JPH0213456Y2 - - Google Patents
Info
- Publication number
- JPH0213456Y2 JPH0213456Y2 JP5240985U JP5240985U JPH0213456Y2 JP H0213456 Y2 JPH0213456 Y2 JP H0213456Y2 JP 5240985 U JP5240985 U JP 5240985U JP 5240985 U JP5240985 U JP 5240985U JP H0213456 Y2 JPH0213456 Y2 JP H0213456Y2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molding
- glass plate
- glass
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 37
- 238000000465 moulding Methods 0.000 claims description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052582 BN Inorganic materials 0.000 claims description 10
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 10
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 8
- 239000007769 metal material Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 description 13
- 239000006082 mold release agent Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 238000007666 vacuum forming Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
(産業上の利用分野)
本考案はガラス板を真空成形、プレス成形或い
はこれらを組合せて成形する際に用いる金型に関
する。
(従来の技術)
陰極線管(CRT)、螢光表示管、プラズマデイ
スプレイ等を成形する方法として、従来から金型
上に載置したガラス板を軟化点近くまで加熱し、
このガラス板を金型に形成した吸引孔を介して真
空引きするか金型上方に配置したプレス型によつ
て押し付けることで、金型成形部に倣つて成形す
る方法が知られている。
ここで前記金型の材料としては従来から、FC
合金、ステンレス鋼、耐熱鋳鋼、超合金などの金
属材料を用いている。そして、これら金属材料は
ガラスとの濡れ性が良好とはいえず、成形時にガ
ラスが融着して離型不能となるため、成形前に予
じめガラス板に離型剤をコーテイングした後に成
形を行うようにしている。
(考案が解決しようとする問題点)
しかしながら、陰極線管などを成形する場合に
はガラス板の一部は成形時に大きく引き延ばされ
ることとなり、たとえ成形前に離型剤をガラス板
にコーテイングしておいても、離型剤がガラス板
の伸びに追従できず、大きく引き延ばされた部分
が金型の底部に離型剤なしで直接密着することと
なり、金型温度が550℃以上の場合にはガラスと
金型との融着が生じ、離型不能となる。
そこで、金型を構成する材料として、ガラスと
の濡れ性がよいもの、つまりガラスとの親和性が
無くガラスの付着が生じない無定形炭素又はグラ
フアイトを用いることが考えられている。
しかしながら、無定形炭素及びグラフアイトは
高温下において酸素と接触することで劣化するた
め、金型を収容する加熱炉全体の雰囲気を窒素ガ
ス等の不活性ガス雰囲気としなければならず、こ
のためには加熱炉自体気密性をもつ構造とする必
要があり、構造が複雑化し、且つ所定の雰囲気と
するまでに時間がかかり、生産効率の低下となつ
ている。
(問題点を解決するための手段)
上記問題点を解決すべく本考案は、ガラス板の
最も延展される部分が接触するとともに外気に接
触する度合が少ない金型成形部の底部を、無定形
炭素、グラフアイト或いはボロンナイトライドで
構成するようにした。
(実施例)
以下に本考案の実施例を添付図面に基いて説明
する。
第1図は本考案に係る金型の縦断面図、第2図
は同金型の平面図であり、金型1は上方に開口す
る逆角錐状(ロート状)の成形部2を有し、この
成形部2の上部2a及び中間部2bは第1の金型
部3にて形成され、成形部2の底部2cは第2の
金型部4にて形成される。
そして、第1の金型部3はFC合金、ステンレ
ス鋼、耐熱鋳鋼或いは超合金などの機械的強度に
優れる金属材料からなり、第2の金型部4はガラ
スとの濡れ性がよいもの、換言すれば軟化点近く
まで加熱されたガラスとの親和性がなくガラスが
融着しにくい材料、具体的には無定形炭素、グラ
フアイト或いはボロンナイトライド等を材料と
し、これをホツトプレス法などによつて成形して
得る。そして、第2の金型部4には真空吸引孔5
を穿設している。
また、第2の金型部4の材料は第1の金型部3
の材料よりも線膨張係数が小さいため、第1の金
型部3に形成される凹部3aの寸法よりも第2の
金型部4の寸法を数%大きくしておき、加熱によ
つて接合部に隙間が生じないようにするのが好ま
しい。更に第2の金型部4の材料としてボロンナ
イトライドを用いる場合には、ボロンナイトライ
ドの含有率を75wt%以上、特に90wt%以上とす
るのが好ましい。
以上の如き金型1を用いてガラス板Gを成形す
る方法を以下に述べる。
先ず、離型剤をコーテイングしたガラス板Gを
金型1上に載置し、ガラス板Gを軟化点近くまで
加熱する。この場合、第2の金型部4の材料とし
て無定形炭素又はグラフアイトを用いた場合には
高温下における酸素との接触によつて劣化するの
を防止すべく、前記真空吸引孔5を利用して成形
部2の底部2c内に、窒素ガス等の不活性ガスを
少量噴出することが好ましい。
そして、ガラス板Gが軟化点近くまで加熱され
たならば、図示しないプレス型にてガラス板Gを
成形部2内に半分以上押し込むとともに、真空吸
引孔5を介してガラス板Gを吸引し、成形部2に
倣つた、形状にガラス板Gを成形する。この場
合、成形部2の底部2cに接触するガラス板Gの
部分は最も引き伸ばされるため、この伸びに離型
剤が追従できないこととなるが、底部2cを形成
する第2の金型部4は前記した如く濡れ性に優れ
た材料にて構成しているため、ガラスが融着する
ことはない。
次に具体的な数値を挙げた実施例を説明する。
先ず、第1の金型部3の材料としてSUS403を
用い、第2の金型部4の材料としてボロンナイト
ライドの含有量が95wt%のボロンナイトライド
焼結体を用い、ガラス板Gとしてソーダ・ライ
ム・シリカガラスの3mm厚を用意し、このガラス
板に離型剤としてボロンナイトライドの微粉末を
約30μmの厚さでコーテイングし、ガラス板を約
830℃に、金型を約800℃に加熱し、プレス成形と
真空成形を併用して成形した。
尚、成形にあたつて使用した金型1の上端開口
の短辺の長さLは13mmとし、且つ第1の金型部3
によつて形成される成形部2の上部2a及至中間
部2bの深さHについては種々変化させて成形し
た。この結果を[表]に示す。
(Industrial Application Field) The present invention relates to a mold used when forming a glass plate by vacuum forming, press forming, or a combination thereof. (Prior art) As a method for molding cathode ray tubes (CRTs), fluorescent display tubes, plasma displays, etc., a glass plate placed on a mold is conventionally heated to near its softening point.
A method is known in which the glass plate is formed by evacuating it through a suction hole formed in the mold, or by pressing it with a press mold placed above the mold, so as to follow the molding area of the mold. Here, the material for the mold has traditionally been FC.
Metal materials such as alloys, stainless steel, heat-resistant cast steel, and superalloys are used. These metal materials do not have good wettability with glass, and the glass fuses during molding, making it impossible to release the mold. Therefore, the glass plate must be coated with a mold release agent before molding. I try to do this. (Problem that the invention aims to solve) However, when molding cathode ray tubes, etc., a part of the glass plate will be stretched significantly during molding, and even if the glass plate is coated with a mold release agent before molding. Even if the mold release agent is not able to follow the elongation of the glass plate, the greatly elongated part will come into direct contact with the bottom of the mold without the release agent, and if the mold temperature is 550℃ or higher. When the glass and the mold are fused together, it becomes impossible to release the mold. Therefore, it has been considered to use a material that has good wettability with glass, that is, amorphous carbon or graphite, which has no affinity with glass and does not cause glass adhesion, as a material constituting the mold. However, amorphous carbon and graphite deteriorate when they come into contact with oxygen at high temperatures, so the entire atmosphere of the heating furnace that houses the mold must be an inert gas atmosphere such as nitrogen gas. The heating furnace itself must have an airtight structure, which complicates the structure and takes time to create a predetermined atmosphere, reducing production efficiency. (Means for Solving the Problems) In order to solve the above problems, the present invention makes the bottom part of the mold forming part, which is in contact with the most extended part of the glass plate and has a low degree of contact with the outside air, with an amorphous shape. It is made of carbon, graphite, or boron nitride. (Example) An example of the present invention will be described below based on the accompanying drawings. FIG. 1 is a longitudinal cross-sectional view of a mold according to the present invention, and FIG. 2 is a plan view of the same mold. The mold 1 has an inverted pyramid-shaped (funnel-shaped) molding part 2 that opens upward. The upper part 2a and middle part 2b of this molding part 2 are formed by the first mold part 3, and the bottom part 2c of the molding part 2 is formed by the second mold part 4. The first mold part 3 is made of a metal material with excellent mechanical strength such as FC alloy, stainless steel, heat-resistant cast steel, or superalloy, and the second mold part 4 is made of a material with good wettability with glass. In other words, materials such as amorphous carbon, graphite, or boron nitride, which have no affinity with glass that has been heated to near its softening point and are difficult to fuse with, are used, and this is processed using hot pressing methods. Obtain by twisting and shaping. The second mold part 4 has a vacuum suction hole 5.
is installed. Further, the material of the second mold part 4 is the same as that of the first mold part 3.
Since the coefficient of linear expansion is smaller than the material of It is preferable that there be no gaps between the parts. Further, when boron nitride is used as the material for the second mold part 4, the content of boron nitride is preferably 75 wt% or more, particularly 90 wt% or more. A method of molding the glass plate G using the mold 1 as described above will be described below. First, a glass plate G coated with a mold release agent is placed on a mold 1, and the glass plate G is heated to near its softening point. In this case, when amorphous carbon or graphite is used as the material for the second mold part 4, the vacuum suction hole 5 is used to prevent deterioration due to contact with oxygen at high temperatures. It is preferable that a small amount of inert gas such as nitrogen gas be blown into the bottom 2c of the molding section 2. When the glass plate G is heated to near its softening point, the glass plate G is pushed more than halfway into the molding part 2 using a press mold (not shown), and the glass plate G is sucked through the vacuum suction hole 5. A glass plate G is molded into a shape that follows the molding part 2. In this case, the part of the glass plate G that contacts the bottom part 2c of the molding part 2 is stretched the most, so the mold release agent cannot follow this elongation, but the second mold part 4 that forms the bottom part 2c is As described above, since it is made of a material with excellent wettability, the glass will not be fused. Next, an example will be described with specific numerical values. First, SUS403 was used as the material for the first mold part 3, a boron nitride sintered body with a boron nitride content of 95 wt% was used as the material for the second mold part 4, and soda was used as the glass plate G.・Prepare 3 mm thick lime silica glass, coat this glass plate with boron nitride fine powder as a mold release agent to a thickness of about 30 μm, and then
The mold was heated to 830°C and the mold was heated to approximately 800°C, and molding was performed using a combination of press molding and vacuum forming. In addition, the length L of the short side of the upper end opening of the mold 1 used for molding was 13 mm, and the first mold part 3
The depth H of the upper part 2a and the middle part 2b of the molded part 2 formed by the molding part 2 was varied variously during molding. The results are shown in [Table].
【表】
この[表]からも明らかな如く、H/L>1.25
の場合には第1の金型部3によつて形成される成
形部の中間部2bにガラスが付着し、H/L≦
1.25であれば付着は生じなかつた。また、第2の
金型部4の材料、ガラス板Gの成分、成形温度、
成形部2の寸法等を変化させて行つた実験であつ
ても、上記と略同様の結果が得られた。したがつ
てH/L≦1.25なる関係を満足するように第2の
金型部4の寸法を決定するのが好ましい。
また、無定形炭素又はグラフアイトによつて第
2の金型を構成した場合において、金型加熱時に
窒素ガス等の不活性ガスを噴出せしめなくとも、
第2の金型は成形部の底部に位置しているため、
外気との接触の度合いは少なく、大きく劣化する
ことはなかつた。
(考案の結果)
以上に説明した如く本考案によれば、ガラス板
を成形する金型において、ガラス板の最も引き伸
ばされる部分を接触する金型底部を無定形炭素、
グラフアイト或いはボロンナイトライドにて構成
したため、ガラスの融着(付着)がなく容易に離
型することができ、しかも、金型全体をグラフア
イト等で構成しないことによつて、加熱炉全体を
窒素ガス雰囲気とする必要がなく、装置全体の複
雑化及びコストアツプを招くことがなく、且つ金
型全体の剛性を維持できる等多くの効果を発揮す
る。[Table] As is clear from this [Table], H/L>1.25
In this case, glass adheres to the intermediate part 2b of the molding part formed by the first mold part 3, and H/L≦
At 1.25, no adhesion occurred. In addition, the material of the second mold part 4, the components of the glass plate G, the molding temperature,
Even in experiments conducted by changing the dimensions of the molded part 2, substantially the same results as above were obtained. Therefore, it is preferable to determine the dimensions of the second mold part 4 so as to satisfy the relationship H/L≦1.25. Furthermore, in the case where the second mold is made of amorphous carbon or graphite, even if an inert gas such as nitrogen gas is not ejected when the mold is heated,
Since the second mold is located at the bottom of the molding section,
The degree of contact with outside air was small and there was no major deterioration. (Results of the invention) As explained above, according to the invention, in a mold for forming a glass plate, the bottom of the mold that contacts the most stretched part of the glass plate is made of amorphous carbon.
Since it is made of graphite or boron nitride, it can be easily released from the mold without glass fusing (adhesion). Furthermore, since the entire mold is not made of graphite, etc., the entire heating furnace can be easily removed. It does not require a nitrogen gas atmosphere, does not complicate the entire device and does not increase costs, and has many effects such as maintaining the rigidity of the entire mold.
第1図は本考案に係るガラス成形用金型の縦断
面図、第2図は同金型の平面図、第3図は成形時
の金型の縦断面図である。
尚、図面中1は金型、2は成形部、2aは成形
部の上部、2bは成形部の中間部、2cは成形部
の底部、3は第1の金型部、4は第2の金型部、
5は真空吸引孔、Gはガラス板である。
FIG. 1 is a longitudinal sectional view of a glass molding mold according to the present invention, FIG. 2 is a plan view of the same mold, and FIG. 3 is a longitudinal sectional view of the mold during molding. In the drawings, 1 is the mold, 2 is the molding part, 2a is the upper part of the molding part, 2b is the middle part of the molding part, 2c is the bottom of the molding part, 3 is the first mold part, and 4 is the second mold part. mold part,
5 is a vacuum suction hole, and G is a glass plate.
Claims (1)
の成形部は上方に向つて開口し、且つガラス板
の最も延展された部分が接触する成形部の底部
は無定形炭素、グラフアイト或いはボロンナイ
トライドを材料としていることを特徴とするガ
ラス成形用金型。 (2) 前記無定形炭素、グラフアイト或いはボロン
ナイトライドを用いない金属材料からなる成形
部の深さをH、成形部の開口の短辺の長さをL
とした場合、H/L≦1.25なる関係を満足する
ようにしたことを特徴とする実用新案登録請求
の範囲第1項記載のガラス成形用金型。[Scope of Claim for Utility Model Registration] (1) In a mold for molding a glass plate, the molding part of the mold opens upward, and the bottom part of the molding part is in contact with the most extended part of the glass plate. A glass molding mold characterized by being made of amorphous carbon, graphite, or boron nitride. (2) The depth of the molded part made of a metal material that does not use amorphous carbon, graphite, or boron nitride is H, and the length of the short side of the opening of the molded part is L.
The glass molding mold according to claim 1, which is a utility model, and is characterized in that the mold satisfies the relationship H/L≦1.25.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5240985U JPH0213456Y2 (en) | 1985-04-09 | 1985-04-09 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5240985U JPH0213456Y2 (en) | 1985-04-09 | 1985-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61168136U JPS61168136U (en) | 1986-10-18 |
JPH0213456Y2 true JPH0213456Y2 (en) | 1990-04-13 |
Family
ID=30572338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5240985U Expired JPH0213456Y2 (en) | 1985-04-09 | 1985-04-09 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0213456Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5607599B2 (en) * | 2011-10-07 | 2014-10-15 | 三星ダイヤモンド工業株式会社 | Scribing equipment |
JP5607598B2 (en) * | 2011-10-07 | 2014-10-15 | 三星ダイヤモンド工業株式会社 | Scribing equipment |
-
1985
- 1985-04-09 JP JP5240985U patent/JPH0213456Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS61168136U (en) | 1986-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3531853A (en) | Method of making a ceramic-to-metal seal | |
US3220815A (en) | Process of bonding glass or ceramic to metal | |
US3345218A (en) | Preoxidation of stainless steel for glass-to-metal sealing | |
JPH0213456Y2 (en) | ||
US2369146A (en) | Metal insert for vacuum-tight sealing | |
US3196536A (en) | Method of connecting graphite articles to one another or to articles of different materials | |
US3770568A (en) | Glass seals | |
US5336287A (en) | Method for bonding glass and metal | |
US3929426A (en) | Method of anchoring metallic coated leads to ceramic bodies and lead-ceramic bodies formed thereby | |
US2237184A (en) | Alloy | |
US2510546A (en) | Manufacture of precision articles from powdered material | |
US5515412A (en) | Method of producing frit-sealed x-ray tube | |
DE2346499B2 (en) | Process for the production of bodies from powder by hot isostatic pressing in a container made of glass | |
US4466793A (en) | Heat treatment jig for use in the manufacture of cathode-ray tubes | |
JPS6246941B2 (en) | ||
WO1983000947A1 (en) | Large metal cone cathode ray tubes, and envelopes therefor | |
US3129070A (en) | Metallic bond | |
GB1582023A (en) | Funnel-shaped glass aritcles | |
US2819561A (en) | Application of vitreous sealant to glass sealing edges | |
JP2001328830A (en) | Method for producing glass panel for cathode ray tube | |
JP2003081647A (en) | DIE MADE OF LOW THERMAL EXPANSION Co BASED ALLOY FOR PRESS-FORMING OPTICAL GLASS LENS HAVING EXCELLENT GLASS CORROSION RESISTANCE | |
Britain | Materials and Techniques used in Vacuum Technology | |
US3254255A (en) | Mercury vapor discharge device having a novel brazing alloy | |
JPS59103273A (en) | Sealing cap for battery | |
JPS602941B2 (en) | Processing method of Ni-W alloy ingot |