JPH02133811A - Photovoltaic power generating device - Google Patents

Photovoltaic power generating device

Info

Publication number
JPH02133811A
JPH02133811A JP63288418A JP28841888A JPH02133811A JP H02133811 A JPH02133811 A JP H02133811A JP 63288418 A JP63288418 A JP 63288418A JP 28841888 A JP28841888 A JP 28841888A JP H02133811 A JPH02133811 A JP H02133811A
Authority
JP
Japan
Prior art keywords
voltage
signal
protection
power
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63288418A
Other languages
Japanese (ja)
Inventor
Seiichi Hojo
北條 誠一
Nobuyuki Yasuda
信幸 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63288418A priority Critical patent/JPH02133811A/en
Publication of JPH02133811A publication Critical patent/JPH02133811A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To keep the stable operation of a power converting part even though the optimum working voltage is changed with the secular change, etc., by changing the protection setting signal based on the voltage reference signal set at a level approximate to the optimum working voltage of a solar battery. CONSTITUTION:A voltage reference signal 4 of a voltage reference setter 3 and a protection reference signal 15 of a protection reference setter 14 are applied to a multiplier 16 for production of a protection setting signal 9. The signal 4 is set at a level approximate to the optimum working voltage of a solar battery 1 which is set when the battery 1 is newly added. When the output characteristics of the battery 1 change due to the secular change of the battery 1 and its optimum working voltage changes, the signal 4 is set again at a level close to the optimum working voltage according to the voltage change. Thus the operation of a power converting part 2 is kept without causing any interference between the input voltage to be applied to the part 2 and the signal 9 and in a state where the output voltage of the battery 1 is kept at its optimum working voltage.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は太陽電池を電源とし、太陽電池からの直流電力
を交流電力に変換し、これを電力系統や負荷に供給する
太陽光発電装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention uses solar cells as a power source, converts DC power from the solar cells into AC power, and supplies this to the power system and load. Regarding solar power generation equipment.

(従来の技術) 最近、遠隔地での独立電源として、太陽光発電装置が注
目されている。
(Prior Art) Recently, solar power generation devices have been attracting attention as an independent power source in remote areas.

第4図は、この種、従来の太陽光発電装置の構成例を示
すものである。図において、1は太陽エネルギーを電力
に変換し直流電力として発生する太陽電池、2は太陽電
池1からの直流電力を交流電力に変換するための電力変
換部、3は電力変換部2の直流電圧を所望の値に設定す
るための電圧基準設定器、6は電圧基準設定器3からの
電圧基準信号4と電力変換部2の入力電圧検出信号5を
比較し直流電圧設定信号7を出力する比較器、8は電力
変換部2の保護レベルを設定する保護レベル設定器、1
0は保護レベル設定器8の保護設定信号9と電力変換部
2の入力電圧検出信号5により保護検出信号11を出力
する検出回路、12は比較器6からの直流電圧設定信号
7と検出回路10からの保護検出信号11を受けて電力
変換部2への制御信号13を出力する制御回路である。
FIG. 4 shows an example of the configuration of this type of conventional solar power generation device. In the figure, 1 is a solar cell that converts solar energy into electricity and generates it as DC power, 2 is a power conversion section that converts the DC power from the solar cell 1 into AC power, and 3 is the DC voltage of the power conversion section 2. A voltage reference setting device 6 is used to compare the voltage reference signal 4 from the voltage reference setting device 3 and the input voltage detection signal 5 of the power converter 2 to output a DC voltage setting signal 7. 8 is a protection level setting device 1 for setting the protection level of the power converter 2;
0 is a detection circuit that outputs a protection detection signal 11 based on the protection setting signal 9 of the protection level setter 8 and the input voltage detection signal 5 of the power converter 2; 12 is the DC voltage setting signal 7 from the comparator 6 and the detection circuit 10; This is a control circuit that receives a protection detection signal 11 from the power converter 2 and outputs a control signal 13 to the power converter 2.

このような太陽光発電装置としては、特願昭63−06
8118号明細書に開示されているように太陽電池1の
出力電力を効率よく利用するため太陽電池1の最適動作
付近に電圧基準信号4の値を設定したもの、あるいは特
願昭61−224520号明細書に開示されているよう
にケーブル短絡などの事故状態から電力変換部2を保護
する目的で保護設定信号9として不足電圧設定値と過電
圧設定値を夫々設定するようにしたものが知られている
As such a solar power generation device, the patent application No. 63-06
As disclosed in the specification of No. 8118, the value of the voltage reference signal 4 is set near the optimum operation of the solar cell 1 in order to efficiently utilize the output power of the solar cell 1, or as disclosed in Japanese Patent Application No. 61-224520. As disclosed in the specification, a device is known in which an undervoltage setting value and an overvoltage setting value are respectively set as the protection setting signal 9 for the purpose of protecting the power converter 2 from an accident state such as a cable short circuit. There is.

(発明が解決しようとする課B) ところで、このような太陽光発電装置に用いられる太陽
電池は、第2図(a)に示す新設時の出力特性を、その
経年劣化により同図(b)に示すように低下することが
知られている。この場合、出力特性の変化にともない太
陽電池の最適動作電圧も、新設時のV oplから経年
劣化時のV op2へと変化するので、上述した第4図
に示す装置では、電圧基準設定器3の電圧基準信号4を
下げて、電力変換部2の入力電圧検出信号5をv Op
lからV op2に変化させるようにしている。
(Problem B to be solved by the invention) By the way, the output characteristics of the solar cells used in such solar power generation devices when newly installed are shown in Fig. 2 (a), but due to deterioration over time, the output characteristics change as shown in Fig. 2 (b). It is known that there is a decrease as shown in In this case, as the output characteristics change, the optimal operating voltage of the solar cell also changes from V op1 when newly installed to V op2 when aged, so in the device shown in FIG. The input voltage detection signal 5 of the power converter 2 is lowered by lowering the voltage reference signal 4 of
I am trying to change it from 1 to V op2.

しかしながら、このようにすると、仮に第2図に示すよ
うに保護レベル設定器8の保護設定信号9により不足電
圧設定値がVLJ1%過電圧設定値がVOIに設定され
ているような場合、電圧基準設定器3の電圧基準信号4
を下げた後の電力変換部2の入力電圧検出信号V op
2が、上記不足電圧設定値Vulより小さくなることが
あり、これが原因で異常発生により太陽電池の出力電圧
が低下したのでないにもかかわらず、異常発生と判定し
電力変換部2の運転を強制的に停止させてしまうことが
あった。
However, in this case, if the undervoltage setting value is set to VLJ1% overvoltage setting value is set to VOI by the protection setting signal 9 of the protection level setting device 8 as shown in FIG. Voltage reference signal 4 of device 3
The input voltage detection signal V op of the power converter 2 after lowering
2 may become smaller than the undervoltage set value Vul, and for this reason, even though the output voltage of the solar cell has not decreased due to an abnormality, it is determined that an abnormality has occurred and the power conversion unit 2 is forced to operate. Sometimes I had to stop it.

本発明は上記事情に鑑みてなされたもので、経年劣化な
どで太陽電池の最適動作電圧に変化が生じても電力変換
部での運転を安定して維持することができる太陽光発電
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a solar power generation device that can maintain stable operation at the power conversion unit even if the optimal operating voltage of the solar cell changes due to aging or other factors. The purpose is to

[発明の構成] (課題を解決するための手段) 本発明は、太陽エネルギーを直流電力に変換する太陽電
池の出力を電力変換部により交流電力に変換して出力す
るものにおいて、上記太陽電池の最適動作電圧付近に設
定される電圧基準信号と上記電力変換部の入力電圧検出
信号により得られる直流電圧設定信号および上記電圧基
準信号に基づいて設定される保護設定信号と上記電力変
換部の入力電圧検出信号により得られる保護検出信号に
より上記電力変換部を制御するようになっている。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides an apparatus for converting the output of a solar cell that converts solar energy into direct current power into alternating current power using a power conversion section and outputting the alternating current power. A DC voltage setting signal obtained from a voltage reference signal set near the optimum operating voltage and an input voltage detection signal of the power converter, a protection setting signal set based on the voltage reference signal, and an input voltage of the power converter. The power conversion section is controlled by a protection detection signal obtained from the detection signal.

(作用) この結果、常に太陽電池の最適動作電圧付近に設定され
る電圧基準信号に基づいて保護設定信号を変化させて設
定できるので、太陽電池の経年劣化により最適動作電圧
が変化した場合も、電力変換部への入力電圧が保護設定
信号と干渉することなく、太陽電池の出力電圧を最適動
作電圧に保った状態で電力変換部での運転を維持するこ
とができる。
(Function) As a result, the protection setting signal can be changed and set based on the voltage reference signal that is always set around the optimal operating voltage of the solar cell, so even if the optimal operating voltage changes due to aging of the solar cell, The input voltage to the power converter does not interfere with the protection setting signal, and the power converter can maintain operation while keeping the output voltage of the solar cell at the optimum operating voltage.

(実施例) 以下、本発明の一実施例を図面にしたがい説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は、同実施例の構成例を示すもので、第4図と同
一部分には同符号を付して示している。
FIG. 1 shows an example of the configuration of the same embodiment, and the same parts as in FIG. 4 are denoted by the same reference numerals.

図において、1は太陽エネルギーを電力に変換し直流電
力として発生する太陽電池、2は太陽電池1からの直流
電力を交流電力に変換するための電力変換部、3は電力
変換部2の直流電圧を所望の値に設定するための電圧基
準設定器、6は電圧基準設定器3からの電圧基準信号4
と電力変換部2への入力電圧検出信号5を比較し直流電
圧設定信号7を出力する比較器、14は予め所定の値に
設定される保護基準信号15を出力する保護基準設定器
、16は電圧基準設定器3の電圧基準信号4と保護基準
設定器14の保護基準信号15を乗算して保護設定信号
9を出力する乗算器、10は乗算、器16の保護設定信
号9と電力変換部2の入力電圧検出信号5により保護検
出信号11を出力する検出回路、12は比較器6からの
直流電圧設定信号7と検出回路10からの保護検出信号
11を受けて電力変換部2への制御信号13を出力する
制御回路である。
In the figure, 1 is a solar cell that converts solar energy into electricity and generates it as DC power, 2 is a power conversion section that converts the DC power from the solar cell 1 into AC power, and 3 is the DC voltage of the power conversion section 2. 6 is a voltage reference signal 4 from the voltage reference setter 3;
and a comparator that compares the input voltage detection signal 5 to the power conversion unit 2 and outputs a DC voltage setting signal 7; 14 is a protection standard setting device that outputs a protection standard signal 15 that is set to a predetermined value; 16 is a A multiplier that multiplies the voltage reference signal 4 of the voltage reference setter 3 by the protection reference signal 15 of the protection reference setter 14 and outputs the protection setting signal 9; A detection circuit 12 outputs a protection detection signal 11 based on the input voltage detection signal 5 of 2, and a detection circuit 12 receives the DC voltage setting signal 7 from the comparator 6 and the protection detection signal 11 from the detection circuit 10 to control the power converter 2. This is a control circuit that outputs a signal 13.

ここで、上記保護基準設定器14は、例えば、第2図に
おいて新設時の最適動作電圧V oplに対する不足電
圧設定値Vulおよび過電圧設定値VOIの関係が、夫
々Vopl Xo、8−Vul、V oplx iJ 
−V 01である場合、保護基準信号15を8および1
.2に予め設定されるものとする。
Here, the protection standard setting device 14 is configured such that, for example, in FIG. 2, the relationship between the undervoltage setting value Vul and the overvoltage setting value VOI with respect to the optimal operating voltage Vopl at the time of new installation is Vopl Xo, 8-Vul, and Voplx, respectively. iJ
-V 01, the protection reference signal 15 is set to 8 and 1
.. It is assumed that the value is set to 2 in advance.

次に、このように構成した実施例の動作を説明する。Next, the operation of the embodiment configured as described above will be explained.

いま、太陽電池1より直流出力が電力変換部2に与えら
れると、ここで交流電力に変換され出力される。この場
合、電圧基準設定器3の電圧基準信号4は第2図(a)
に示す新設時の最適動作電圧V opl付近に設定され
ているものとし、この電圧基準信号4と電力変換部2の
入力電圧検出信号5が比較器6で比較され、この比較結
果が直流電圧設定信号7として制御回路12に与えられ
、電力変換部2の出力が制御される。
Now, when DC output is applied from the solar cell 1 to the power converter 2, it is converted into AC power and output. In this case, the voltage reference signal 4 of the voltage reference setter 3 is as shown in FIG. 2(a).
The voltage reference signal 4 and the input voltage detection signal 5 of the power converter 2 are compared by a comparator 6, and the comparison result is used as the DC voltage setting. It is given to the control circuit 12 as a signal 7, and the output of the power converter 2 is controlled.

また、これと同時に、電圧基準設定器3の電圧基準信号
4と保護基準設定器14の保護基準信号15が乗算器1
6に与えられ保護設定信号9が生成される。この場合、
乗算器16より得られる保護設定信号9は、不足電圧設
定値Vul (V□pi X018)および過電圧設定
値VOI (Vopl X 1.2 )に設定される。
At the same time, the voltage reference signal 4 of the voltage reference setter 3 and the protection reference signal 15 of the protection reference setter 14 are applied to the multiplier 1.
6 and a protection setting signal 9 is generated. in this case,
The protection setting signal 9 obtained from the multiplier 16 is set to the undervoltage setting value Vul (V□pi X018) and the overvoltage setting value VOI (Vopl X 1.2).

この状態から何らかの原因で、電力変換部2の入力電圧
検出信号5が変動して不足電圧設定値Vulまたは過電
圧設定値VOIを越えると、検出回路10よりその旨の
保護検出信号11が発生し、制御回路12に与えられ、
電力変換部2の運転が停止制御されるようになる。
If the input voltage detection signal 5 of the power converter 2 fluctuates in this state for some reason and exceeds the undervoltage setting value Vul or overvoltage setting value VOI, the detection circuit 10 generates a protection detection signal 11 to that effect. given to the control circuit 12;
The operation of the power converter 2 is now controlled to stop.

ところで、太陽電池1は、経年劣化により出力特性を第
2図(b)に示すように変化すると、これにともない最
適動作電圧V op2も変化するようになる。すると、
電圧基準設定器3の電圧基準信号4も、この時の最適動
作電圧V op2付近に設定し直されるので、この状態
で生成される保護設定信号9は、電圧基準設定器3の電
圧基準信号4と保護基準設定器14の保護基準信号15
の乗算結果から不足電圧設定値Vu2は(Vop2 x
o、8 )および過電圧設定値VO2は(Vop2 X
l、2 )に夫々設定される。このことは、太陽電池1
の経年劣化により最適動作電圧がV op2に変化して
も、これに対応して不足電圧設定値Vu2および過電圧
設定値VO2は設定し直されるので、従来見られた太陽
電池1の最適動作電圧に応じた電力変化部2の入力電圧
検出信号5が保護設定信号つと干渉するのを皆無にでき
、誤って電力変換器2の運転が停止されるような事態を
確実に回避できることになる。
By the way, when the output characteristics of the solar cell 1 change as shown in FIG. 2(b) due to aging, the optimum operating voltage V op2 also changes accordingly. Then,
The voltage reference signal 4 of the voltage reference setter 3 is also reset to near the optimal operating voltage V op2 at this time, so the protection setting signal 9 generated in this state is the same as the voltage reference signal 4 of the voltage reference setter 3. and the protection reference signal 15 of the protection reference setter 14
From the multiplication result, the undervoltage setting value Vu2 is (Vop2 x
o, 8) and the overvoltage setting value VO2 is (Vop2
l, 2), respectively. This means that solar cell 1
Even if the optimal operating voltage changes to V op2 due to aging, the undervoltage set value Vu2 and overvoltage set value VO2 are reset accordingly, so that the optimal operating voltage of the solar cell 1 that was conventionally The input voltage detection signal 5 of the corresponding power changing unit 2 can be completely prevented from interfering with the protection setting signal, and a situation where the operation of the power converter 2 is stopped by mistake can be reliably avoided.

ところで、太陽電池の経年劣化により最適動作電圧が変
化した場合、実際は、事前に太陽電池の出力特性を計測
することで確認し、電圧基準信号を代えて最適動作電圧
を新たに設定するようになるが、このように太陽電池の
出力特性を常に監視することは、特に無人施設や個人住
宅などに設置された場合は不可能に近い。そこで電力変
換部の制御に最大電力追従制御回路を採用し、この最大
電力追従制御回路が出力する電圧基準値の一定時間の平
均値を電圧設定信号とすることで自動的に太陽電池の出
力特性の劣化に対応して保護設定信号を変化させるよう
にしてもよい。
By the way, if the optimal operating voltage changes due to aging of the solar cell, it is actually necessary to confirm this by measuring the output characteristics of the solar cell in advance and then set a new optimal operating voltage by replacing the voltage reference signal. However, it is nearly impossible to constantly monitor the output characteristics of solar cells in this way, especially when they are installed in unmanned facilities or private residences. Therefore, we adopted a maximum power follow-up control circuit to control the power conversion unit, and by using the average value over a certain period of time of the voltage reference value output by this maximum power follow-up control circuit as the voltage setting signal, the output characteristics of the solar cell are automatically adjusted. The protection setting signal may be changed in response to the deterioration of the protection setting signal.

第3図は、このような考えを実現するための構成例を示
すもので、第1図と同一部分には同符号を付して示して
いる。17は電力変換部2の入力電流検出信号18と入
力電圧検出信号5から電力変換部2へ入力される直流電
力が最大になるような電圧基準値19を出力する最大電
力追従制御回路、20は電圧基準値19の一定時間の平
均値として電圧基準信号21を出力するサンプルホール
ド回路である。しかして、このようにすると、太陽電池
1が経年劣化し、出力特性が劣化すると、最大電力追従
制御回路17が出力する電圧基準値19よりサンプルホ
ールド回路20を介して一定時間の平均値が電圧設定信
号21として出力されるようになるので、自動的に保護
設定信号9が最適値に設定されるようになる。
FIG. 3 shows an example of a configuration for realizing such an idea, and the same parts as in FIG. 1 are designated with the same reference numerals. 17 is a maximum power follow-up control circuit that outputs a voltage reference value 19 that maximizes the DC power input to the power converter 2 from the input current detection signal 18 and input voltage detection signal 5 of the power converter 2; 20 is a maximum power follow-up control circuit; This is a sample hold circuit that outputs a voltage reference signal 21 as an average value of a voltage reference value 19 over a certain period of time. In this way, when the solar cell 1 deteriorates over time and its output characteristics deteriorate, the average value for a certain period of time is determined from the voltage reference value 19 output by the maximum power tracking control circuit 17 via the sample and hold circuit 20. Since it is output as the setting signal 21, the protection setting signal 9 is automatically set to the optimum value.

なお、本発明は上記実施例にのみ限定されず、要旨を変
更しない範囲で適宜変形して実施できる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications without changing the gist.

例えば、上述の実施例では保護設定信号として、不足電
圧設定値と過電圧設定値を電圧基準信号に対応させて設
定する場合を述べたが、このうち−方、例えば不足電圧
設定値のみを電圧基準信号に対応させて設定しても保護
設定信号と最適動作電圧が干渉するのを防止できるよう
になる。
For example, in the above embodiment, as a protection setting signal, an undervoltage setting value and an overvoltage setting value are set corresponding to the voltage reference signal, but one of them, for example, only the undervoltage setting value is set to the voltage reference signal. Even if the settings are made in accordance with the signals, interference between the protection setting signal and the optimum operating voltage can be prevented.

[発明の効果] 本発明によれば、太陽電池の最適動作電圧付近に設定さ
れる電圧基準信号の値に対応させて保護設定信号を変化
させ設定できるようになるので、太陽電池の経年劣化に
より最適動作電圧が変化した場合も、保護設定信号と干
渉することなく太陽電池の出力電圧を最適動作電圧に保
ちながら電力変換部での運転を安定して維持することが
できる。
[Effects of the Invention] According to the present invention, it is possible to change and set the protection setting signal in accordance with the value of the voltage reference signal that is set near the optimal operating voltage of the solar cell, so that it is possible to change and set the protection setting signal in accordance with the value of the voltage reference signal that is set near the optimum operating voltage of the solar cell. Even when the optimum operating voltage changes, stable operation of the power converter can be maintained while keeping the output voltage of the solar cell at the optimum operating voltage without interfering with the protection setting signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は太陽
電池の出力特性を示す図、第3図は本発明の他実施例を
示す構成図、第4図は従来の太陽光発電装置の一例を示
す構成図である。 1・・・太陽電池、2・・・電力変換部、3・・・電圧
基準設定器、4・・・電圧基準信号、5・・・入力電圧
検出信号、6・・・比較器、7・・・直流電圧設定信号
、9・・・保護設定信号、10・・・検出回路、11・
・・保護検出信号、12・・・制御回路、13・・・制
御信号、14・・・保護基準設定器、15・・・保護基
準信号、16・・・乗算器。 出願人代理人 弁理士 鈴江武彦 観 第1図 第2図
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing the output characteristics of a solar cell, Fig. 3 is a block diagram showing another embodiment of the present invention, and Fig. 4 is a diagram showing a conventional solar cell. FIG. 1 is a configuration diagram showing an example of a photovoltaic device. DESCRIPTION OF SYMBOLS 1... Solar cell, 2... Power converter, 3... Voltage reference setter, 4... Voltage reference signal, 5... Input voltage detection signal, 6... Comparator, 7... ...DC voltage setting signal, 9...Protection setting signal, 10...Detection circuit, 11.
... protection detection signal, 12 ... control circuit, 13 ... control signal, 14 ... protection standard setter, 15 ... protection reference signal, 16 ... multiplier. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 太陽エネルギーを直流電力に変換する太陽電池と、この
太陽電池の出力を交流電力に変換する電力変換部と、上
記太陽電池の最適動作電圧付近に設定される電圧基準信
号と上記電力変換手段の入力電圧検出信号により得られ
る直流電圧設定信号および上記電圧基準信号に基づいて
設定される保護設定信号と上記電力変換部の入力電圧検
出信号により得られる保護検出信号により上記電力変換
部を制御する制御手段とを具備したことを特徴とする太
陽光発電装置。
A solar cell that converts solar energy into DC power, a power conversion unit that converts the output of the solar cell into AC power, a voltage reference signal set near the optimal operating voltage of the solar cell, and an input to the power conversion means. A control means for controlling the power converter using a DC voltage setting signal obtained from the voltage detection signal, a protection setting signal set based on the voltage reference signal, and a protection detection signal obtained from the input voltage detection signal of the power converter. A solar power generation device characterized by comprising:
JP63288418A 1988-11-15 1988-11-15 Photovoltaic power generating device Pending JPH02133811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288418A JPH02133811A (en) 1988-11-15 1988-11-15 Photovoltaic power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288418A JPH02133811A (en) 1988-11-15 1988-11-15 Photovoltaic power generating device

Publications (1)

Publication Number Publication Date
JPH02133811A true JPH02133811A (en) 1990-05-23

Family

ID=17729959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288418A Pending JPH02133811A (en) 1988-11-15 1988-11-15 Photovoltaic power generating device

Country Status (1)

Country Link
JP (1) JPH02133811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190120379A (en) * 2017-03-08 2019-10-23 지멘스 악티엔게젤샤프트 Photovoltaic devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190120379A (en) * 2017-03-08 2019-10-23 지멘스 악티엔게젤샤프트 Photovoltaic devices
JP2020509734A (en) * 2017-03-08 2020-03-26 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Photovoltaic device

Similar Documents

Publication Publication Date Title
JP6342535B2 (en) Automatic voltage regulation for photovoltaic systems
US9190847B2 (en) Power distribution system distributing an alternating current (AC) power and a direct current (DC) power to load devices
US9287712B2 (en) Photovoltaic power plant
US20150115714A1 (en) Method and system for powering a load
US9444366B2 (en) Dual mode micro-inverter system and operation
WO2012014182A1 (en) Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source
JP2003289626A (en) Power conditioner for solar power generation system
JP2017059094A (en) Power generation operation point control circuit device with step-up function of solar battery
EP2159896B1 (en) Electrical system and method of operating such a system
JP2001309560A (en) System interconnection inverter device
EP2670033B1 (en) Starting of photovoltaic system
JP2005245050A (en) System linkage inverter device
JP2002112461A (en) Power converter and power generator
JPH02133811A (en) Photovoltaic power generating device
JPH07302130A (en) Power controller
KR101305634B1 (en) Photovoltaic power generation system and control method thereof
JP2006345679A (en) Solar energy power generation system
KR101360539B1 (en) Photovoltaic power generation system and control method thereof
KR102320867B1 (en) Photovoltaic system with improved operation efficiency
JP2000020149A (en) Sunshine inverter device
JP7246010B2 (en) protector
KR20240054102A (en) Power Converting Apparatus
JP2000166117A (en) Solar battery power generation module
KR101382800B1 (en) Photovoltaic power generation system and control method thereof
JP2019061597A (en) Power conditioner and photovoltaic power generation system using the same