JPH021337B2 - - Google Patents

Info

Publication number
JPH021337B2
JPH021337B2 JP56127570A JP12757081A JPH021337B2 JP H021337 B2 JPH021337 B2 JP H021337B2 JP 56127570 A JP56127570 A JP 56127570A JP 12757081 A JP12757081 A JP 12757081A JP H021337 B2 JPH021337 B2 JP H021337B2
Authority
JP
Japan
Prior art keywords
electron
screen
concentration
electron beam
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56127570A
Other languages
Japanese (ja)
Other versions
JPS5830047A (en
Inventor
Kazuaki Naiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12757081A priority Critical patent/JPS5830047A/en
Publication of JPS5830047A publication Critical patent/JPS5830047A/en
Publication of JPH021337B2 publication Critical patent/JPH021337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/702Convergence correction arrangements therefor
    • H01J29/703Static convergence systems

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【発明の詳細な説明】 本発明はカラー陰極線管に用いられるインライ
ン型電子銃の電子ビームスポツト形状の改善に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the shape of an electron beam spot of an in-line electron gun used in a color cathode ray tube.

先ず本発明の理解を容易にするため従来用いら
れているインライン型カラー陰極線管について説
明する。第1図は三本の電子ビームを放射するイ
ンライン型電子銃構体1を備えたカラー陰極線管
の縦断面図である。インライン型電子銃構体1か
ら発射された一直線上に整列して同一平面内にあ
る三本の電子ビームは排気された硝子外囲器2の
漏斗状部に配設された偏向コイル5により、水平
及び垂直に偏向され、硝子外囲器2の前部にその
内側は複数個の例えば赤、緑及び青に発光する蛍
光体素子が被着された蛍光面3上に走査画面を形
成する。この管内に蛍光面3を隣接し、有孔マス
ク4からなる色選別機構が配置され、各走査電子
ビームは夫々の電子ビームに対応する色の蛍光体
素子だけを刺激するようになつている。一方イン
ライン型電子銃構体1の平行経路に沿つて放射さ
れた三電子ビームは有孔マスク4の中央で一点に
交わるよう、主電子レンズの最終電極の両外側電
子ビーム通過孔を前記平行径路に対して外側に偏
位させて、両外側電子ビームBR,BBが中央電子
ビームBGに対し傾くように予め設定されている。
First, in order to facilitate understanding of the present invention, a conventionally used in-line color cathode ray tube will be explained. FIG. 1 is a longitudinal sectional view of a color cathode ray tube equipped with an in-line electron gun assembly 1 that emits three electron beams. The three electron beams emitted from the in-line electron gun assembly 1 are aligned in a straight line and lie in the same plane, and are deflected horizontally by the deflection coil 5 disposed in the funnel-shaped part of the evacuated glass envelope 2. and is vertically deflected to form a scanning screen on a phosphor screen 3 on which a plurality of phosphor elements emitting red, green and blue light, for example, are deposited on the inside of the front part of the glass envelope 2. A color selection mechanism consisting of a perforated mask 4 is arranged within this tube adjacent to the phosphor screen 3, so that each scanning electron beam stimulates only the phosphor elements of the color corresponding to the respective electron beam. On the other hand, the three electron beams emitted along the parallel paths of the in-line electron gun structure 1 intersect at one point at the center of the perforated mask 4, so that both outer electron beam passage holes of the final electrode of the main electron lens are aligned with the parallel paths. On the other hand, both outer electron beams B R and B B are set in advance so as to be tilted with respect to the central electron beam BG .

硝子外囲器2の漏斗状部に続く硝子頚部に封止
された電子銃構体1上の偏向ヨーク5側には、静
集中装置6が配置され、電子銃構体1の組立誤差
等に基づく有孔マスク4面中心に於ける中央及び
両外側の三電子ビームの集中誤差を補正し、三電
子ビームが正しく一点に集中出来るようになつて
いる。即ち静集中装置6は第4図、第5図に示す
様に、円環状基板に4極に着磁された一対の4極
磁石6Aと、6極に着磁された一対の6極磁石6
Bから構成されている。4極磁石6Aは両外側電
子ビームBR,BBに対し同量逆方向の磁束を発生
し、両外側電子ビームBR,BBを同量逆方向に移
動させ、2枚の開き角度で補正量を、2枚同時回
転させて補正方向を変えることにより両外側電子
ビームを互に一致させる。又、6極磁石6Bは両
外側電子ビームBR,BBに対し同量同方向の磁束
を発生し、両外側電子ビームBR,BBを中央電子
ビームBGに合わせる働きを持つている。更に静
集中装置6に隣接して三本の電子ビームが夫々対
応する色の蛍光体素子を正しく刺激するように調
整出来る色純化装置7が配置されている。
A static concentrator 6 is disposed on the deflection yoke 5 side of the electron gun assembly 1 sealed in the glass neck following the funnel-shaped part of the glass envelope 2. The concentration error of the three electron beams at the center and both outer sides at the center of the four surfaces of the hole mask is corrected, so that the three electron beams can be correctly focused on one point. That is, as shown in FIGS. 4 and 5, the static concentration device 6 includes a pair of quadrupole magnets 6A magnetized to four poles on an annular substrate, and a pair of six-pole magnets 6A magnetized to six poles.
It is composed of B. The quadrupole magnet 6A generates the same amount of magnetic flux in opposite directions for both outer electron beams B R and B B , moves both outer electron beams B R and B B by the same amount in opposite directions, and at the opening angle of the two sheets. The amount of correction is made so that both outer electron beams coincide with each other by rotating the two sheets simultaneously and changing the direction of correction. Also, the hexapole magnet 6B has the function of generating the same amount of magnetic flux in the same direction for both outer electron beams B R and B B , and aligning both outer electron beams B R and B B with the central electron beam B G. . Furthermore, a color purification device 7 is arranged adjacent to the static concentrator 6, which can adjust the three electron beams so that they correctly stimulate the phosphor elements of the respective colors.

通常用いられているインライン型カラー陰極線
管では、偏向コイル5の形成する水平偏向磁界を
インライン型電子銃構体1が封止された硝子頚部
側に於て樽型歪に、蛍光面3側に於て糸巻型歪
に、又垂直偏向磁界を逆に硝子頚部側に於て糸巻
型歪に、蛍光面3側では樽型歪に夫々設定するこ
とによつて三本の電子ビームの集中ずれを蛍光面
3全域で補正して、動的集中補正回路を用いるこ
となく良好なコンバージエンス特性を得る、所謂
セルフコンバージエンス方式を実現している。
In a commonly used in-line color cathode ray tube, the horizontal deflection magnetic field formed by the deflection coil 5 is distorted into a barrel shape on the glass neck side where the in-line electron gun structure 1 is sealed, and on the phosphor screen 3 side. By setting the vertical deflection magnetic field to a pincushion distortion on the glass neck side and a barrel distortion on the phosphor screen 3 side, the concentration deviation of the three electron beams can be reduced to the fluorescence. A so-called self-convergence method is realized in which correction is performed over the entire surface 3 and good convergence characteristics are obtained without using a dynamic concentration correction circuit.

然しながら、この場合三本のインライン電子ビ
ームは上述の非斉−磁界中を通過することによつ
て蛍光面3上のビームスポツト断面BCは第2図
に示す様に画面中央で真円であつても、画面周辺
では横長の楕円形状に歪む。即ち水平偏向磁界が
強い糸巻型歪をもつているためビームスポツトが
水平方向に偏向されるに従がつて、特に画面周辺
でビームスポツトは歪んで横長の長円形状とな
る。又高輝度画像を受像する場合、電子銃から大
電流を取り出すことになり、特に偏向角度の大き
い画面周辺部では上記の偏向歪により高輝度のビ
ームスポツト核BCの周囲に薄く輝くハローBH
発生する。
However, in this case, the three in-line electron beams pass through the above-mentioned asymmetric magnetic field, so that the beam spot cross section B C on the phosphor screen 3 is a perfect circle at the center of the screen as shown in Figure 2. However, the edges of the screen are distorted into a horizontally elongated oval shape. That is, since the horizontal deflection magnetic field has a strong pincushion distortion, as the beam spot is deflected in the horizontal direction, the beam spot is distorted, particularly around the screen, and becomes a horizontally elongated oval shape. In addition, when receiving a high-brightness image, a large current is extracted from the electron gun, and especially in the peripheral area of the screen where the deflection angle is large, the above-mentioned deflection distortion causes a thin halo B H to shine around the high-brightness beam spot nucleus B C. occurs.

従がつて偏向磁界の偏向歪により画面周辺で
は、ビームスポツトの横長潰れとハローによりフ
オーカス特性が劣化し、解像度は著しく低下する
欠点があつた。
As a result, the focus characteristic deteriorates due to horizontal collapse of the beam spot and a halo around the screen due to deflection distortion of the deflection magnetic field, resulting in a significant decrease in resolution.

前記偏向歪によるビームスポツトの横長歪を補
償するため第3図に示す様に、インライン型電子
銃1のビーム形成領域である陰極に最も近い制御
電極G1又は遮蔽電極G2の三電子ビーム通過孔
HR,HG,HBを垂直偏向軸方向に長径を置く縦長
の長円形状とすることが行われている。これによ
り電子ビーム通過孔の長径方向の集束を弱く、短
径方向の集束を強くし、画面中央に於けるビーム
スポツトを縦長とし、画面周辺に於ける偏向され
たビームの横長歪を軽減して静的に補償してい
る。
In order to compensate for the horizontal distortion of the beam spot due to the deflection distortion, as shown in FIG.
H R , H G , and H B are formed into vertically elongated oval shapes with their major axes in the direction of the vertical deflection axis. This makes the focusing in the long axis direction of the electron beam passage hole weaker and the focusing in the shorter axis direction stronger, making the beam spot at the center of the screen vertically elongated, and reducing the horizontal distortion of the deflected beam at the periphery of the screen. Compensated statically.

然るに上述の制御電極G1、遮蔽電極G2の電
子ビーム通過孔を長円形状に高精度でばらつきな
く製作加工したり、これら長円形状ビーム通過孔
を持つた電極と、電子銃構体を構成する他の電極
と相対的位置を高精度に保つて電子銃構体を組立
てることは従来用いられている円形ビーム通過孔
を持つた電極を用いる場合よりいずれも著しく困
難であつた。このためビーム形成領域にある陰
極、制御電極、遮蔽電極の相対位置で決まる電子
ビーム遮断電圧が三電子ビーム間にばらつきを生
じたり、電子ビーム束形成領域の光学特性を劣化
させたりする。
However, it is necessary to fabricate the electron beam passage holes of the control electrode G1 and the shield electrode G2 described above into elliptical shapes with high precision and uniformity, and to configure the electron gun structure with electrodes having these elliptical beam passage holes. It is much more difficult to assemble an electron gun assembly while maintaining the relative position of the electrode with high accuracy than when using a conventional electrode with a circular beam passage hole. Therefore, the electron beam cutoff voltage determined by the relative positions of the cathode, control electrode, and shielding electrode in the beam forming region may vary among the three electron beams, and the optical characteristics of the electron beam bundle forming region may be deteriorated.

更に制御電極、遮蔽電極の電子ビーム通過孔を
長円形状にすることで、偏向コイル磁界から電子
ビームスポツトが受ける偏向歪による横長歪を軽
減出来ても、高輝度の電子ビームスポツト核BC
周囲に輝くハロー成分BHは除去不可能であり、
高輝度画像の画質改善には未だ不十分であつた。
Furthermore, by making the electron beam passage holes of the control electrode and the shielding electrode oval, the horizontal distortion caused by the deflection strain that the electron beam spot receives from the deflection coil magnetic field can be reduced, but the high-intensity electron beam spot nucleus B C
The surrounding halo component B H cannot be removed,
The improvement in image quality of high-brightness images was still insufficient.

又従来の主電子レンズ電極の両外側電子ビーム
通過孔を外側に偏位させて集中させる方式では、
画面上のフオーカス調整による集中電圧の変動に
よつて、コンバージエンスがずれる欠点があつ
た。
In addition, in the conventional method in which both outer electron beam passing holes of the main electron lens electrode are shifted outward and concentrated,
There was a drawback that convergence shifted due to fluctuations in the concentrated voltage due to focus adjustment on the screen.

本発明は上述の欠点に鑑みてなされたものであ
り、極めて簡単な構成によつてインライン型カラ
ー陰極線管の解像度を著しく改善したインライン
型電子銃構体を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide an in-line electron gun assembly which has an extremely simple structure and which significantly improves the resolution of an in-line color cathode ray tube.

即ち同一平面内に放射された少くとも二本の電
子ビームを平行経路に沿つて所定間隔に配置した
複数の電極により各ビーム径路に実質的に個別に
形成された電子レンズで集束し、且つ主電子レン
ズの最終段電極の両外側電子ビーム通過孔を前記
電子ビーム径路に対し外側に離心させて陰極線管
の画面近くに電子ビームを集中させるインライン
型電子銃構体に於て、両外側電子ビームを画面中
央で陰極線管外の一点で集中する様に集中角度比
(θ−θ0)/θ0が−36〜−73%となる不足集中状
態とし、静集中装置の4極磁界で集中補正するこ
とにより画面中央で電子ビームスポツトを縦長整
形するインライン型電子銃構体に関するものであ
る。但しθは電子銃出口に於ける両外側電子ビー
ムが集中点に張る角度を、θ0は画面上中央の残留
集中量を零とする集中角を夫々示す。
That is, at least two electron beams emitted within the same plane are focused by electron lenses formed substantially individually in each beam path by a plurality of electrodes arranged at predetermined intervals along parallel paths, and In an in-line electron gun structure, both outer electron beam passage holes of the final stage electrode of the electron lens are eccentrically outward from the electron beam path to concentrate the electron beam near the screen of the cathode ray tube. In order to concentrate at a point outside the cathode ray tube at the center of the screen, an underconcentration state is created in which the concentration angle ratio (θ - θ 0 )/θ 0 is -36 to -73%, and the concentration is corrected using the quadrupole magnetic field of the static concentration device. This invention relates to an in-line electron gun assembly that forms an electron beam spot vertically in the center of the screen. Here, θ represents the angle at which both outer electron beams at the exit of the electron gun reach the concentration point, and θ 0 represents the concentration angle at which the residual concentration at the center of the screen is zero.

このインライン型電子銃構体を用いることによ
つて両外側ビームの集中補正作用に伴う4極磁界
の磁気レンズ効果で画面中央に於ける各ビームス
ポツトを垂直偏向軸に長軸を置く長円形状に整形
させると共に、ハローを軽減して、偏向コイルの
偏向歪によつて画面周辺でビームスポツトが横長
に潰れることを補償し、カラー陰極線管の解像度
を画面一様に改善出来る。
By using this in-line electron gun structure, each beam spot at the center of the screen is shaped into an ellipse with its long axis aligned with the vertical deflection axis due to the magnetic lens effect of the quadrupole magnetic field accompanying the concentration correction action of both outer beams. In addition to shaping, the halo is reduced and the horizontal collapse of the beam spot around the screen due to the deflection distortion of the deflection coil is compensated for, thereby improving the resolution of the color cathode ray tube uniformly on the screen.

以下図面を参照にして本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第6図は本発明の一実施例に基づく三本の電子
ビームを放射するインライン型電子銃構体10を
備えたカラー陰極線管の縦断面図である。インラ
イン型電子銃構体10から発射された一直線上に
整列して同一平面内にある三本の電子ビームBR
BG,BBは有孔マスク4及び画面を構成する蛍光
面3の中央部で決して一点に交わらず、硝子外囲
器2のほぼ頚部管軸上8にあつて、蛍光面3外の
一点で交わるように両外側電子ビームBR,BB
中央電子ビームBGに対し傾むくように設定され
ている。即ち両外側電子ビームBB,BRは中央電
子ビームBGに対し蛍光面上では不足集中され、
蛍光面3上の両外側電子ビーム間隔がdとなるよ
うに設定されている。
FIG. 6 is a longitudinal sectional view of a color cathode ray tube equipped with an in-line electron gun assembly 10 that emits three electron beams according to an embodiment of the present invention. Three electron beams B R emitted from the in-line electron gun structure 10 and aligned on a straight line and in the same plane;
B G and B B never intersect at a single point at the center of the perforated mask 4 and the phosphor screen 3 constituting the screen, but are located at a point outside the phosphor screen 3 approximately on the cervical canal axis 8 of the glass envelope 2. Both outer electron beams B R and B B are set to be inclined with respect to the central electron beam B G so that they intersect at . That is, both outer electron beams B B and B R are underconcentrated on the phosphor screen with respect to the central electron beam B G ,
The distance between the outer electron beams on the phosphor screen 3 is set to be d.

第7図は上記インライン型電子銃構体10の一
例を詳細に示す縦断面図である。即ちインライン
型電子銃電極構体10は互に絶縁され、同一平面
内で等間隔の離軸距離Sを保つて一列に整列した
三つの陰極構体10R,10G,10Bと、これ
に対向して電子ビーム進行方向に順次配置される
三つのビーム透孔が一体に形成された制御電極1
1、遮蔽電極12、集束電極13、最終電極であ
る陽極電極14及び有底円筒状の磁極15から構
成され、磁極15を除く各電極は電極支持子を介
して二本の絶縁物支持杆16に挟持されるように
埋設固定されて所定の電極間隔を保持している。
制御電極11、遮蔽電極12、集束電極13の各
電子ビームが通過する各電子ビーム通過開孔11
R,11G,11B;12R,12G,12B;
13R1,13G1,13B1;13R2,13G2,1
3B2も等間隔距離Sを保つて一列に整列されて
おり、三つの陰極10R,10G,10Bから放
射された電子ビーム束BR,BG,BBが三本の電子
銃の軸である平行径路18R,18G,18B上
を進むように加速及び集束される。陽極電極14
の開孔間距離S1は上述のSよりΔSだけ幾分大き
くなつていて、従がつて陽極電極14の両外側開
孔14R,14Bは電子銃の軸18R,18Bよ
りΔS外側に偏位され、集束電極13と陽極電極
14間の各対応する電子ビーム開孔間隙に形成さ
れる主電子レンズの両外側開孔部には非対称電界
による所謂等価傾斜レンズを形成し、陰極線管蛍
光面3の中央部で平行に進む二本の外側電子ビー
ムBR,BBを中央電子ビームBG側に静電気的に集
中させている。
FIG. 7 is a longitudinal cross-sectional view showing an example of the in-line type electron gun assembly 10 in detail. That is, the in-line electron gun electrode assembly 10 has three cathode assemblies 10R, 10G, and 10B that are insulated from each other and lined up in a line with equidistant off-axis distances S in the same plane, and facing the electron beam. Control electrode 1 integrally formed with three beam holes sequentially arranged in the traveling direction
1. Consists of a shielding electrode 12, a focusing electrode 13, an anode electrode 14 as the final electrode, and a bottomed cylindrical magnetic pole 15. Each electrode except the magnetic pole 15 is connected to two insulator support rods 16 via an electrode supporter. The electrodes are embedded and fixed so as to be sandwiched between the electrodes to maintain a predetermined distance between the electrodes.
Each electron beam passing aperture 11 through which each electron beam of the control electrode 11, shielding electrode 12, and focusing electrode 13 passes.
R, 11G, 11B; 12R, 12G, 12B;
13R 1 , 13G 1 , 13B 1 ; 13R 2 , 13G 2 , 1
3B2 are also aligned in a line with equal distances S, and the electron beam bundles B R , B G , B B emitted from the three cathodes 10R, 10G , and 10B are the axes of the three electron guns. It is accelerated and focused so as to travel on parallel paths 18R, 18G, and 18B. Anode electrode 14
The distance between the apertures S1 is somewhat larger than the above-mentioned S by ΔS, and therefore both outer apertures 14R and 14B of the anode electrode 14 are offset ΔS outward from the axes 18R and 18B of the electron gun. , a so-called equivalent tilt lens is formed by an asymmetric electric field in both outer openings of the main electron lens formed in each corresponding electron beam opening gap between the focusing electrode 13 and the anode electrode 14, and the phosphor screen 3 of the cathode ray tube is The two outer electron beams B R and B B traveling in parallel at the center are electrostatically concentrated on the central electron beam B G side.

ここに集中電極13及び陽極電極14は電子銃
の軸18R,18G,18Bに垂直な断面は閉塞
端面内で一直線上に整列して穿設された中央及び
両外側電子ビーム開孔の配列方向に長く、配列方
向と直角方向では短い略々長方形、或いは長円形
状を呈した閉塞筒状体であり、集束電極13は開
孔13R1,13G1,13B1を持つた閉塞筒状部
と開孔13R2,13G2,13B2を持つた閉塞筒
状部とが口縁部で重ね合せられて構成されてい
る。
Here, the concentrated electrode 13 and the anode electrode 14 have cross sections perpendicular to the electron gun axes 18R, 18G, and 18B in the direction of arrangement of the central and both outer electron beam apertures, which are aligned and bored in a straight line within the closed end surface. It is a closed cylindrical body that is long and has a substantially rectangular or elliptical shape that is short in the direction perpendicular to the arrangement direction. A closed cylindrical portion having holes 13R 2 , 13G 2 , and 13B 2 is overlapped at the mouth edge.

このカラー陰極線管を動作させるに際して、蛍
光面3上の両外側電子ビーム間隔が蛍光面で構成
された画面中央でdとなつているため、従来と同
様に電子銃構体10上の硝子頚部外に配置された
静集中装置6の4極磁石6Aで不足集中状態の両
外側電子ビームBR,BBを画面中央部で一点に集
中させ、この集中点を6極磁石6Bで中央電子ビ
ームBGに移動させることによつて集中補正を行
う。
When operating this color cathode ray tube, since the distance between the outer electron beams on the phosphor screen 3 is d at the center of the screen made up of the phosphor screen, the electron beams are placed outside the glass neck on the electron gun assembly 10 as in the conventional case. The 4-pole magnet 6A of the static concentrator 6 placed there concentrates the under-concentrated outer electron beams B R and B B into one point at the center of the screen, and the 6-pole magnet 6B focuses this concentration point into the center electron beam B G Concentration correction is performed by moving to .

この場合4極磁石6Aの発生する磁束が各電子
ビームに与える作用を第8図で詳細に検討してみ
る。図から明らかな様に不足集中状態にある両外
側電子ビームBR,BBを中央電子ビームBG側に集
中補正することによつて、各電子ビームは図示矢
印の様に水平軸方向では磁界から左右方向の押圧
力を、垂直軸方向では上下方向外向きの引力を受
ける。各電子ビームの上下方向引力は互に等しい
ため電子ビームは上下方向には移動しないが、水
平軸上では両外側電子ビームBR,BBは夫々中央
電子ビームBG側に向う力を受け互に中央電子ビ
ームBG側に移動する。但し中央電子ビームBG
左右方向押圧力は等しくビームの移動は起こらな
い。
In this case, the effect of the magnetic flux generated by the quadrupole magnet 6A on each electron beam will be examined in detail with reference to FIG. As is clear from the figure, by correcting the concentration of both outer electron beams B R and B B , which are in an underconcentrated state, toward the central electron beam B G , each electron beam has a magnetic field in the horizontal axis direction as shown by the arrow in the figure. It receives a pressing force in the horizontal direction from the axial direction, and an attractive force outward in the vertical direction in the vertical axis direction. Since the vertical attractive force of each electron beam is equal, the electron beam does not move vertically, but on the horizontal axis, both outer electron beams B R and B B receive forces toward the central electron beam B G and interact with each other. The central electron beam B moves to the G side. However, the horizontal pressing force of the central electron beam B G is equal, and no movement of the beam occurs.

更に両外側電子ビームの集中移動と同時に各電
子ビームには磁界から前述した上下、左右方向の
力を受けるため画面中央に於ける電子ビームスポ
ツトは縦長に歪む。第9図にこの場合の画面3中
央及び周辺部に於けるビームスポツトの形状を示
す。
Furthermore, as the electron beams on both sides move in a concentrated manner, each electron beam receives the above-mentioned vertical and horizontal forces from the magnetic field, so that the electron beam spot at the center of the screen is distorted vertically. FIG. 9 shows the shape of the beam spot at the center and periphery of the screen 3 in this case.

然るに従来用いられている電子銃構体では三電
子ビームが画面中央部でほぼ一点に集中されるよ
うに設定されており、製造上誤差等で設定からず
れた不足又は過集中量である残留集中誤差を静集
中装置6で集中補正するものであり、その残留集
中誤差は極めて小さくなつていて、通常最大でも
3〜4mm(画面中央に於ける両外側電子ビーム間
距離)程度と小さい。換言すれば両外側電子ビー
ムが電子銃から射出されて集中点に張る角度であ
る集中角θは残留集中誤差が画面中央で零となる
集中角θ0の最大でも±30%以内となつている。従
がつて4極磁界によるこの程度の集中補正では各
電子ビームの縦長歪は無視し得る程度に小さかつ
た。
However, in the conventional electron gun structure, the three electron beams are set to be concentrated almost at one point in the center of the screen, and residual concentration errors, which are insufficient or overconcentrated amounts that deviate from the settings due to manufacturing errors, etc. is corrected by a static concentrator 6, and the residual concentration error is extremely small, usually about 3 to 4 mm (the distance between the outer electron beams at the center of the screen) at the maximum. In other words, the concentration angle θ, which is the angle at which both outer electron beams are emitted from the electron gun and extend to the concentration point, is within ±30% at maximum of the concentration angle θ 0 at which the residual concentration error becomes zero at the center of the screen. . Therefore, with this level of concentrated correction by the quadrupole magnetic field, the longitudinal distortion of each electron beam was so small that it could be ignored.

一般に前記集中角θは離心量ΔSと、離心電極
電位Ebのこれと対向する非離心電極電位EFに対
する比Eb/EFに比例する。
In general, the concentration angle θ is proportional to the eccentricity ΔS and the ratio E b /E F of the eccentric electrode potential E b to the opposing non-eccentric electrode potential E F .

即ち θ∝ΔS/D・Eb/EF (1) 但し、Dは離心電極に対向する非離心電極の口
径を示す。
That is, θ∝ΔS/D・E b /E F (1) However, D indicates the diameter of the non-eccentric electrode facing the eccentric electrode.

従がつて電極間の電位比が一定ならば、集中角
θは離心率ΔS/Dに比例する。
Therefore, if the potential ratio between the electrodes is constant, the concentration angle θ is proportional to the eccentricity ΔS/D.

例えば電子ビーム離軸距離S=6.6mm、主電子
レンズ口径D=5.5mm、陽極電圧に対する集束電
圧比26〜30%(代表的には28%)のインライン型
電子銃を備えた20インチ90度偏向カラー陰極線管
を陽極電圧25kVで動作させる場合の離心率ΔS/
Dに対する集中補正量d、及び集中角度比(θ−
θ0)/θ0×100%の関係を第10図に示す。ここ
に、d、θ、θ0は第11図に示す様に画面中央に
於ける残留集中量、電子銃の出口に於ける両外側
電子ビームが集中点に張る角度、及び残留集中量
が零となる集中角を夫々示す。又、d、(θ−
θ0)/θ0が負量であることは不足集中を、正量で
あることは過集中を意味する。
For example, a 20-inch 90-degree in-line electron gun with an electron beam off-axis distance S = 6.6 mm, main electron lens aperture D = 5.5 mm, and a focusing voltage ratio of 26 to 30% (typically 28%) to anode voltage. Eccentricity ΔS/ when operating a polarized color cathode ray tube at an anode voltage of 25kV
The concentration correction amount d for D and the concentration angle ratio (θ−
The relationship θ 0 )/θ 0 ×100% is shown in FIG. Here, d, θ, and θ 0 are the residual concentration at the center of the screen, the angle at which the electron beams on both sides extend to the concentration point at the exit of the electron gun, and the residual concentration is zero, as shown in Figure 11. The concentration angles are shown respectively. Also, d, (θ−
A negative value of θ 0 )/θ 0 means underconcentration, and a positive value means overconcentration.

更にこの不足集中の集中補正を4極磁石で行つ
た場合の集中角度比(θ−θ0)/θ0×100(%)に
対する電子ビームスポツトの縦径と横径の比R
(R=縦径/横径)の関係、及び集中補正量0mm
に於けるビームスポツト核Bcの周囲に発生する
ハロー成分BHの面積を100%として集中角度比に
対するハロー発生面積率SHの関係を第12図に示
す。
Furthermore, when this insufficient concentration is corrected using a quadrupole magnet, the ratio R of the vertical diameter and horizontal diameter of the electron beam spot to the concentration angle ratio (θ - θ 0 )/θ 0 ×100 (%)
(R=vertical diameter/horizontal diameter) relationship and concentrated correction amount 0mm
FIG. 12 shows the relationship between the halo generation area ratio S H and the concentration angle ratio, assuming that the area of the halo component B H generated around the beam spot nucleus B c at 100% is 100%.

第12図より(θ−θ0)/θ0=−36%(d=−
4.8)の時R=1.1、(θ−θ0)/θ0=−73%(d=
−9.6)の時R=2.0となり、不足集中角度比(θ
−θ0)/θ0の絶対値が36%以上になるとビームス
ポツトは明瞭に縦長傾向を示し、同時にハロー発
生量も4極磁界から各電子ビームが受ける水平方
向押圧力、上下方向引力の磁気レンズ作用で急激
に軽減されることが示されている。又第10図か
ら(θ−θ0)/θ0=−36%、−73%に相当する離
心率ΔS/Dは夫々0.0225、0.0125である。
From Figure 12, (θ-θ 0 )/θ 0 =-36% (d=-
4.8), R=1.1, (θ−θ 0 )/θ 0 =−73% (d=
−9.6), R=2.0, and the underconcentration angle ratio (θ
When the absolute value of -θ 0 )/θ 0 becomes 36% or more, the beam spot clearly shows a vertical tendency, and at the same time, the amount of halo generation also depends on the horizontal pressing force and vertical attractive force that each electron beam receives from the quadrupole magnetic field. It has been shown that the effect of lenses can be rapidly reduced. Also, from FIG. 10, the eccentricities ΔS/D corresponding to (θ−θ 0 )/θ 0 =−36% and −73% are 0.0225 and 0.0125, respectively.

一般に非斉一磁界による画面周辺でのビームス
ポツト横長歪を補正するには画面中央に於ける静
止ビームスポツトの横径に対する縦径の比を1.0
以上の縦長とすればよい。第9図に示す様にその
縦長の程度が大きい程画面周辺部のビームスポツ
トは円形に近づき、周辺解像度は改善されるが、
画面中央部ではビームスポツトは過大の縦長形状
となつて、中央部での解像度は逆に劣化してしま
う。又前記比が1.1より小さいと周辺部でのスポ
ツトの横長れ潰れの改善効果はほとんど認められ
ない。実験によれば画面中央部の解像度を損うこ
となく、画面周辺部での解像度を改善するには画
面中央に於けるビームスポツトの縦径の横径に対
する比を1.1〜2.0に設定すれば画面全面にわたつ
て一様の高解像度が得られるフオーカス特性とな
ることが確められた。
Generally, to correct the horizontal distortion of the beam spot around the screen due to non-uniform magnetic fields, the ratio of the vertical diameter to the horizontal diameter of the stationary beam spot at the center of the screen is set to 1.0.
It is sufficient if the length is longer than that. As shown in Fig. 9, the larger the vertical length, the more circular the beam spot at the periphery of the screen becomes, and the peripheral resolution is improved.
At the center of the screen, the beam spot becomes excessively elongated, and the resolution at the center deteriorates. Further, if the ratio is smaller than 1.1, almost no effect on improving the horizontally elongated and crushed spots in the peripheral area will be observed. Experiments have shown that in order to improve the resolution at the periphery of the screen without impairing the resolution at the center of the screen, setting the ratio of the vertical diameter to the horizontal diameter of the beam spot at the center of the screen to 1.1 to 2.0 will improve the screen resolution. It was confirmed that the focus characteristic was such that uniform high resolution could be obtained over the entire surface.

以上より前述の陽極電圧25kVで使用される20
インチ90度偏向カラー陰極線管では平行に進む両
外側電子ビームを離心率ΔS/D=0.0125〜0.0225
となるように離心電極の両外側電子ビーム通過孔
を外側に偏位させて、不足集中角度比(θ−
θ0)/θ0×100%の絶対値が36〜37%の不足集中
状態とし、静集中装置6の4極磁界で集中補正す
れば、セルフコンバージエンス方式の偏向磁界か
ら受ける電子ビームの偏向歪を補償し、ハロー発
生量を軽減して、画面上の走査画像は全面にわた
つて解像度を著しく改善出来る。
From the above, the 20
In an inch 90 degree deflection color cathode ray tube, both outer electron beams traveling in parallel have an eccentricity ΔS/D=0.0125 to 0.0225.
Both outer electron beam passing holes of the eccentric electrode are shifted outward so that the underconcentration angle ratio (θ−
If the absolute value of θ 0 )/θ 0 ×100% is 36 to 37% and the concentration is corrected using the quadrupole magnetic field of the static concentration device 6, then the electron beam deflection received from the deflection magnetic field of the self-convergence method can be reduced. By compensating for distortion and reducing the amount of halo generation, the resolution of the scanned image on the screen can be significantly improved over the entire surface.

更に従来は画面中央で両外側ビームがほぼ一点
に集中するように離心率が選ばれており、その値
は第10図からΔS/D=0.0325近傍であり、こ
れに対し本願の不足集中の設定値はこの値の40〜
70%に相当とし、小さい。従がつて前述の(1)式か
ら分る様に離心率が従来よりも小さいので画面上
のフオーカス調整による集束電圧の変動があつて
も集束角θの変動は従来よりも小さくなつて、集
束電圧の変動による画面上に於ける三電子ビーム
の集中ずれも無視出来る程度に小さくなる。
Furthermore, in the past, the eccentricity was selected so that both outer beams were concentrated at almost one point at the center of the screen, and the value was around ΔS/D = 0.0325 from Figure 10, whereas the underconcentration setting of the present application The value is from 40 to this value
It is equivalent to 70% and is small. Therefore, as can be seen from equation (1) above, since the eccentricity is smaller than before, even if there is a fluctuation in the focusing voltage due to focus adjustment on the screen, the fluctuation in the focusing angle θ is smaller than before, and the focusing The concentration deviation of the three electron beams on the screen due to voltage fluctuations is also reduced to a negligible extent.

或いは離心率が従来より小さいため離心電極と
非離心電極の電子ビーム通過孔径の差が小さくな
り、両外側電子ビーム通路と中央電子ビーム通路
間の電子ビーム通過孔径差による最適集束電圧差
がなくなる利点もある。
Alternatively, since the eccentricity is smaller than before, the difference in electron beam passing aperture diameter between the eccentric electrode and the non-eccentric electrode becomes smaller, which eliminates the optimum focusing voltage difference due to the difference in electron beam passing aperture diameter between both outer electron beam paths and the central electron beam path. There is also.

因に本発明では両外側電子ビームを画面中央で
過剰の集中角度比をもつように不足集中させたこ
とに最大の特徴があり、同量の集中角度比でも画
面に到達する以前に一度両外側ビームが交叉する
過集中状態では第8図と全く逆の補正を行うこと
になり、電子ビームスポツトは逆に横長に潰れ、
且つ磁気レンズの収差でハローは補正前より過大
に発生して解像度は著しく劣化する。
Incidentally, the greatest feature of the present invention is that the electron beams on both sides are underconcentrated so that they have an excessive concentration angle ratio at the center of the screen. In an overconcentrated state where the beams intersect, the correction is completely opposite to that shown in Fig. 8, and the electron beam spot is conversely collapsed into a horizontally long position.
In addition, due to the aberration of the magnetic lens, halos are generated more than before correction, and the resolution is significantly degraded.

以上の説明では静集中装置は硝子頚部外に設け
られている場合を引例したが、必ずしもこれに限
定されることなく電子銃構体の一部に予め取付け
られていても、或いは又陰極線管製造後に管外か
ら着磁させて形成してもよい。
In the above explanation, the case where the static concentrator is installed outside the glass neck has been cited, but it is not necessarily limited to this, and it may be installed in advance on a part of the electron gun structure, or even after the cathode ray tube is manufactured. It may also be formed by magnetizing it from outside the tube.

又説明の便宜上同一平面内で等間隔にされた中
央及び両外側の電子ビームを有する三電子ビーム
のインライン型電子銃構体について行なつたが、
両外側電子ビームのみの二電子ビームインライン
型電子銃構体にも本発明を適用出来ることは云う
までもない。
Also, for convenience of explanation, this study was conducted on a three-electron beam in-line type electron gun structure having a central and outer electron beams spaced at equal intervals within the same plane.
It goes without saying that the present invention can also be applied to a two-electron beam in-line type electron gun assembly having only both outer electron beams.

上述の様に本発明によれば、インライン型電子
銃構体に於て両外側電子ビームを画面中央で過剰
に不足集中させ、然る後通常用いられている静集
中装置の4極磁界で集中補正することにより画面
中央に於けるビームスポツト形状を垂直偏向軸方
向に長軸を置く縦長とし、画面周辺部に於ける電
子ビームスポツトの偏向歪による横長潰れを軽減
すると併に、ハロー発生を防止して、画面全面に
わたつて受像画像の解像度を極めて容易にして、
大幅に改善することが出来る。
As described above, according to the present invention, both outer electron beams are excessively and underconcentrated at the center of the screen in the in-line electron gun assembly, and then the concentration is corrected using the quadrupole magnetic field of a commonly used static concentrator. By doing so, the shape of the beam spot at the center of the screen is made vertically long with its long axis in the direction of the vertical deflection axis, which reduces horizontal collapse caused by deflection distortion of the electron beam spot at the periphery of the screen, and prevents the occurrence of halos. This makes it extremely easy to increase the resolution of the received image across the entire screen.
It can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の三電子ビームを放射するインラ
イン型電子銃構体を備えたカラー陰極線管の縦断
面図、第2図は画面上の電子ビームスポツト断面
形状を、第3図は従来用いられている縦長の電子
ビーム通過孔を持つた制御電極、又は遮蔽電極の
平面図、第4図、第5図は静集中装置の4極磁界
及び6極磁界の動作原理図、第6図は本発明の一
実施例に基づく三電子ビームを放射するインライ
ン型電子銃構体を備えたカラー陰極線管の縦断面
図、第7図は前記インライン型電子銃構体の詳細
縦断面図、第8図は静集中装置の4極磁界から不
足集中状態にある電子ビームの夫々が受ける作用
効果を説明する図、第9図は本発明の一実施例に
よつて得られる画面上のビームスポツト断面形状
を、第10図は離心率ΔS/Dに対する集中角度
比(θ−θ0)/θ0、残留集中量dの関係を示す
図、第11図は集中角θ、θ0の定義を示す図、第
12図は電子ビーム離軸距離S=6.6mm、主電子
レンズ口径D=5.5mm、陽極電圧に対する集束電
圧比26〜30%のインライン型電子銃を備えた20イ
ンチ90度偏向カラー陰極線管を陽極電圧25kVで
両外側ビームを4極磁界により集中補正して動作
させた場合の集中角度比に対する画面上ビームス
ポツトの縦径と横径の比R(R=縦径/横径)、及
び残留集中量0の時のハロー発生量を100%とし
た時のハロー発生率SHの関係を示す図である。
Figure 1 is a vertical cross-sectional view of a conventional color cathode ray tube equipped with an in-line electron gun structure that emits three electron beams. 4 and 5 are diagrams of the operating principle of the 4-pole magnetic field and the 6-pole magnetic field of the static concentrator, and FIG. 6 is a diagram of the present invention. A vertical cross-sectional view of a color cathode ray tube equipped with an in-line electron gun structure that emits three electron beams based on one embodiment, FIG. 7 is a detailed vertical cross-sectional view of the in-line electron gun structure, and FIG. 8 is a static view. FIG. 9 is a diagram illustrating the effect that each of the electron beams in an underconcentrated state receives from the quadrupole magnetic field of the device. The figure shows the relationship between the eccentricity ΔS/D, the concentration angle ratio (θ - θ 0 )/θ 0 , and the residual concentration amount d. Figure 11 shows the definition of concentration angles θ and θ 0 . Figure 12 is a 20-inch 90 degree deflection color cathode ray tube equipped with an in-line electron gun with an electron beam off-axis distance S = 6.6 mm, main electron lens aperture D = 5.5 mm, and a focusing voltage ratio of 26 to 30% to the anode voltage, with an anode voltage of 25 kV. The ratio of the vertical diameter to the horizontal diameter of the beam spot on the screen relative to the concentration angle ratio when both outer beams are operated with concentration correction by a quadrupole magnetic field (R = vertical diameter / horizontal diameter), and the residual concentration amount is 0. FIG. 3 is a diagram showing the relationship between the halo generation rate S H when the amount of halo generation at the time of 100%.

Claims (1)

【特許請求の範囲】 1 同一平面内に放射された少くとも二本の電子
ビームを平行経路に沿つて所定間隔に配置した複
数個の電極によつて各電子ビーム経路に実質的に
個別成型された電子レンズで集束し、且つ主電子
レンズの最終段電極両外側電子ビーム通過孔を前
記電子ビーム経路に対して外側に離心させて陰極
線管の画面近くに集中させるインライン型電子銃
構体に於て、両外側電子ビームを画面中央で陰極
線管外の一点で集中するように集中角度比(θ−
θ0)/θ0(但しθは電子銃出口に於ける両外側電
子ビームが集中点に張る角度を、θ0は画面上中央
の残留集中量を0とする集中角を夫々示す)が−
36〜−73%となる不足集中状態とし、これを静集
中装置の4極磁界で集中補正することにより画面
中央で電子ビームスポツトを垂直偏向軸方向に長
軸を置く縦長状としたことを特徴としたインライ
ン型電子銃構体。 2 離心電極の離心量△Sのこれに対向する非離
心電極口径Dに対する比である離心率△S/Dを
0.0125〜0.0225としたことを特徴とする特許請求
の範囲第1項記載のインライン型電子銃構体。
[Claims] 1. At least two electron beams emitted within the same plane are formed substantially individually in each electron beam path by a plurality of electrodes arranged at predetermined intervals along parallel paths. In an in-line electron gun structure, the electron beam is focused by an electron lens, and the electron beam passing holes on both outer sides of the final stage electrode of the main electron lens are eccentrically outward from the electron beam path to concentrate near the screen of the cathode ray tube. , the concentration angle ratio (θ−
θ 0 )/θ 0 (where θ is the angle at which both outer electron beams at the exit of the electron gun reach the concentration point, and θ 0 is the concentration angle when the residual concentration at the center of the screen is 0) is −
By creating an underconcentration state of 36 to -73% and correcting this concentration using the quadrupole magnetic field of the static concentrator, the electron beam spot is made vertically elongated at the center of the screen with its long axis in the direction of the vertical deflection axis. Inline type electron gun structure. 2 Eccentricity △S/D, which is the ratio of the eccentricity △S of the eccentric electrode to the diameter D of the non-eccentric electrode opposite thereto.
The in-line electron gun assembly according to claim 1, characterized in that the range is 0.0125 to 0.0225.
JP12757081A 1981-08-14 1981-08-14 In-line type electron gun structure Granted JPS5830047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12757081A JPS5830047A (en) 1981-08-14 1981-08-14 In-line type electron gun structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12757081A JPS5830047A (en) 1981-08-14 1981-08-14 In-line type electron gun structure

Publications (2)

Publication Number Publication Date
JPS5830047A JPS5830047A (en) 1983-02-22
JPH021337B2 true JPH021337B2 (en) 1990-01-11

Family

ID=14963305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12757081A Granted JPS5830047A (en) 1981-08-14 1981-08-14 In-line type electron gun structure

Country Status (1)

Country Link
JP (1) JPS5830047A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776869B2 (en) * 1989-02-15 1998-07-16 松下電工株式会社 Massage machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145936A (en) * 1974-10-17 1976-04-19 Hitachi Ltd
JPS51118957A (en) * 1975-03-03 1976-10-19 Rca Corp Crt
JPS5324775A (en) * 1976-08-20 1978-03-07 Toshiba Corp El ectronic gun for color picture tube
JPS5429227A (en) * 1977-08-06 1979-03-05 Kazuo Sennen Checkerboard with device of displaying position of go stone
JPS5667144A (en) * 1979-11-06 1981-06-06 Toshiba Corp Manufacturing method of color picture tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145936A (en) * 1974-10-17 1976-04-19 Hitachi Ltd
JPS51118957A (en) * 1975-03-03 1976-10-19 Rca Corp Crt
JPS5324775A (en) * 1976-08-20 1978-03-07 Toshiba Corp El ectronic gun for color picture tube
JPS5429227A (en) * 1977-08-06 1979-03-05 Kazuo Sennen Checkerboard with device of displaying position of go stone
JPS5667144A (en) * 1979-11-06 1981-06-06 Toshiba Corp Manufacturing method of color picture tube

Also Published As

Publication number Publication date
JPS5830047A (en) 1983-02-22

Similar Documents

Publication Publication Date Title
JP3576217B2 (en) Picture tube device
JPH04218245A (en) Color cathode-ray tube
JPH0510787B2 (en)
US5663609A (en) Electron gun assembly having a quadruple lens for a color cathode ray tube
JPH0272546A (en) Electron gun for color picture tube
JPH021337B2 (en)
JP3034906B2 (en) Color picture tube and deflection device
JPS6258102B2 (en)
JPH08148095A (en) Electron gun and color cathode-ray tube provided with this electron gun
JP2690913B2 (en) Color picture tube
JPH0452586B2 (en)
JPH0129014B2 (en)
JPH09199049A (en) Electron gun
JPS6353664B2 (en)
JP2859900B2 (en) Color picture tube
JP3157855B2 (en) Electron gun for color picture tube
JPH021336B2 (en)
JP3360863B2 (en) Electron gun for picture tube
JP2692858B2 (en) Color picture tube equipment
KR100546579B1 (en) Electron gun for color cathode ray tube
JP2710880B2 (en) Centralized adjustment method for in-line type cathode ray tube using quadrupole magnetic field generator
JP3396503B2 (en) Color picture tube equipment
JP2804052B2 (en) Color picture tube equipment
JP2862575B2 (en) Color picture tube
JPH11329295A (en) Focusing magnet assembly for color cathode-ray tube