JPH02135114A - Production of oxygen enriched air - Google Patents

Production of oxygen enriched air

Info

Publication number
JPH02135114A
JPH02135114A JP63287187A JP28718788A JPH02135114A JP H02135114 A JPH02135114 A JP H02135114A JP 63287187 A JP63287187 A JP 63287187A JP 28718788 A JP28718788 A JP 28718788A JP H02135114 A JPH02135114 A JP H02135114A
Authority
JP
Japan
Prior art keywords
air
oxygen
adsorbent
column
cold air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287187A
Other languages
Japanese (ja)
Inventor
Mamoru Inoue
井上 衛
Hisaaki Kamiyama
久朗 神山
Yuko Tamakoshi
玉越 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63287187A priority Critical patent/JPH02135114A/en
Publication of JPH02135114A publication Critical patent/JPH02135114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PURPOSE:To economically produce oxygen enriched air by separating air into cold air and hot air, passing the cold air through an adsorbent to adsorb oxygen and passing preheated air through the adsorbent to desorb the oxygen. CONSTITUTION:Each of columns 1A-1C is packed with activated carbon granules as an adsorbent. Air compressed by a compressor 3 is introduced into a vortex tube 2 and separated into cold air 2a and hot air 2b. The cold air 2a is introduced into the column 1A to adsorb oxygen on the adsorbent. Waste gas produced by combustion in a boiler 5 is exhausted from a chimney 6 through a heat exchanger 4 and the sensible heat of the waste gas is used to heat air sent through a blower 8. This preheated air is introduced into the column 1B to desorb oxygen adsorbed in the preceding stage and the resulting preheated oxygen enriched air is efficiently used in the burner 7 of the boiler 5. The cold air passed through the column 1A is introduced into the column 1C heated in the preceding stage to regenerate the adsorbent to such a degree that the adsorbent can adsorb oxygen in the subsequent stage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒素ガスや湿気の含有量が少ない燃焼用の酸素
富化空気を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing oxygen-enriched air for combustion with a low content of nitrogen gas and moisture.

[従来の技術] 燃焼用空気中に含有する窒素や湿分は燃焼反応しないば
かりでなく、必要な温度まで加熱させるとき窒素および
湿分も熱を必要とするので余分な燃料が使用されるため
経済的でない。このため従来より空気中の窒素や湿分を
低減し、酸素を濃縮した燃焼用空気を製造する方法が提
案されている。
[Prior art] Not only does the nitrogen and moisture contained in the combustion air not undergo a combustion reaction, but the nitrogen and moisture also require heat when heated to the required temperature, so extra fuel is used. Not economical. For this reason, methods have been proposed to reduce nitrogen and moisture in the air and produce combustion air enriched with oxygen.

例えば、特開昭51−67283号公報に示されるよう
に、ゼオライトモレキュラシーブに加圧して窒素を吸着
させ、空気中の酸素濃度を富化し、減圧して窒素を分離
再生させる圧力スイング法、特開昭54−62994号
公報に示されるように、吸着剤を2つ以上に分離して収
納し、一部で酸素富化空気を製造し、他方で燃焼装置か
ら排出された高温排気との間で熱交換された空気を送り
込む温度スイング法等がある。
For example, as shown in Japanese Unexamined Patent Publication No. 51-67283, a pressure swing method in which a zeolite molecular sieve is pressurized to adsorb nitrogen, enrich the oxygen concentration in the air, and then depressurized to separate and regenerate nitrogen; As shown in Publication No. 54-62994, the adsorbent is separated into two or more parts and stored, with one part producing oxygen-enriched air and the other producing high-temperature exhaust gas discharged from the combustion equipment. There is a temperature swing method in which heat-exchanged air is sent in.

[発明が解決しようとする課題] しかし、従来提案されている方法では多くの動力或は熱
量を必要とし、酸素富化は高価なものとなっていた。最
近では吸着剤の改善によって圧力スイング法で効率的な
方法が提案されているが、圧縮に要する動力エネルギー
は少なくない。
[Problems to be Solved by the Invention] However, conventionally proposed methods require a large amount of power or heat, making oxygen enrichment expensive. Recently, an efficient pressure swing method has been proposed by improving adsorbents, but the power energy required for compression is not small.

一方、温度スイング法においては、吸着剤の窒素吸着能
が50℃以上の高温域で極端に低下するため、高温の排
ガスを利用した温度スイングでは多量の吸着剤を要する
ことになり設備コストが増大してあまり経済的ではなか
フた。
On the other hand, in the temperature swing method, the nitrogen adsorption capacity of the adsorbent decreases dramatically in the high temperature range of 50°C or higher, so a temperature swing using high temperature exhaust gas requires a large amount of adsorbent, increasing equipment costs. It wasn't very economical.

本発明は、経済的な酸素富化する製造方法を提供する。The present invention provides an economical oxygen-enriching manufacturing method.

[課題を解決するための手段] 本願発明の要旨は、吸着剤を用いて空気中の酸素を富化
する酸素富化空気の製造方法において、空気を低温の空
気と高温の空気に分離し、分離された低温の空気を吸着
剤に通過させて酸素を吸着し、該吸着剤に予熱空気を通
過させ酸素を解離して酸素富化空気を得ることを特徴と
する酸素富化空気の製造方法である。
[Means for Solving the Problems] The gist of the present invention is a method for producing oxygen-enriched air that enriches oxygen in the air using an adsorbent, which includes separating air into low-temperature air and high-temperature air, A method for producing oxygen-enriched air, which comprises passing separated low-temperature air through an adsorbent to adsorb oxygen, and passing preheated air through the adsorbent to dissociate oxygen to obtain oxygen-enriched air. It is.

吸着剤として例えば活性炭モレキュラシーブに低温空気
を通すと空気中の酸素が吸収され、逆に高温空気を通す
と吸着剤に吸収されていた酸素が放出される。本発明は
この原理に基づいて、■燃焼用空気の酸素の吸着、■排
ガスの顕熱による燃焼用空気の予熱および吸着剤よりの
酸素の解離、■燃焼用空気の予熱および吸着剤の冷却の
各工程を、複数の吸着剤充填筒を組合せ、交互に切換え
て効率よく行い、連続吸着による酸素富化を可能とする
ものである。特に冷空気を用いることによって吸着剤の
酸素吸着量を大巾に増加させた点と、再生工程における
冷却効果を低温ガスを用いることによって向上させた点
が従来法と異なフている。
When low-temperature air is passed through, for example, an activated carbon molecular sieve as an adsorbent, oxygen in the air is absorbed, and conversely, when high-temperature air is passed through, the oxygen absorbed by the adsorbent is released. Based on this principle, the present invention is capable of: ■ Adsorption of oxygen in combustion air; ■ Preheating of combustion air by sensible heat of exhaust gas and dissociation of oxygen from the adsorbent; ■ Preheating of combustion air and cooling of adsorbent. Each process is performed efficiently by combining a plurality of adsorbent-filled cylinders and switching them alternately, making it possible to enrich oxygen through continuous adsorption. In particular, this method differs from conventional methods in that the amount of oxygen adsorbed by the adsorbent is greatly increased by using cold air, and in that the cooling effect in the regeneration process is improved by using low-temperature gas.

原料空気を低温空気と高温空気に分離する手段は、19
31年にフランスの物理学者ポルテックスが発表したポ
ルテックスチューブを用いることが好ましい、ポルテッ
クスチューブとは第2図(A)に示す如く一端がオリフ
ィス、もう一端がドーナツ状のスキマのある管内の円周
方面に圧縮空気2cを吹き込むと管内に超高速の渦がで
きる。そのため渦の中心部と外周部との間に大きな圧力
差を生じ、中心部に向って空気の8動が起り、膨張によ
フて温度が下がる。中心部に発生した冷空気2aはオリ
フィスから流出し、外周の熱空気2bはドーナツ状のス
キマから放出される。
The means for separating raw air into low-temperature air and high-temperature air is 19
It is preferable to use the Portex tube introduced by the French physicist Portex in 1931.The Portex tube is a circular tube with an orifice at one end and a doughnut-shaped gap at the other end, as shown in Figure 2 (A). When compressed air 2c is blown into the circumferential direction, a super high-speed vortex is created inside the tube. This creates a large pressure difference between the center and the outer periphery of the vortex, causing air to move toward the center, causing the temperature to drop due to expansion. Cold air 2a generated at the center flows out from the orifice, and hot air 2b at the outer periphery is released from the donut-shaped gap.

つまり簡易な構造体であるポルテックスチューブによっ
て容易に冷空気と熱空気を製造することが可能である。
In other words, it is possible to easily produce cold air and hot air using a portex tube, which is a simple structure.

[実 施 例] 以下図面に示す実施態様例によフて本発明の詳細な説明
する。
[Example] The present invention will be described in detail below using embodiment examples shown in the drawings.

本実施例はボイラー5の燃焼用空気の酸素富化において
実施したもので、第1図は本実施例に用いた装置の全体
構成を示し、IA、IB。
This example was carried out to enrich the combustion air of the boiler 5 with oxygen, and FIG. 1 shows the overall configuration of the apparatus used in this example, with lines IA and IB.

ICは吸着剤充填筒で、吸着剤として酸素の吸着能を向
上させる活性炭モレキュラーシーブを粒径3aunに成
形してそれぞれに装填しである。
The IC is an adsorbent-filled cylinder, and activated carbon molecular sieve, which improves oxygen adsorption ability, is molded into a particle size of 3 aun and loaded into each cylinder as an adsorbent.

今コンプレッサー3によって3 kg/cm”に圧送さ
れた空気をポルテックスチューブ2によって10℃の冷
空気2aと 110℃の熱空気2bに9:1の割合で分
離し、この冷空気2aを、吸着剤充填筒IAに導入して
、酸・素を活性炭モレキュラーシーブにまず吸着させる
0次にボイラー5での燃焼によって生じた排ガスは熱交
換器4を経て煙突6から排出され、排ガス顕熱はブロア
ー8から圧送された空気を150℃に加熱するのに使用
される。前記ポルテックスチューブ2からの熱空気2b
を排ガスと混合して予熱空気を製造するのに使用しても
よい、この予熱空気は吸着剤充填筒IBに導入され、前
工程で吸着した酸素を解離せしめて、予熱された酸素富
化空気としてボイラー5のバーナー7などで効率よく使
用することができる。前工程で加熱された吸着剤充填筒
ICは充填筒IA通通後の冷空気を導入して冷却し、次
工程での吸着が可能なように再生させる。これで1サイ
クルが終了し、この操作を順次交互に繰返し、連続して
予熱した酸素空気を製造することができた。この反復工
程を第1表に示す。
The air that has now been compressed to 3 kg/cm'' by the compressor 3 is separated by the portex tube 2 into 10°C cold air 2a and 110°C hot air 2b at a ratio of 9:1, and this cold air 2a is adsorbed. The agent is introduced into the cylinder IA, and the oxygen and elements are first adsorbed on the activated carbon molecular sieve. Next, the exhaust gas generated by combustion in the boiler 5 passes through the heat exchanger 4 and is discharged from the chimney 6, and the sensible heat of the exhaust gas is transferred to the blower. The hot air 2b from the portex tube 2 is used to heat the air pumped from the portex tube 2 to 150°C.
The preheated air may be mixed with exhaust gas to produce preheated air. This preheated air is introduced into the adsorbent packed cylinder IB to dissociate the oxygen adsorbed in the previous step and produce preheated oxygen-enriched air. It can be efficiently used as the burner 7 of the boiler 5. The adsorbent filled cylinder IC heated in the previous step is cooled by introducing cold air passed through the filled cylinder IA and regenerated to enable adsorption in the next step. This completed one cycle, and by repeating this operation alternately, it was possible to continuously produce preheated oxygen air. This iterative process is shown in Table 1.

第  1 図 第1表の工程のサイクルは15分間隔で完全自動切換で
実施し、燃焼用空気中の酸素弁を21%から約25%に
連続して安定に富化することができた。
The cycle of steps shown in FIG. 1 and Table 1 was carried out at 15 minute intervals with fully automatic switching, and it was possible to continuously and stably enrich the combustion air with oxygen valves from 21% to about 25%.

尚、本発明は前記実施例にのみ限定されることなく、本
発明の要件を満たす限り種々の設計変更を加え得ること
は勿論である。各工程において高圧なガスを必要としな
いので回転ロータリ一方式で連続的に酸素富化空気を製
造することも可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various design changes can be made as long as the requirements of the present invention are met. Since high-pressure gas is not required in each process, it is also possible to continuously produce oxygen-enriched air using a rotary system.

また冷空気と熱空気を製造するためには前記のポルテッ
クスチューブ2を用いる以外にも、第2図(B)に示す
如く熱交換方式を採用することも可能である。コンプレ
ッサー9を介するフロンガスを循環させる冷凍機を利用
するもので熱交換器10aで原料空気の一部を冷却し、
その顕熱を熱交換器10bで原料空気の残部に排出して
加熱空気を製造するという方式も可能である。さらに第
2図(C)に示す如く簡単に膨張弁11を利用しても可
能である。
Furthermore, in order to produce cold air and hot air, in addition to using the portex tube 2 described above, it is also possible to adopt a heat exchange method as shown in FIG. 2(B). It uses a refrigerator that circulates fluorocarbon gas through a compressor 9, and a part of the raw air is cooled by a heat exchanger 10a.
It is also possible to produce heated air by discharging the sensible heat to the remainder of the raw air using the heat exchanger 10b. Furthermore, it is also possible to simply use an expansion valve 11 as shown in FIG. 2(C).

[発明の効果] 以上説明した如く、本発明によれば燃焼用空気中の酸素
富化を排ガスの顕熱を利用して効率よく連続して高める
ことができ、省エネルギーに寄与する。
[Effects of the Invention] As explained above, according to the present invention, oxygen enrichment in combustion air can be efficiently and continuously increased using sensible heat of exhaust gas, contributing to energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた装置の全体構成を示す図、第2
図(A) 、 (B) 、 (C)は原料空気から冷空
気と熱空気をそれぞれ製造する方法に関する説明図であ
る。 IA、IB、IC・・・吸着剤充填筒 2・・・ポルテックスチューブ 3・・・コンプレッサー 4・・・熱交換器5・・・ボ
イラー 7・・・バーナー 9・・・コンプレッサー 10a、10b・・・熱交換器 11 ・・・膨弓長弁。 6・・・煙突 8・・・ブロアー 第1図
Figure 1 is a diagram showing the overall configuration of the device used in the example, Figure 2
Figures (A), (B), and (C) are explanatory diagrams relating to methods of producing cold air and hot air, respectively, from raw air. IA, IB, IC...Adsorbent filling cylinder 2...Portex tube 3...Compressor 4...Heat exchanger 5...Boiler 7...Burner 9...Compressor 10a, 10b. ... Heat exchanger 11 ... Expansion bow length valve. 6...Chimney 8...Blower Figure 1

Claims (1)

【特許請求の範囲】 1 吸着剤を用いて空気中の酸素を富化する酸素富化空
気の製造方法において、空気を低温の空気と高温の空気
に分離し、分離された低温の空気を吸着剤に通過させて
酸素を吸着 し、該吸着剤に予熱空気を通過させ酸素を解離して酸素
富化空気を得ることを特徴とする酸素富化空気の製造方
法。
[Claims] 1. A method for producing oxygen-enriched air that enriches oxygen in the air using an adsorbent, in which air is separated into low-temperature air and high-temperature air, and the separated low-temperature air is adsorbed. A method for producing oxygen-enriched air, which comprises passing preheated air through an adsorbent to adsorb oxygen, and dissociating oxygen by passing preheated air through the adsorbent to obtain oxygen-enriched air.
JP63287187A 1988-11-14 1988-11-14 Production of oxygen enriched air Pending JPH02135114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287187A JPH02135114A (en) 1988-11-14 1988-11-14 Production of oxygen enriched air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287187A JPH02135114A (en) 1988-11-14 1988-11-14 Production of oxygen enriched air

Publications (1)

Publication Number Publication Date
JPH02135114A true JPH02135114A (en) 1990-05-24

Family

ID=17714202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287187A Pending JPH02135114A (en) 1988-11-14 1988-11-14 Production of oxygen enriched air

Country Status (1)

Country Link
JP (1) JPH02135114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928938A1 (en) * 1998-01-06 1999-07-14 Praxair Technology, Inc. Regenerative oxygen preheat process for oxy-fuel fired furnaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130359U (en) * 1974-08-28 1976-03-04
JPS6245317A (en) * 1985-08-22 1987-02-27 Toho Gas Co Ltd Method for enriching oxygen by temperature swing adsorption

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130359U (en) * 1974-08-28 1976-03-04
JPS6245317A (en) * 1985-08-22 1987-02-27 Toho Gas Co Ltd Method for enriching oxygen by temperature swing adsorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928938A1 (en) * 1998-01-06 1999-07-14 Praxair Technology, Inc. Regenerative oxygen preheat process for oxy-fuel fired furnaces

Similar Documents

Publication Publication Date Title
KR100192697B1 (en) Purification of gases using solid absorbents
CN102232003A (en) Multi-stage process for purifying carbon dioxide and producing sulfuric acid and nitric acid
US3738084A (en) Adsorption process and an installation therefor
CA2732129C (en) Recovery of carbon dioxide from flue gas
CN108348839B (en) Method for regenerating adsorbent in combined pressure swing and temperature swing adsorption
US4612022A (en) Process for increasing the concentration of one component in a multi-component _gaseous mixture
US3710547A (en) Adsorption process for natural gas purification
EP1359120A1 (en) Ozone production methods
KR870700221A (en) Ozone production method and apparatus
JPS63230505A (en) Method of forming and recovering oxygen product
KR980008274A (en) Multiple thermal pulsation pressure fluctuation adsorption method
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
JP2000317244A (en) Method and device for purifying gas
JPS6272504A (en) Production of nitrogen having high purity
US5505050A (en) Process and installation for the distillation of air
CN109414642A (en) Adsorbed gas separation method and system
JPH0244572B2 (en)
JPH02135114A (en) Production of oxygen enriched air
JPH02135112A (en) Production of oxygen enriched air
JPH04359785A (en) Device for collecting liquid carbon dioxide
US3884661A (en) Method of and installation for fractionation by adsorption
JPH02135113A (en) Production of oxygen enriched air
JP2661725B2 (en) Method for producing hot oxygen-enriched air
JPS63265802A (en) Production of oxygen-enriched air
JPH01176416A (en) Purifying method for combustion exhaust gas