径約
30Å以下)を主に用いる血液浄化療法が引き続き行わ
れてきた。
[Prior art] Complications such as anemia, hypertension, pigmentation, and bone and joint disorders are frequently observed in patients who are continuously receiving blood purification therapy due to chronic renal failure, etc., and it is important to investigate the causes of these complications. Research into countermeasures is underway. In general, the ability of blood purification membranes to remove substances has been taken up as a factor in the development of complications other than on the living side. That is, it is thought that various complications are caused as a result of accumulation of substances in the body that cannot be removed by blood purification membranes or substances that can be removed in an extremely small amount compared to the amount produced by the living body. However, there have been no cases where the mechanism of complication onset, including the identification of the etiological agent, has been clarified.
Conventionally, there has been a general demand for membranes that can efficiently remove urea with a molecular weight of 60 and poisonous substances with a molecular weight of about 5,000 at most. Blood purification therapy that mainly uses regenerated cellulose hollow fiber membranes (average pore radius of about 30 Å or less) has continued to be used as a blood purification membrane that satisfies this requirement.

近年、各種合併症のうち、毛根管症候群をはじめとする
透析アミロイド−シスの発症に、β2マイクログロブリ
ンの体内蓄積が大きく関与していることが明らかにされ
、β2−マイクログロブリンを効率良く除去できる血液
浄化膜が求められるようになった。また、これを機に、
分子166000のアルブミンより低分子量領域の物質
を除去したうえ、その治療効果を検討しようという考え
方が急速に広まった。
In recent years, it has been revealed that the accumulation of β2-microglobulin in the body is greatly involved in the development of dialysis amyloidosis, including root canal syndrome among various complications, and β2-microglobulin can be efficiently removed. There is now a need for a blood purification membrane that can purify blood. Also, taking this opportunity,
The idea of removing substances with a molecular weight lower than albumin, which has a molecular weight of 166,000, and examining its therapeutic effects rapidly spread.

これに対して、主に合成高分子系の膜素材を中心に大孔
径中空糸膜、あるいはβ2−マイクログロブリン除去に
的を絞った吸着除去中空系膜が開発されている(例えば
、特開昭63−109871 )。しかしながら、この
ものは透析の基本概念である物質の拡散透過除去を主と
せず、吸着現象に依存しているために、その素材の飽和
吸着量以上の除去は不可能であり、臨床的に充分な量の
β2−マイクログロブリン除去量を得るためには、相当
量の中空糸膜を必要とする。また、中空糸膜の実用強度
を維持するために全体積空孔率(本願明細書でいう含水
空孔率に相当する)は75%以下にすべきとされている
。物質の拡散除去能は、膜の含水空孔率が高いほど良好
となるので、拡散依存型の中空糸膜に対しては、この数
値は満足しうるちのではない。
In response, large-pore hollow fiber membranes mainly made of synthetic polymer-based membrane materials, or adsorption removal hollow membranes focused on the removal of β2-microglobulin, have been developed (for example, 63-109871). However, since this method does not primarily rely on the diffusion permeation removal of substances, which is the basic concept of dialysis, but relies on adsorption phenomena, it is impossible to remove more than the saturated adsorption amount of the material, and it is not clinically sufficient. In order to obtain a sufficient amount of β2-microglobulin to be removed, a considerable amount of hollow fiber membrane is required. Further, in order to maintain the practical strength of the hollow fiber membrane, the total volume porosity (corresponding to the water-containing porosity in this specification) should be 75% or less. The higher the water-containing porosity of the membrane, the better the diffusion removal ability of a substance, so this value is not satisfactory for a diffusion-dependent hollow fiber membrane.

一方、再生セルロースを素材として用いた大孔径中空糸
膜としてはウィルス分離等に用いられるものが知られて
いる(例えば、特開昭58−89626、特開昭58−
89628、特開昭59−204911、特開昭612
54202 )が、これはウィルスフリー血漿の製造等
を企図したものであるため、アルブミン、グロブリン等
の血液浄化膜では透過してはならない物質を積極的に透
過させる極めて大きな孔径を有するものである。すなわ
ち、再生セルロース膜においては、このような大孔径膜
と、従来の血液浄化膜との中間の大きさの孔径を有する
本発明の目的に合致する中空糸膜は知られていなかった
のである。
On the other hand, large-pore hollow fiber membranes using regenerated cellulose as a material are known to be used for virus separation, etc. (for example, JP-A-58-89626, JP-A-58-
89628, JP-A-59-204911, JP-A-612
54202), but since this is intended for the production of virus-free plasma, it has an extremely large pore size that actively allows substances such as albumin and globulin that should not pass through the blood purification membrane to pass through. That is, among regenerated cellulose membranes, there has been no known hollow fiber membrane having a pore size intermediate between such large-pore membranes and conventional blood purification membranes, which meets the purpose of the present invention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来知られている中空糸膜は、いずれも吸着乃至濾過の
機序によって物質除去を行うものであり、血液浄化法と
して最も一般的な血液透析療法に於いて本来期待すべき
拡散機序による除去はほとんどなしえないものであった
Conventionally known hollow fiber membranes all remove substances through the mechanism of adsorption or filtration, and removal through the diffusion mechanism is expected in hemodialysis therapy, which is the most common blood purification method. was almost impossible.

さらに、合成高分子系の膜は、アルブミン等の有用蛋白
質の相当量の逸失があったり、または、β2−マイクロ
グロブリンに対する選択吸着性を重視するがゆえにそれ
以外の高分子量老廃物の除去には不向きである等の問題
があった。それ故、合成高分子系膜は血液浄化膜として
は極めて限定された用途にしか適さなかった。また、こ
れらは素材強度が比較的低く、物質の拡散除去能を大き
く支配する中空糸膜の含水空孔率をあまり高くできない
、膜厚もあまり薄くできない等の問題もあった。
Furthermore, synthetic polymer-based membranes may lose a considerable amount of useful proteins such as albumin, or because they focus on selective adsorption to β2-microglobulin, they are difficult to remove other high-molecular-weight wastes. There were problems such as it being unsuitable. Therefore, synthetic polymer membranes have been suitable for only extremely limited uses as blood purification membranes. In addition, these materials have relatively low material strength, and there are also problems in that the water-containing porosity of the hollow fiber membrane, which largely controls the diffusion removal ability of substances, cannot be increased too much, and the membrane thickness cannot be made very thin.

また、従来の高分子量物質除去膜は、概して原木、クレ
アチニン等の低分子量物質の除去特性に若干劣るという
問題点もあった。
Furthermore, conventional membranes for removing high-molecular-weight substances generally have a problem in that they are somewhat inferior in their ability to remove low-molecular-weight substances such as raw wood and creatinine.

しかるに、本発明は、栄養蛋白質であるアルブミンの逸
失を実用上問題とならない程度(1回の治療あたり10
g以下)に抑え、かつそれ以下の分子量のβ2−マイク
ログロブリンをはじめとする高分子量老廃物を濾過及び
拡散の機序によって巾広く除去しうる膜であって、しか
も、従来再生セルロース系の膜の特徴とされてきた低分
子量物質の除去性能をも維持した中空糸膜を提供するこ
とを目的とする。
However, the present invention reduces the loss of albumin, which is a nutritional protein, to a level that does not pose a practical problem (100% per treatment).
g or less) and can widely remove high-molecular-weight waste products including β2-microglobulin with a molecular weight lower than that by a filtration and diffusion mechanism, and which is conventionally regenerated cellulose-based membrane. The purpose of the present invention is to provide a hollow fiber membrane that also maintains the ability to remove low molecular weight substances, which has been characterized by.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の上記目的は以下の中空糸膜により達成される。 The above object of the present invention is achieved by the following hollow fiber membrane.

すなわち、湿潤時の膜の含水空孔率が76〜95%で、
かつ血液濾過におけるアルブミンのふるい係数が0.1
5以下であることを特徴とする再生セルロース製中空系
膜である。ここで言う「湿潤時Jとは、37°Cの純水
にて1時間以上中空糸膜を浸漬処理した後のことを意味
する。
That is, the water-containing porosity of the membrane when wet is 76 to 95%,
and the sieving coefficient of albumin in blood filtration is 0.1
This is a hollow membrane made of regenerated cellulose, characterized in that the particle diameter is 5 or less. Here, "wet J" means after the hollow fiber membrane has been immersed in pure water at 37°C for 1 hour or more.

血液浄化療法には、種々のものがあり、同じ血液浄化膜
でも用い方が異なれば異なった性能を示す。最も一般的
な血液透析療法においては、アルブミンに対するふるい
係数が0.15以下であれば有用タンパク成分等の逸失
は実用上問題とならない。
There are various types of blood purification therapy, and even the same blood purification membrane exhibits different performance if used in different ways. In the most common hemodialysis therapy, if the sieving coefficient for albumin is 0.15 or less, loss of useful protein components does not pose a practical problem.

血液浄化療法における老廃物質除去の機序としては主と
して、■濾過除去、■拡散除去、■吸着除去が挙げられ
るが、高分子量物質ではその拡散係数が小さいために、
これを除去するには作用機序として濾過または吸着に十
■らざるをえないとされてきた。しかしながら、1治療
当たり2〜31程度の除水しか行わない通常の血液透析
療法において「濾過除去」に大きな期待をすることはで
きないし、また、「吸着除去」は吸着により種々の物質
、種々の除去機構について膜性能の経時劣化が起こるの
でβ2−マイクログロブリンのみならず種々の体内老廃
物を除去すべき血液浄化療法においては好ましくない。
The main mechanisms for removing waste substances in blood purification therapy include ■filtration removal, ■diffusion removal, and ■adsorption removal, but because high molecular weight substances have a small diffusion coefficient,
In order to remove this, it has been believed that filtration or adsorption is the only mechanism of action. However, in normal hemodialysis therapy, which only removes about 2 to 31% of water per treatment, we cannot expect much from ``filtration removal'', and ``adsorption removal'' removes various substances and various substances through adsorption. As for the removal mechanism, the membrane performance deteriorates over time, so it is not preferred in blood purification therapy in which not only β2-microglobulin but also various body wastes are to be removed.

すなわち、物質吸着が少なくかつ有効に「拡散除去」を
もできる膜が求められるのである。
In other words, there is a need for a membrane that has less adsorption of substances and is also capable of effective "diffusion removal."

本発明の中空糸膜は、各種蛋白質をはじめとする血中成
分吸着性がほとんどないことが知られている再生セルロ
ースを素材とするものであるうえに、β2−マイクログ
ロブリン除去については、濾過除去の機序による除去量
と同等以上の拡散による除去量が得られるのである。ま
た、膜の本質的老廃物除去の機序が、拡散原理に基づく
がゆえに、見掛けの分子量分画性、すなわちアルブミン
以上の分子量を有する血中有用成分は逸失しないという
選択除去性が、濾過除去のみの場合よりも格段に向上す
る利点があるのである。
The hollow fiber membrane of the present invention is made of regenerated cellulose, which is known to have almost no adsorption of blood components including various proteins. The amount removed by diffusion is equivalent to or greater than the amount removed by this mechanism. In addition, since the membrane's essential waste removal mechanism is based on the diffusion principle, the apparent molecular weight fractionation property, that is, the selective removal property of not losing useful blood components with a molecular weight greater than albumin, is achieved through filtration. This has the advantage of being much better than the case alone.

拡散には膜孔半径、膜厚、膜含水空孔率等が膜側の寄与
要因となる。再生セルロース膜を用いることは、機械的
強度に優るために膜厚の極めて薄い膜を作製できる点、
しかも親水性に優れ含水空孔率の大きい膜とできる点等
において、本発明の目的に好適である。また、含水空孔
率が大きいことによって他の素材には見られない良好な
低分子量物質除去能力をも保証される点等において人工
腎臓として用いる場合はさらに好適である。
The membrane pore radius, membrane thickness, membrane water-containing porosity, etc. are contributing factors to diffusion. The use of regenerated cellulose membranes has the advantage of superior mechanical strength, which allows the production of extremely thin membranes;
Moreover, it is suitable for the purpose of the present invention in that it can be formed into a membrane with excellent hydrophilicity and a large water-containing porosity. In addition, the large water-containing porosity guarantees a good ability to remove low-molecular-weight substances that cannot be found in other materials, making it more suitable for use as an artificial kidney.

本発明の目的に好適な膜含水空孔率は76〜95%、さ
らに好適には80〜95%である。ここで言う「膜含水
空孔率」とは湿潤時の中空糸膜の見掛は体積計測及び中
空糸膜を形成する再生セルロースの重量、密度計測より
求めた湿潤中空糸膜中の水の体積分率である。すなわち
、下記算出式に含まれる各パラメータを実測または仮定
することにより求められる。
The membrane porosity suitable for the purposes of the present invention is between 76 and 95%, more preferably between 80 and 95%. The "hydrous membrane porosity" referred to here refers to the apparent volume of the hollow fiber membrane when wet, the weight of the regenerated cellulose forming the hollow fiber membrane, and the volume of water in the wet hollow fiber membrane determined by density measurement. It is a fraction. That is, it is obtained by actually measuring or assuming each parameter included in the calculation formula below.

H(−):M含水空孔率 νs(cイ/rnin):紡糸液吐出量ρs (g /
 rnl) :紡糸液密度C(−):紡糸液中のセルロ
ース重量分率ω(c+n/m1n) :巻取速度 ρc(g/d):セルロースの真の密度(1,52と仮
定) r、(cm):中空糸湿潤時の外半径 ri (cm)  :中空糸湿潤時の内半径5hr(−
):乾燥状態から湿潤状態へ移行した時の糸長方向伸縮
率(37°Cで実測)注:H+Vs+  ρSr Cお
よびωは中空糸作成時に実測 roおよびriはX 200顕微拡大鏡を用いて実測 β2−マイクログロブリンの除去については臨床使用に
おいて20%以上の除去率が望まれているが、β2−マ
イクログロブリンのふるい係数が0.3以上、またはそ
の総括物質移動係数が2×10−’cm/sec、以上
である膜乃至はその両特性を備えた膜を用いることによ
ってこの除去率は達成できる。
H(-): M water-containing porosity νs (c/rnin): spinning solution discharge amount ρs (g/rnin):
rnl): Spinning solution density C(-): Cellulose weight fraction in the spinning solution ω(c+n/m1n): Winding speed ρc(g/d): True density of cellulose (assumed to be 1.52) r, (cm): Outer radius ri when hollow fiber is wet (cm): Inner radius ri when hollow fiber is wet (-
): Elongation ratio in the fiber length direction when transitioning from dry state to wet state (actually measured at 37°C) Note: H + Vs + ρSr C and ω are actually measured at the time of hollow fiber creation ro and ri are actually measured using an X 200 microscope magnifier Regarding the removal of β2-microglobulin, a removal rate of 20% or more is desired in clinical use, but the sieving coefficient of β2-microglobulin is 0.3 or more, or the overall mass transfer coefficient is 2 × 10-'cm. This removal rate can be achieved by using a film that has a rate of at least 1.0 m/sec or a film that has both of these characteristics.

ここで言う「除去率」とは、透析患者血中β2マイクロ
グロブリン濃度の透析前後の変化を、ヘマトクリット値
を用いて血液濃縮分の補正をして算出されるものである
The "removal rate" referred to here is calculated by correcting the change in blood concentration of β2 microglobulin in the blood of a dialysis patient before and after dialysis using the hematocrit value for hemoconcentration.

また、本発明の中空糸膜の湿潤時の平均孔半径は、40
〜200人が好ましく、40〜150人がより好ましい
。この平均孔半径は、水の膜透過速度等を実測して細孔
理論(例えば人工臓器15巻3号1350頁〜1353
頁、および1541頁〜1544頁、1986年)によ
り以下の式で概算できる。
In addition, the average pore radius of the hollow fiber membrane of the present invention when wet is 40
-200 people are preferable, and 40-150 people are more preferable. This average pore radius can be calculated based on pore theory (for example, Artificial Organs Vol.
Page 1541-1544, 1986), it can be approximated by the following formula.

ここで、 f (q)  =  (1−2,105q+ 2.08
65q’ −1,7068q’+ 0.72603q”
)/ (1−0,75857q’)Sn=(1q、)” q = r s / r P τ =                10式、■式
より rp(cm)  :膜の平均孔半径 r、  (cm)  :水の分子径(1,07X 10
−8とした)D (cJ / 5ec) :水の拡散係
数(2,97X10−Sとした)Ak(−) :膜面内
開札率 τ(−):細孔理論(油路モデル)による油路率g (
Pa−sec) :水の粘性率(0,691x 10−
 ’とした)L p (c+ft / CTA/ se
c / Pa) :膜の水濾過係数(37”C、200
胴1(g下、膜面積約100c+flの中空繊維膜モジ
ュールにて実測) P m (cm / 5ec) :膜の水拡散移動係数
(37°Cにて実測) H(−):膜の含水空孔率(定義は後記)ΔX(CTI
):湿潤時中空繊維膜の膜厚すなわち、PIII、Lp
を実測すれば、0式を用いてr、が求まる。
Here, f (q) = (1-2,105q+2.08
65q'-1,7068q'+0.72603q"
)/(1-0,75857q')Sn=(1q,)"q=rs/rPτ=10 formula, ■From formula, rp (cm): Average pore radius of the membrane r, (cm): Water Molecular diameter (1,07X 10
-8) D (cJ / 5ec): Diffusion coefficient of water (set to 2,97X10-S) Ak (-): In-plane bid opening rate τ (-): Oil according to pore theory (oil channel model) Road ratio g (
Pa-sec): Viscosity of water (0,691x 10-
) L p (c+ft / CTA/ se
c/Pa): Membrane water filtration coefficient (37”C, 200
Shell 1 (actually measured using a hollow fiber membrane module with a membrane area of approximately 100c+fl under g) P m (cm/5ec): Water diffusion transfer coefficient of the membrane (actually measured at 37°C) H (-): Water-containing void of the membrane Porosity (definition below) ΔX (CTI
): Thickness of hollow fiber membrane when wet, i.e. PIII, Lp
By actually measuring , r can be found using Equation 0.

さらに、前記の膜含水空孔率(■1)を求めるための算
出式に基づいてHを求めることによりAkτ等他の膜構
造パラメータも求められる。
Furthermore, other membrane structural parameters such as Akτ can also be determined by determining H based on the calculation formula for determining the membrane water-containing porosity (■1) described above.

以上のごとき特徴を備えた、本発明に係る中空糸膜は例
えば、以下の方法にて作製することができる。
The hollow fiber membrane according to the present invention having the above characteristics can be produced, for example, by the following method.

公知の方法にて調型された、セルロース濃度4〜12%
、好適には4〜8%のキュプラアンモニウムレーヨン紡
糸液を、気体もしくは液体である公知の非凝固性中空部
形成剤(例えば、パークレン、トリクレン、トリクロロ
トリフルオロエタン等の液体ハロゲン化炭素;イソプロ
ピルミリステート等の各種エステル;空気、窒素;テト
ラフルオロメタン、ヘキサフルオロエタン等の所謂フレ
オンガス、各種フロンガス)またはメタノール、エタノ
ール、プロパツール、アセトン、メチルエチルケトン;
蟻酸、酢酸、プロピオン酸;グリセリン等のポリオール
等から選ばれる少くとも1種を含む液体あるいはこれら
の水溶液のごとき紡糸液に対して微凝固性を示す中空部
形成剤とともに二重紡糸口金から吐出し、非凝固性雰囲
気下を通過せしめた後に凝固浴へ導く。凝固剤としては
苛性ソーダ、硫酸、塩酸、酢酸、硫酸アンモニウム、ア
セトン、低級アルコール等の水溶液を用いろるが、硫酸
または硫酸アンモニウム水溶液が好適である。硫酸また
は硫酸アンモニウム水溶液を利用することによって、従
来より膜孔径の大きな本発明の中空糸膜が容易に得られ
る。凝固した糸状体を水及び無機酸にて精練した後に膜
孔径保持剤を付与し、さらに乾燥工程を経て、目的の中
空糸膜を得る。膜孔径保持剤としては、例えばグリセリ
ン、ポリグリセリン、液体ポリエチレンオキシド、ソル
ビット等が用いられる。
Cellulose concentration 4-12%, prepared by a known method
, preferably 4 to 8% cuproammonium rayon spinning solution, and a gas or liquid known non-coagulable hollow-forming agent (e.g. liquid halogenated carbon such as percrene, trichrene, trichlorotrifluoroethane; isopropyl millicarbon). Various esters such as state; air, nitrogen; so-called freon gas such as tetrafluoromethane, hexafluoroethane, various chlorofluorocarbon gases) or methanol, ethanol, propatool, acetone, methyl ethyl ketone;
Discharged from a double spinneret together with a hollow part forming agent that exhibits microcoagulability in the spinning solution, such as a liquid containing at least one selected from formic acid, acetic acid, propionic acid, and polyols such as glycerin, or an aqueous solution thereof. , and then introduced into a coagulation bath after passing through a non-coagulating atmosphere. As the coagulant, aqueous solutions such as caustic soda, sulfuric acid, hydrochloric acid, acetic acid, ammonium sulfate, acetone, and lower alcohols can be used, and sulfuric acid or ammonium sulfate aqueous solutions are preferred. By using sulfuric acid or ammonium sulfate aqueous solution, the hollow fiber membrane of the present invention having a larger pore diameter than conventional membranes can be easily obtained. After the coagulated filaments are refined with water and an inorganic acid, a membrane pore size retaining agent is applied thereto, followed by a drying process to obtain the desired hollow fiber membrane. As the membrane pore size maintaining agent, for example, glycerin, polyglycerin, liquid polyethylene oxide, sorbitol, etc. are used.

β2−マイクログロブリン以上の分子量の老廃物のうち
何をターゲットとして除去するかによって膜孔径を設計
しうるが、40〜200人の平均膜孔半径を持つ中空糸
膜を得るには凝固剤として硫酸アンモニウム水溶液また
は硫酸(水溶液)を用い、これに膜孔径保持剤としてグ
リセリンまたは液体ポリエチレンオキシドを組合せて用
いることが好ましい。
The membrane pore size can be designed depending on which waste products with a molecular weight of β2-microglobulin or higher are targeted for removal, but in order to obtain a hollow fiber membrane with an average pore radius of 40 to 200, ammonium sulfate is used as a coagulant. It is preferable to use an aqueous solution or sulfuric acid (aqueous solution) in combination with glycerin or liquid polyethylene oxide as a membrane pore size retaining agent.

硫酸または硫酸アンモニウム水溶液を凝固剤として用い
た場合には、膜の厚み方向へ向かって外から内へ孔径が
増大する異方性膜を与えるために、膜厚が厚いほど中空
糸膜内表面の構造が疎となり、血液との接触において凝
血現象を生じ、血液浄化膜としては不適となる。これを
回避するには、膜厚を薄くするか、あるいは微凝固性中
空部形成剤を用いて中空紡糸液状体の内面からも凝固せ
しめることによって中空糸膜内表面の平滑化を図ること
が有効である。また、従来の再生セルロース中空糸膜の
膜孔径保持剤付着率が対セルロース重量当たり、たかだ
か10%以下であったのに対し、本発明に係る中空糸膜
においては10〜200%であり、好ましくは20〜1
60%である。
When sulfuric acid or ammonium sulfate aqueous solution is used as a coagulant, the structure of the inner surface of the hollow fiber membrane increases as the membrane thickness increases, in order to provide an anisotropic membrane in which the pore size increases from outside to inside in the direction of membrane thickness. The membrane becomes sparse and coagulates when it comes into contact with blood, making it unsuitable as a blood purification membrane. To avoid this, it is effective to smooth the inner surface of the hollow fiber membrane by reducing the thickness of the membrane or by using a microcoagulable hollow part forming agent to coagulate the hollow spinning liquid from the inner surface. It is. In addition, while the membrane pore diameter retaining agent adhesion rate of conventional regenerated cellulose hollow fiber membranes was at most 10% or less based on the weight of cellulose, in the hollow fiber membrane according to the present invention, it is preferably 10 to 200%. is 20-1
It is 60%.

〔実施例〕〔Example〕

以下に実施例を挙げて、本発明の中空糸膜を具体的に詳
述する。
The hollow fiber membrane of the present invention will be specifically described in detail with reference to Examples below.

実施例 1 紡糸液として公知の方法にて作製されたセルロース濃度
8%のキュプラアンモニウムレーヨン液、中空部形成剤
としてトリクロロトリフルオロエタン(常温常圧で液体
)を二重紡糸口金より各々5、8 mll / min
 、3.0 ml / winの割合で吐出し、空中を
約25cm自重落下させた後、25°Cl2O%硫酸ア
ンモニウム水溶液にて凝固せしめ、精練工程のコンベア
上に導いた。この糸状体に強制的な機械的張力が負荷さ
れないコンベア上にて、50°C温水;50″C12%
硫酸水;50°C温水の順にシャワ一方式の精練を行っ
た後に解舒し、膜孔保持剤付与装置によるグリセリン付
与を経て155°Cのトンネル型乾燥炉を走行させた後
80m/+ll1nの速度で巻取った。
Example 1 A cuproammonium rayon solution with a cellulose concentration of 8% prepared by a known method as a spinning solution, and trichlorotrifluoroethane (liquid at normal temperature and normal pressure) as a hollow part forming agent were added at 5 and 8%, respectively, from a double spinneret. ml/min
After discharging at a rate of 3.0 ml/win and allowing it to fall about 25 cm in the air under its own weight, it was coagulated with a 25° Cl2O% ammonium sulfate aqueous solution and led onto a conveyor for the scouring process. 50°C warm water; 50″C12% on a conveyor where no forced mechanical tension is applied to this filament.
Sulfuric acid water: After scouring with 50°C hot water using a shower, unwrap it, apply glycerin using a membrane pore retaining agent applying device, run a tunnel type drying oven at 155°C, and then 80m/+ll1n of water. Winded at speed.

このようにして得られた中空糸膜のグリセリン付着量は
対セルロース当たり130%であった。
The amount of glycerin adhered to the hollow fiber membrane thus obtained was 130% based on cellulose.

この中空糸膜について新たに水についての物質移動係数
を測定し、前記式に基づいて膜の平均孔半径を算出した
ところ、110人であった。また、この中空糸膜のin
 viLro膜透過性能、及び有効膜面積1.0ホの血
液浄化器として臨床的に用いたときの成績は表1及び表
2に示すごとくであった。
The mass transfer coefficient for water was newly measured for this hollow fiber membrane, and the average pore radius of the membrane was calculated based on the above formula, which was 110 people. In addition, the in of this hollow fiber membrane
The viLro membrane permeation performance and the results when used clinically as a blood purifier with an effective membrane area of 1.0 mm were as shown in Tables 1 and 2.

表1に示すin vitro試験結果において、β2−
マイクログロブリンのみならず膜透過能指標物質である
β−ラクトグロブリン(−β−LG、分子量35000
)を効率良く除去でき、その一方でアルブミンの透過は
極めて少な(、アルブミン以上の分子サイズの物質の透
過を阻止し、それ以下の分子サイズの物質は幅広い領域
の物質群にわたって除去しうる膜であることを示した。
In the in vitro test results shown in Table 1, β2-
Not only microglobulin but also β-lactoglobulin (-β-LG, molecular weight 35,000
), while the permeation of albumin is extremely low (it is a membrane that blocks the permeation of substances with a molecular size larger than albumin, and can remove substances with a molecular size smaller than that over a wide range of substance groups). It showed that there is.

また、表2に示す臨床データには患者の個体差、患者毎
の透析条件(除水量等)の相違が含まれており、中空糸
膜そのものの特性を必ずしも直接的に反映するものでな
いが、いずれも実用上極めて有用であることが示された
In addition, the clinical data shown in Table 2 includes individual differences among patients and differences in dialysis conditions (amount of water removed, etc.) for each patient, and does not necessarily directly reflect the characteristics of the hollow fiber membrane itself. Both were shown to be extremely useful in practice.

実施例 2 紡糸液吐出i10.3d/n+in 、中空部形成剤と
してテトラフルオロメタン(常温、常圧で気体)を用い
その吐出量3.3 m/min 、乾燥温度150°C
1巻取り速度90m/minとし、その他の条件は実施
例1に従ってグリセリン付着量が対セルロース当たり5
0%の中空糸膜を得た。
Example 2 Spinning solution discharge i10.3d/n+in, using tetrafluoromethane (gas at normal temperature and pressure) as a hollow part forming agent, discharging amount 3.3 m/min, drying temperature 150°C
The winding speed was 90 m/min, and the other conditions were as per Example 1, with the amount of glycerin attached to cellulose being 5
A 0% hollow fiber membrane was obtained.

また、この中空糸膜の緒特性は表1に示すごとく、アル
ブミン以下の分子サイズの物質に対して有効な除去性能
であった。
Further, as shown in Table 1, the characteristics of this hollow fiber membrane were effective in removing substances with a molecular size smaller than albumin.

実施例 3 紡糸液として公知の方法にて作製されたセルロース濃度
8%のキュプラアンモニウムレーヨン液、中空部形成剤
としてトリクロロトリフルオロエタンを二重紡糸口金よ
り各々4.55緘/min 、2.18m1/minの
割合で空中に吐出し、約15cm自重落下させた後、2
5°Cl2O%硫酸アンモニウム水溶液にて凝固せしめ
、精練工程のコンベア上に導いた。
Example 3 A cuproammonium rayon solution with a cellulose concentration of 8% prepared by a known method as a spinning solution and trichlorotrifluoroethane as a hollow part forming agent were each used at a rate of 4.55 threads/min and 2.18 m1 from a double spinneret. /min into the air and let it fall about 15cm under its own weight, then 2
It was coagulated with a 5°C12O% ammonium sulfate aqueous solution and introduced onto a conveyor for the scouring process.

この糸状体に強制的な機械的張力が負荷されないコンベ
ア上にて、50゛C温水;50°C,2%硫酸水;50
°C温水の順にシャワ一方式の精練を行った後に解舒し
、膜孔保持剤付与装置により85%グリセリン水溶液を
1.3 ml / min / 2フイラメントにて付
与、155°Cのトンネル型乾燥炉を走行させた後90
m/minの速度で巻取った。
On a conveyor where no forced mechanical tension is applied to this filament, 50°C warm water; 50°C, 2% sulfuric acid water;
After scouring with a shower in warm water at °C, unwrap the membrane, apply an 85% glycerin aqueous solution at 1.3 ml/min/2 filaments using a pore retaining agent applying device, and dry in a tunnel at 155 °C. 90 after running the furnace
It was wound up at a speed of m/min.

このようにして得られた中空系膜のグリセリン付着量は
対セルロース当たり 120%であった。
The amount of glycerin adhered to the hollow membrane thus obtained was 120% based on cellulose.

この中空系膜の構造仕様、in vitrolJ透過性
能は表1に示すごとくであった。
The structural specifications and in vitro J permeation performance of this hollow membrane were as shown in Table 1.

実施例 4 紡糸液として公知の方法にて作製されたセルロース濃度
6%のキュプラアンモニウムレーヨン液、中空部形成剤
としてテトラフルオロメタンを二重紡糸口金より各k 
6.17m / min 2.45m / minの割
合で空中に吐出し、約40cm自重落下させた後、25
°C111%苛性ソーダ水溶液にて凝固せしめ、この糸
状体を公知の緊張精練法に従って45°C温水;40°
C12%硫酸水;45°C温水の順に通過させて90m
/min、にて巻き取った。この糸を巻き取られた状態
のままで30%グリセリン水溶液に30分間浸漬し、そ
の後これを解舒しっつ145”c トンネル型乾燥機を
入口、出口速度共に60m/ m i n 、で通過さ
せて乾燥中空糸膜を得た。
Example 4 A cuproammonium rayon solution with a cellulose concentration of 6% prepared by a known method as a spinning solution, and tetrafluoromethane as a hollow part forming agent were added to each K from a double spinneret.
After discharging into the air at a rate of 6.17m/min and 2.45m/min and dropping it by its own weight, 25
Coagulate with a 111% caustic soda aqueous solution at 111°C, and process the filamentous body in 45°C warm water according to the known tension scouring method;
C12% sulfuric acid water; 90m of 45°C warm water
/min. The wound yarn was immersed in a 30% glycerin aqueous solution for 30 minutes, and then unwound and passed through a 145"c tunnel dryer at both entrance and exit speeds of 60 m/min. A dry hollow fiber membrane was obtained.

このようにして得られた中空糸膜のグリセリン付着量は
対セルロース当たり160%であった。
The amount of glycerin adhered to the hollow fiber membrane thus obtained was 160% based on cellulose.

この中空糸膜の構造仕様、inν1tro膜透過性能は
表1に示すごとくであった。
The structural specifications and inv1tro membrane permeation performance of this hollow fiber membrane were as shown in Table 1.

実施例 5 紡糸液として公知の方法にて作製されたセルロース濃度
8%のキュプラアンモニウムレーヨン液、中空部形成剤
としてトリクロロトリフルオロエタンを二重紡糸口金よ
り各々12.oml/min 、2.40m/minの
割合で空中に吐出し、約30cm自重落下させた後、2
5°Cl2O%硫酸アンモニウム水溶液にて凝固せしめ
、精練工程のコンベア上に導いた。この糸状体に強制的
な機械的張力が負荷されないコンベア上にて、50°C
温水;5o″C12%硫酸水;50°C温水の順にシャ
ワ一方式の精練を行った後に解舒し、膜孔保持剤付与装
置により85%グリセリン水溶液を付与、145°Cの
トンネル型乾燥炉を走行させた後90m/minの速度
で巻取り対セルロース当たりグリセリン付着量140%
の中空糸膜を得た。
Example 5 A cuproammonium rayon solution with a cellulose concentration of 8% prepared by a known method as a spinning solution and trichlorotrifluoroethane as a hollow part forming agent were each used for 12. oml/min, 2.40 m/min into the air, and after dropping about 30 cm under its own weight, 2.
It was coagulated with a 5°C12O% ammonium sulfate aqueous solution and introduced onto a conveyor for the scouring process. At 50°C on a conveyor where no forced mechanical tension is applied to this filament.
Warm water; 5o"C 12% sulfuric acid water; 50°C hot water. After performing one-step scouring with warm water, unwrap, apply 85% glycerin aqueous solution using a pore-retaining agent applying device, and dry in a tunnel type drying oven at 145°C. After running at a speed of 90 m/min, the glycerin adhesion amount per cellulose was 140%.
A hollow fiber membrane was obtained.

この中空糸膜の構造仕様、in vitro膜透過性能
は表1に示すごとくであった。
The structural specifications and in vitro membrane permeation performance of this hollow fiber membrane were as shown in Table 1.

参考例 紡糸液吐出!21.7d /minとし、その他の条件
は実施例1に従って中空糸膜を得た。
Reference example Spinning liquid discharge! A hollow fiber membrane was obtained under the same conditions as Example 1 except that the speed was 21.7 d/min.

この中空糸膜にヘパリン牝牛全血を流したところ凝血を
起こし、血液浄化膜としては不適当なものであった。こ
の凝血の原因はごの膜の含グリセリン乾燥膜厚が32μ
Illと厚く、その内表面が走査型電子顕微鏡下極めて
粗雑な起伏を有しているためと考えられる。
When heparinized whole cow blood was poured through this hollow fiber membrane, blood clots occurred, making the membrane unsuitable for use as a blood purification membrane. The cause of this blood clot is that the dried membrane containing glycerin has a thickness of 32 μm.
This is thought to be because it is as thick as Ill and its inner surface has extremely rough undulations under a scanning electron microscope.

比較例 1 公知の方法に従って、従来からの人工腎臓用として用い
られているキュプラアンモニウムレーヨン中空系膜を得
た。これは表1に示すごとく尿素等の低分子物質除去能
には優れるものの、β2マイクログロブリン等の高分子
量領域の物質の除去能力が低く、本発明の目的には適さ
ないものであった。
Comparative Example 1 A cuproammonium rayon hollow membrane, which has been conventionally used for artificial kidneys, was obtained according to a known method. As shown in Table 1, this method has an excellent ability to remove low molecular weight substances such as urea, but has a low ability to remove substances in the high molecular weight range such as β2 microglobulin, and is not suitable for the purpose of the present invention.

比較例 2 特開昭59−204912に示されるセルロース大孔径
膜の製法に従って、内径250如、膜厚25廂、平均膜
孔半径250人のキュプラアンモニウムレーヨン中空糸
膜を得た。このものは、表1に示すごとくβ2−マイク
ログロブリンのふるい係数が1.0と極めて高い除去能
力を示したが、その一方で血中有用蛋白質であるアルブ
ミンのふるい係数も0.982と高値であるため、血液
浄化膜としての使用では有用蛋白質の過剰な損失が見込
まれ本発明の目的には不適なものであった。
Comparative Example 2 A cuproammonium rayon hollow fiber membrane having an inner diameter of 250 mm, a membrane thickness of 25 mm, and an average pore radius of 250 mm was obtained according to the method for manufacturing a large-pore cellulose membrane disclosed in JP-A-59-204912. As shown in Table 1, this product showed an extremely high removal ability for β2-microglobulin with a sieving coefficient of 1.0, but on the other hand, the sieving coefficient for albumin, which is a useful blood protein, was also high at 0.982. Therefore, when used as a blood purification membrane, excessive loss of useful proteins is expected, making it unsuitable for the purpose of the present invention.

〔作用および発明の効果] 湿潤時の、含水空孔率が76〜95%で、かつ血液濾過
におけるアルブミンのふるい係数が0.15以下である
本発明の中空糸膜は、β2−マイクログロブリンのふる
い係数が0.3以上またはその総括物質移動係数が2X
10−’以上とβ2−マイクログロブリンの濾過及び拡
散除去に適し、かつβ2マイクログロブリン以外の高分
子量物質除去能にも優れる。しかも、血液浄化療法、特
に血液透析療法におけるアルブミン等の有用蛋白質の逸
失を実用上問題とならない程度に抑えることができる。
[Operation and Effects of the Invention] The hollow fiber membrane of the present invention has a water-containing porosity of 76 to 95% when wet and an albumin sieving coefficient of 0.15 or less in blood filtration. Sieving coefficient is 0.3 or more or its overall mass transfer coefficient is 2X
It is suitable for filtration and diffusion removal of β2-microglobulin and β2-microglobulin, and has excellent ability to remove high molecular weight substances other than β2-microglobulin. Moreover, loss of useful proteins such as albumin during blood purification therapy, particularly hemodialysis therapy, can be suppressed to a level that does not pose a practical problem.

すなわち、本発明に係る中空糸膜は、アルブミンより高
分子量の血中有用成分を実質的に逸失することなく、そ
れより低分子量の老廃物を、β2マイクログロブリンに
代表される高分子量領域物質をも含めた広範囲の物質群
にわたって除去可能な血液浄化膜となる。
In other words, the hollow fiber membrane according to the present invention removes waste products with a lower molecular weight than albumin and substances in the high molecular weight range such as β2 microglobulin without substantially losing useful blood components with a higher molecular weight than albumin. It is a blood purification membrane that can remove a wide range of substances, including substances.

Claims (1)

【特許請求の範囲】[Claims] 1、繊維軸方向に連続貫通した中空部を有し、湿潤時の
含水空孔率が76〜95%で、かつ血液濾過におけるア
ルブミンのふるい係数が0.15以下であることを特徴
とする再生セルロース製中空糸膜。
1. Regeneration characterized by having a hollow part continuously extending in the axial direction of the fibers, having a water-containing porosity of 76 to 95% when wet, and having an albumin sieving coefficient of 0.15 or less in blood filtration. Cellulose hollow fiber membrane.
JP1142222A 1988-07-20 1989-06-06 Hollow fiber membrane made of regenerated cellulose Pending JPH02135130A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES89113145T ES2061820T5 (en) 1988-07-20 1989-07-18 HOLLOW FIBER MEMBRANE.
EP89113145A EP0351773B2 (en) 1988-07-20 1989-07-18 Hollow fiber membrane
US07/381,253 US4919809A (en) 1988-07-20 1989-07-18 Hollow fiber membrane
DE68919142T DE68919142T3 (en) 1988-07-20 1989-07-18 Hollow fiber membrane.
KR1019890010302A KR920000560B1 (en) 1988-07-20 1989-07-20 Hollow fiber membranc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-179153 1988-07-20
JP17915388 1988-07-20

Publications (1)

Publication Number Publication Date
JPH02135130A true JPH02135130A (en) 1990-05-24

Family

ID=16060883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142222A Pending JPH02135130A (en) 1988-07-20 1989-06-06 Hollow fiber membrane made of regenerated cellulose

Country Status (1)

Country Link
JP (1) JPH02135130A (en)

Similar Documents

Publication Publication Date Title
JP3474205B2 (en) Polysulfone hollow fiber type blood purification membrane and method for producing the same
US8136675B2 (en) Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood
JP5218044B2 (en) Hollow fiber membrane excellent in performance stability, blood purifier, and method for producing hollow fiber membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPH0642905B2 (en) Hemodialysis membrane
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP5217238B2 (en) Porous hollow fiber membrane and blood purifier excellent in permeation performance stability
JP5292762B2 (en) Blood purifier with excellent mass replacement characteristics
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JPH02135130A (en) Hollow fiber membrane made of regenerated cellulose
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3020016B2 (en) Hollow fiber membrane
JPH02211229A (en) Hollow yarn membrane
JPH038422A (en) Hollow fiber membrane
JP2001038171A (en) Hollow fiber membrane
JP5614470B2 (en) Blood purifier with excellent mass replacement characteristics
JP4381022B2 (en) Hollow fiber blood purification membrane
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JPH0947645A (en) Hollow fiber separating membrane and blood purifier
JPH09308684A (en) Selective separating membrane
JPS60110305A (en) Hollow fiber film and body fluid treating device using the same
JP2005074019A (en) Hollow fiber type blood purification membrane