JPH02133532A - Separation of rare earth element from each other - Google Patents

Separation of rare earth element from each other

Info

Publication number
JPH02133532A
JPH02133532A JP28373388A JP28373388A JPH02133532A JP H02133532 A JPH02133532 A JP H02133532A JP 28373388 A JP28373388 A JP 28373388A JP 28373388 A JP28373388 A JP 28373388A JP H02133532 A JPH02133532 A JP H02133532A
Authority
JP
Japan
Prior art keywords
rare earth
earth elements
cation exchanger
cation exchange
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28373388A
Other languages
Japanese (ja)
Other versions
JP2763044B2 (en
Inventor
Nobuo Eto
衛藤 伸生
Tsugio Murakami
次雄 村上
Ryoji Yoshimura
吉村 了治
Takao Matsuda
松田 孝夫
Yutaka Takada
豊 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63283733A priority Critical patent/JP2763044B2/en
Publication of JPH02133532A publication Critical patent/JPH02133532A/en
Application granted granted Critical
Publication of JP2763044B2 publication Critical patent/JP2763044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover high-purity rare earth elements at a high recovery rate by using a spherical cation exchanger having a sulfonic acid group and a weakly acidic cation exchange group for the cation exchanger at the time of separating the rare earth elements from each other by using a complex forming agent and the cation exchanger. CONSTITUTION:The spherical cation exchanger having the sulfonic acid group and the weakly acidic cation exchange group is used for the cation exchanger at the time of subjecting the rare earth elements to a chromatographic sepn. by using the complex forming agent and the cation exchanger. The sphericity of >=90% of this cation exchanger is about <=2.0 and the average grain size thereof is about 20 to 300mu. The average grain size of >=80% of the entire particle is about 0.5 to 1.5 times the average grain size. The total cation exchange capacity is specified to about 0.5 to 10meq/g on a dry basis. The weakly acidic cation exchange group is preferably a carboxylic acid group and the exchange capacity thereof is preferably about 5 to 90% of the total cation exchange capacity. EDTA, HEDTA, DCPA, etc., are used for the complex forming agent and the pH of the aq. soln. thereof is specified to about 4 to 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオン交換法により希土類元素を相互分離す
る方法に関するものであり、詳しくは、陽イオン交換体
と錯形成剤とを用いて希土類元素の混合物から高純度の
希土類元素を高回収率で得る方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for mutually separating rare earth elements by an ion exchange method. The present invention relates to a method for obtaining high purity rare earth elements from a mixture of elements with a high recovery rate.

希土類元素とは、ランタニド族元素に、スカンジウム(
Sc)及びイツトリウム(Y)を加えた17元素の総称
である。現在、希土類元素は、蛍光体材料、レーザー材
料、永久磁石材料、セラミックス強度発現剤、触媒、磁
気記録材料、水素貯蔵合金材料等、幅広く使用され、今
後も大きな需要の伸びが期待されている有用な元素であ
る。これらの用途に対しては、より高純度の希土類元素
か要求されている。
Rare earth elements include lanthanide group elements, scandium (
It is a general term for 17 elements including Sc) and yttrium (Y). Currently, rare earth elements are widely used in phosphor materials, laser materials, permanent magnet materials, ceramic strength enhancers, catalysts, magnetic recording materials, hydrogen storage alloy materials, etc., and demand for them is expected to continue to grow. It is an element. For these applications, higher purity rare earth elements are required.

[従来の技術及び発明が解決しようとする課題]希土類
元素の混合物から各希土類元素を分離オーi製するJj
 ?J:として、イオン交換法がある。該方法は、強酸
性陽イオン交換樹脂の充填層に、希土類元素の塩類の混
合溶液を通液し、強酸性陽1′オン交換樹脂床の上部に
希土類元素の吸容層を形成させ水洗し、次いで、錯形成
剤水溶液を流し、各希土類元素と錯形成剤及びイオン交
換樹脂との親和力の(争かな差を利用することによりク
ロマト分離を行い、高純度の希土類元素を得る方法であ
る。
[Prior art and problems to be solved by the invention] Separation of each rare earth element from a mixture of rare earth elements
? J: There is an ion exchange method. In this method, a mixed solution of rare earth element salts is passed through a packed bed of strongly acidic cation exchange resin to form a rare earth element absorbing layer on top of the strongly acidic cation exchange resin bed, which is then washed with water. Next, a complex forming agent aqueous solution is poured, and chromatographic separation is performed by utilizing the significant difference in affinity between each rare earth element, the complex forming agent, and the ion exchange resin, thereby obtaining highly pure rare earth elements.

該方l去に於て、純度、収率、生産速度等の向上、即ち
、経済性の向上が望まれ、次のような改良がなされてき
た。
In this process, it has been desired to improve purity, yield, production rate, etc., that is, to improve economic efficiency, and the following improvements have been made.

(1)2種類以上の錯形成剤を組合せて、希土類元素を
相互分離する方法。
(1) A method of separating rare earth elements from each other by combining two or more types of complex forming agents.

この方法では、2種類の錯形成剤同士の混合の恐れがあ
り、その場合、希土類元素の相互分離性は低下する。又
、分離が2段以上の工程になり、経済的に不利である。
In this method, there is a risk that the two types of complex forming agents may be mixed with each other, and in that case, the mutual separability of the rare earth elements will be reduced. Moreover, the separation requires two or more stages, which is economically disadvantageous.

(2)陽イオン交換樹脂の対イオンをCu (II)、
Fe (III)等の金属イオンにして希土類元素を相
互分離する方法。
(2) The counter ion of the cation exchange resin is Cu (II),
A method of mutually separating rare earth elements into metal ions such as Fe (III).

この方法は、混合希土類元素溶液の組成、目的とする希
土類元素の種類により金属イオンの選択が必要であるこ
と、使用した金属イオンを回収、再使用する為の装置が
別に必要になることから、工業的には不利である。又、
使用した金属イオンが、分離した希土類元素中に不純物
として混入してくるという製品品質上の問題点もある。
This method requires the selection of metal ions depending on the composition of the mixed rare earth element solution and the type of target rare earth element, and requires separate equipment to recover and reuse the used metal ions. It is disadvantageous industrially. or,
There is also a problem in terms of product quality in that the metal ions used are mixed into the separated rare earth elements as impurities.

(3)陽イオン交換樹脂に改良を加えて、希土類元素を
相互分離する方法。
(3) A method for mutually separating rare earth elements by improving cation exchange resins.

この改良方法としては、例えば、特開昭5688826
号公報、特開昭57−35650号公報等のように、陽
イオン交換樹脂の空隙率、粒度分布等を特定の範囲に限
定し、より安定的に、高速で希土類元素を相互分離する
方法が挙げられる。
As this improvement method, for example, Japanese Patent Application Laid-Open No. 5688826
As disclosed in Japanese Patent Application Laid-Open No. 57-35650, there is a method that limits the porosity, particle size distribution, etc. of the cation exchange resin to a specific range and separates rare earth elements more stably and at high speed. Can be mentioned.

しかしながら、改良点は、イオン交換体の保持体構造で
あり、本質的な分離性能の向上には至っていない。
However, the point of improvement is the support structure of the ion exchanger, and the essential improvement in separation performance has not been achieved.

また、特開昭58−45341号公報で示されているよ
うに繊維状イオン交換体を使って高速分離する方法が挙
げられる。該方法は、繊維状である為、圧力損失が低く
、高速分離が可能である。
Another example is a method of high-speed separation using a fibrous ion exchanger, as disclosed in Japanese Patent Application Laid-Open No. 58-45341. In this method, since the material is fibrous, pressure loss is low and high-speed separation is possible.

しかしながら、繊維状であることから充填密度が安定せ
ず、使用中に徐々に密度が高くなり、圧力損失が増加す
る。また、その密度は、場所により異なり、密度差が生
じ、その結果、分離時間、分離性等が変化する。この傾
向は、充填塔の径が大きくなるほど、塔高が高くなるほ
ど強くなる。従って、繊維状イオン交換体を用いる場合
、充填方法、充填塔の構造、分離操作の工夫が必要であ
り、装置、操作が複雑になる。
However, since it is fibrous, the packing density is not stable, and the density gradually increases during use, resulting in an increase in pressure loss. Furthermore, the density varies depending on the location, resulting in a difference in density, and as a result, separation time, separation properties, etc. change. This tendency becomes stronger as the diameter of the packed column increases and the height of the column increases. Therefore, when using a fibrous ion exchanger, it is necessary to devise a packing method, a structure of a packed column, and a separation operation, and the equipment and operation become complicated.

以上の様に、イオン交換法について様々な改良がなされ
ているが、未だ本質的な改良に至っておらず、現在、高
純度、高回収率、高速で希土類元素を相互分離する方法
が待伍されている。
As mentioned above, various improvements have been made to the ion exchange method, but no fundamental improvement has yet been achieved.Currently, a method for mutually separating rare earth elements with high purity, high recovery rate, and high speed is waiting. ing.

[本発明の1°1的] 本発明は、イオン交換法による希土類元素の相互分離方
法について、前記問題点を解決出来る方法、即ち、錯形
成剤と陽イオン交換体を用いて、高純度の希土類元素を
高回収率で得ることが出来る希土類元素の相互分離方法
を提供することを1」的とする。
[1° 1 Aim of the present invention] The present invention is a method for mutually separating rare earth elements by ion exchange method, which solves the above-mentioned problems, that is, using a complex forming agent and a cation exchanger. The object of the present invention is to provide a method for mutual separation of rare earth elements that can obtain rare earth elements at a high recovery rate.

[課題を解決する手段] 本発明は、錯形成剤と陽イオン交換体を用いて希土類元
素を相互分離する方法に於て、該陽イオン交換体の諸物
性と希土類元素の分離性について鋭意検討を重ねた結果
、該陽イオン交換体のイオン交換基の種類と形状を限定
することにより、希土類元素の相互分離効率を飛躍的に
向上できることを見出し本発明を完成するに至った。
[Means for Solving the Problems] The present invention is a method for mutually separating rare earth elements using a complex forming agent and a cation exchanger, and the various physical properties of the cation exchanger and the separability of the rare earth elements have been intensively investigated. As a result of repeated research, the inventors discovered that by limiting the type and shape of the ion exchange groups of the cation exchanger, the mutual separation efficiency of rare earth elements could be dramatically improved, and the present invention was completed.

即ち、本発明は、錯形成剤と陽イオン交換体を用いて希
土類元素を相互分離する方法において、陽イオン交換体
として、スルホン酸基と弱酸性陽イオン交換基とを有す
る球状陽イオン交換体を用いることを特徴とする希土類
元素の相互分離方法である。
That is, the present invention provides a method for mutually separating rare earth elements using a complex forming agent and a cation exchanger, in which a spherical cation exchanger having a sulfonic acid group and a weakly acidic cation exchange group is used as the cation exchanger. This is a method for mutually separating rare earth elements.

本発明によれば、高純度、即ち、純度3N(99,9%
)以上更には4N (99,99%)以上の希土類元素
を容易に得ることが出来、又、収率70%以上更には9
0%以上と高くでき、加えて高速分離も可能である。
According to the invention, high purity, i.e. purity 3N (99,9%
) or more, it is possible to easily obtain rare earth elements of 4N (99,99%) or more, and the yield is 70% or more, and even 9
It can be as high as 0% or more, and high-speed separation is also possible.

即ち、本発明は、品質上、経済上清れた希土類元素の相
互分離方法である。
That is, the present invention is a method for mutually separating rare earth elements that is superior in terms of quality and economy.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で用いる陽イオン交換体は、スルホン酸基と弱酸
性陽イオン交換基とを有する球状陽イオン交換体である
ことを必須とする。スルホン酸基のみでも、又弱酸性基
のみでも希土類元素相互分離効果は不十分である。又、
スルホン酸基のみからなるイオン交換体と弱酸性陽イオ
ン交換基のみからなるイオン交換体とを混合して用いた
場合、分離性向上に若干の効果は認められるものの、満
足できるものではない、即ち、陽イオン交換体−粒子内
にスルホン酸基とカルボン酸基とが共存していることが
必要である。ここでいう弱酸性陽イオン交換基とは、カ
ルボン酸基、リン酸基、フェノール基等が挙げられるが
、これらの単独もしくは共存でら良い。弱酸性陽イオン
交換基としては、特にカルボン酸基が好ましく、分離性
向上の効果か大きい0弱酸性陽イオン交換容量は総陽イ
オン交換容景の5〜90%が好ましく、更には10〜5
0%であることが特に好ましい1弱酸性陽イオン交換容
量か小さいと分離効果が小さく、大きいと生産効率が低
下する。
The cation exchanger used in the present invention is essentially a spherical cation exchanger having a sulfonic acid group and a weakly acidic cation exchange group. Even with only sulfonic acid groups or only weak acidic groups, the mutual separation effect of rare earth elements is insufficient. or,
When an ion exchanger consisting only of sulfonic acid groups and an ion exchanger consisting only of weakly acidic cation exchange groups are used in combination, a slight effect on improving separation property is observed, but the result is not satisfactory. , it is necessary that sulfonic acid groups and carboxylic acid groups coexist within the cation exchanger particles. The weakly acidic cation exchange group mentioned here includes a carboxylic acid group, a phosphoric acid group, a phenol group, etc., and these may be used alone or in combination. As the weakly acidic cation exchange group, a carboxylic acid group is particularly preferable, and the weakly acidic cation exchange capacity is preferably 5 to 90% of the total cation exchange capacity, more preferably 10 to 5% of the total cation exchange capacity.
A weakly acidic cation exchange capacity of 0% is particularly preferred.If the capacity is small, the separation effect will be small, and if it is large, the production efficiency will decrease.

又、スルホン酸基と弱酸性陽イオン交11!!!基の総
量、即ち、総陽イオン交換容量は、大きいほど陽イオン
交IQ体の水への溶解度が増し、一部溶解することにな
る。従って、好ましい総陽イオン交換容量は、乾燥基準
で0.5〜10meq/gであり、更に好ましくは、1
〜5 m e q / gである。
Also, exchange of sulfonic acid groups with weakly acidic cations 11! ! ! As the total amount of groups, that is, the total cation exchange capacity, increases, the solubility of the cation exchanger IQ body in water increases, and some of the groups are dissolved. Therefore, the preferred total cation exchange capacity is 0.5 to 10 meq/g on a dry basis, more preferably 1
~5 meq/g.

本発明に用いる陽イオン交換体は球状である。The cation exchanger used in the present invention is spherical.

繊維状、不定型等の球状以外の陽イオン交換体は、スル
ホン酸基と弱酸性陽イオン交換基が共存していても本発
明の目的を達成できない、即ち、これらは充填塔に充填
する時、塔上部と下部、塔中各部と周辺部で充填密度差
を生じやすい、その結果、錯形成剤水溶液を通液してク
ロマl−分離する際、液の片流れ、液の線速度の不均一
を生じ、溶出希土類元素がテーリング、リーディング現
象を起こす、その結果、希土類元素を高純度で高回収率
で得ることか難しくなる。又、使用過程に於て、充填密
度か増加し、圧力損失が変動し、安定した相互外耳か難
しくなる。更に、充填塔上部の隙間が大きくなり、分離
性か低下する。陽イオン交換体が球状である本発明では
、このような問題はなく、充填状態は、使用初期、及び
使用過程に於て、安定しており、分離操作は、容易で且
つ安定である。
Cation exchangers other than spherical, such as fibrous or amorphous, cannot achieve the purpose of the present invention even if sulfonic acid groups and weakly acidic cation exchange groups coexist; that is, they cannot be used when packed in a packed column. , differences in packing density tend to occur between the upper and lower parts of the tower, between each part of the tower and the peripheral parts.As a result, when the complexing agent aqueous solution is passed through for chroma separation, one-sided flow of the liquid and non-uniform linear velocity of the liquid occur. This causes tailing and leading phenomena in the eluted rare earth elements, and as a result, it becomes difficult to obtain rare earth elements with high purity and high recovery rate. In addition, during use, the packing density increases, the pressure loss fluctuates, and it becomes difficult to maintain stable mutual contact. Furthermore, the gap in the upper part of the packed column becomes large, and the separation performance deteriorates. In the present invention, in which the cation exchanger is spherical, there is no such problem, the filling state is stable at the initial stage of use and during the use process, and the separation operation is easy and stable.

更には、高純度の希土類元素を高回収率で得ることが出
来、高速度で分^を操作できる。
Furthermore, highly purified rare earth elements can be obtained with a high recovery rate, and fractions can be operated at high speed.

球状について更に説明する。球状の尺度として通常、真
球度が用いられる。真球度とは、球状陽イオン交換体の
重心を通る最大径の最小径に対する比の値である0球状
陽イオン交換体の真球度は、90%以上か、2,0以下
が好ましい、真球度が、2.0を越える場合は、充填層
内の圧力損失が増大し、分離効率の低下につながる。
The spherical shape will be further explained. Sphericity is usually used as a measure of sphericity. Sphericity is the value of the ratio of the maximum diameter to the minimum diameter passing through the center of gravity of the spherical cation exchanger. The sphericity of the spherical cation exchanger is preferably 90% or more and 2.0 or less. When the sphericity exceeds 2.0, pressure loss within the packed bed increases, leading to a decrease in separation efficiency.

以下、球状陽イオン交換体の諸物性について更に説明す
る。球状陽イオン交換体の粒度分布よしては、全粒子の
80%以」二が平均粒径の0.5r合〜1.5倍である
のが好ましい、こうすることによって、安定な分離操作
を実施でき、分離性及び高速分離性が向、トする。
The physical properties of the spherical cation exchanger will be further explained below. Regarding the particle size distribution of the spherical cation exchanger, it is preferable that 80% or more of the total particles be 0.5r to 1.5 times the average particle size.By doing this, stable separation operation can be achieved. It is easy to carry out, and the separation and high-speed separation are improved.

また、球状陽イオン交換体の平均粒径は、20〜300
 )t mか好ましい、平均粒径が小さすぎると、カラ
ム内の圧力損失か大きくなり、高速分M操fヤか難しく
なり、大きすぎると2、粒子内拡散速度が低下し、分離
効率が低下する。
In addition, the average particle size of the spherical cation exchanger is 20 to 300
) t m is preferable. If the average particle diameter is too small, the pressure loss within the column will increase, making high-speed separation difficult. If it is too large, the intraparticle diffusion rate will decrease, resulting in a decrease in separation efficiency. do.

真球度の測定は、光学顕微鏡等により行なうことが出来
る。
Sphericity can be measured using an optical microscope or the like.

又、平均粒径及び粒度分布の測定は、一般に知られてい
る方法、例えば光学頭黴鏡法、篩い分は法、電気伝導度
変位測定型粒度分布測定法等て行なうことが出来る。
The average particle size and particle size distribution can be measured by generally known methods, such as optical head microscopy, sieving method, and electric conductivity displacement measurement type particle size distribution measurement method.

本発明に用いる球状陽イオン交換体は、次の4種類であ
ることか好ましい。
The spherical cation exchangers used in the present invention are preferably of the following four types.

第1に、ゲル型保持体粒子にスルホン酸基と弱酸性陽イ
オン交IQ基を導入した陽イオン交換体。
The first is a cation exchanger in which a sulfonic acid group and a weakly acidic cation exchange IQ group are introduced into gel-type carrier particles.

例えば、アンバーライト120B(オルカッ社製)、ダ
イヤイオン5KIB(三菱化成社製)等にカルボン酸基
を導入したもの。
For example, carboxylic acid groups are introduced into Amberlite 120B (manufactured by Orka Co., Ltd.), Diaion 5KIB (manufactured by Mitsubishi Kasei Corporation), etc.

第2に、ビーズ型保持体粒子にスルフ)′:ン酸基と弱
酸性陽イオン交換基を導入した陽イオン交換体。
The second is a cation exchanger in which a sulfuric acid group and a weakly acidic cation exchange group are introduced into bead-shaped carrier particles.

この種の陽イオン交換体は、カラスビーズのような平滑
な芯の表面に薄く架橋高分子層を被覆、又は、化学結合
さぜなもので、表面の架橋高分子層にスルホン酸基と弱
酸性陽イオン交換基を導入したもの。例えば、ベリキュ
ラーカヂオン(パリアン社製)、ヤナコP E I−7
CX(柳本社豐)等にカルボン酸基を導入したもの。
This type of cation exchanger is made by coating a thin layer of cross-linked polymer on the surface of a smooth core such as a glass bead, or by forming a chemical bond with a sulfonic acid group on the cross-linked polymer layer on the surface. Products with acidic cation exchange groups introduced. For example, Vericular Caddion (manufactured by Parian), Yanaco PE I-7
Products with carboxylic acid groups introduced into CX (Sho Yanagimoto), etc.

第3に、表面多孔性保持体粒子にスルホン酸基と弱酸性
陽イオン交換基とを導入した陽イオン交操体、この種の
陽イオン交換体は、ガラスピーズのような平滑な芯の表
面にシリカゲル、アルミナ。
Third, a cation exchanger in which a sulfonic acid group and a weakly acidic cation exchange group are introduced into surface-porous support particles.This type of cation exchanger has a smooth core surface such as a glass bead. silica gel and alumina.

ケイ酸アルミナ等の多孔性の無vl物を層厚に付着させ
、この多孔性の無機物層に吸着1反応、グラフト重合等
でスルポン酸基と弱酸性陽イオン交換基とを直接導入し
たもの、スルホン酸基と弱酸性陽イオン交換基とを含む
ポリマーを被覆したもの。
A porous VL-free material such as alumina silicate is adhered to a thick layer, and a sulfonic acid group and a weakly acidic cation exchange group are directly introduced into this porous inorganic material layer by adsorption 1 reaction, graft polymerization, etc. Coated with a polymer containing sulfonic acid groups and weakly acidic cation exchange groups.

市販品であるジバックス SCX (デュポン社製)等
に弱酸性陽イオン交換基を導入したものでも良い。
A commercially available product, such as Zivax SCX (manufactured by DuPont), into which a weakly acidic cation exchange group is introduced may also be used.

第4に、全多孔性保持体粒子にスルホン酸基と弱酸性陽
イオン交換基を導入した陽イオン交換体。
Fourth, a cation exchanger in which a sulfonic acid group and a weakly acidic cation exchange group are introduced into fully porous support particles.

その保持体粒子の基材は、有機質のものでも、無機質の
ものでも良く、無機質の基材としては、シリカゲル、ア
ルミナ、多孔性カラス、多孔性カーボン、ゼオライト等
が挙げられる。有機質の基材としては、ビニル基を有す
る単量体から重合体、もしくは単量体と架橋単量体の共
重合体等が挙げられる。
The base material of the carrier particles may be organic or inorganic, and examples of the inorganic base material include silica gel, alumina, porous glass, porous carbon, and zeolite. Examples of the organic base material include monomers and polymers having vinyl groups, and copolymers of monomers and crosslinked monomers.

単量体としては、スチレン、メチルスチレン。Monomers include styrene and methylstyrene.

エチルスチレン、クロルスチレン、ビニルスチレン等の
スチレン誘導体;アクリル酸;メタクリル酸;アクリル
酸メチル、アクリル酸エチル等のアクリル酸エステル;
メタクリル酸メチル、メタクリル酸シクロヘキシル、メ
タクリル酸グリシジル等のメタクリル酸エステル;マレ
イン酸ジエチル。
Styrene derivatives such as ethylstyrene, chlorostyrene, vinylstyrene; acrylic acid; methacrylic acid; acrylic acid esters such as methyl acrylate and ethyl acrylate;
Methacrylic acid esters such as methyl methacrylate, cyclohexyl methacrylate, and glycidyl methacrylate; diethyl maleate.

フマル酸ジエチル;アクリロニトリル誘導体等がある。Diethyl fumarate; acrylonitrile derivatives, etc.

架橋単量体としては、ジビニルベンゼン、ジビニルトル
エン、ジビニルスルホン、エチレングリコールメタクリ
レート、トリエチレンジアミンメタクリレート、フタル
酸ジアリル等がある。
Examples of the crosslinking monomer include divinylbenzene, divinyltoluene, divinylsulfone, ethylene glycol methacrylate, triethylenediamine methacrylate, diallyl phthalate, and the like.

共重合体の製造時には、細孔径を調製する為希釈剤が用
いられ、トルエン等が使用される。
When producing a copolymer, a diluent such as toluene is used to adjust the pore size.

共重合体の製造方法としては、懸濁重合が好ましく、油
溶性の単量体を使用する場合は、O/W型の懸濁を実施
し、水溶性の単量体を使用する場合は、W2O型の懸濁
を実施する。この時、撹拌速度、温度等の条件で粒径等
をコントロールすることができる。
Suspension polymerization is preferred as a method for producing the copolymer. When using an oil-soluble monomer, O/W type suspension is carried out, and when using a water-soluble monomer, A W2O type suspension is carried out. At this time, particle size etc. can be controlled by conditions such as stirring speed and temperature.

スルホン酸基と弱酸性陽イオン交換基の導入方法として
は、一般に知られている方法がもちいられる0例えば、
ジャーナル オブ アプライドポリマー サイエンス(
Journal  ofApplied  Polym
er  5cience) 旦 13−22  (19
84)に記載されているような、スチレンとジビニルベ
ンゼンとアクリロニトリルから成る共重合体である全多
孔性保持体粒子をクロルスルホン酸で処理しスルホン酸
基とカルボン酸基を同時に導入する方法がある。
As a method for introducing a sulfonic acid group and a weakly acidic cation exchange group, generally known methods are used. For example,
Journal of Applied Polymer Science (
Journal of Applied Polym
er 5science) Dan 13-22 (19
There is a method of simultaneously introducing sulfonic acid groups and carboxylic acid groups by treating fully porous carrier particles, which are copolymers of styrene, divinylbenzene, and acrylonitrile, with chlorosulfonic acid, as described in 84). .

又、アクリル酸エルテルやメタクリル酸エステル等を基
材とした共重合体である全多孔性強酸性陽イオン交換樹
脂を酸又はアルカリ性水溶液で処理し、エステルを加水
分解することによりカルボン酸を導入する方法らある。
In addition, carboxylic acid is introduced by treating a fully porous strongly acidic cation exchange resin, which is a copolymer based on ester acrylate or methacrylic ester, with an acid or alkaline aqueous solution to hydrolyze the ester. There are ways.

更には、スルホン酸基を有する陽イオン交換体を次亜塩
素酸、又は、その塩等の酸化剤で処理してカルボン酸基
を導入することも出来る。この場合、保持体粒子自体を
一部破壊することになるので、導入量に留意する必要が
有る。
Furthermore, carboxylic acid groups can be introduced by treating a cation exchanger having a sulfonic acid group with an oxidizing agent such as hypochlorous acid or a salt thereof. In this case, it is necessary to pay attention to the amount introduced since the carrier particles themselves will be partially destroyed.

本発明において、イオン交換速度の速いビーズ型保持体
粒子6表面多孔性保持体粒子、全多孔性保持体粒子から
作られたイオン交換体か好ましく、保持体粒子の基材か
有機質のものである全多孔性陽イオン交換樹脂が特に好
ましい、全多孔性陽イオン交@樹脂は、導入できる陽イ
オン交換容址が大きく、体積空孔率のコントロールも容
易にできる。全多孔性陽イオン交換樹脂の体積空孔率は
、40%〜80%が好ましい0体積空孔率は、小さずぎ
ると樹脂粒子的拡散速度が遅くなり分離効率が低下する
。一方、体積空孔率が、大きすぎると樹脂中に導入でき
る陽イオン交換容量が小さくなり使用する樹脂量が多く
なる。
In the present invention, an ion exchanger made of bead-type carrier particles 6 surface porous carrier particles or fully porous carrier particles with a high ion exchange rate is preferable, and the base material of the carrier particles is organic. Fully porous cation exchange resins, which are particularly preferred, have a large cation exchange capacity that can be introduced, and the volumetric porosity can be easily controlled. The volume porosity of the fully porous cation exchange resin is preferably 40% to 80%. If the 0 volume porosity is too small, the diffusion rate of resin particles becomes slow and the separation efficiency decreases. On the other hand, if the volumetric porosity is too large, the cation exchange capacity that can be introduced into the resin becomes small and the amount of resin used increases.

次に、スルホン酸基と弱酸性陽イオン交換基とを有する
球状陽イオン交換体と錯形成剤を用い”ζ希土類元素を
イオン交換クロッ1〜分離する方法について述べる。
Next, a method for separating ζ rare earth elements using an ion exchange compound using a spherical cation exchanger having a sulfonic acid group and a weakly acidic cation exchange group and a complex forming agent will be described.

イオン交換クロマト分離を行なう際、カラムに充填した
陽イオン交換体の対イオンは、H” 、 NH4、Cu
 (n)イオン、 Fe (II)イオン。
When performing ion exchange chromatography, the counter ions of the cation exchanger packed in the column are H'', NH4, Cu
(n) ion, Fe (II) ion.

Fe (I[[)イオン、Zn(II)イオン、希土類
元素(I[[)イオン、 Pb (II)イオン、 P
d (II)イオン、 Ni (II)イオン、Na(
I)イオン。
Fe (I[[) ion, Zn(II) ion, rare earth element (I[[) ion, Pb(II) ion, P
d(II) ion, Ni(II) ion, Na(
I) Ion.

K(Ilイオン等が挙けられるが、金属イオンを使用し
た場合、溶出してくる希土類元素中へ混入する恐れか有
り5又、使用した薬剤の再使用の為に、これらの金属イ
オンを回収しなければならず、操作が?!雑になってく
る。この為、H+イオン。
Examples include K (Il ion), but if metal ions are used, there is a risk that they may be mixed into the rare earth elements that are eluted.5Also, these metal ions must be collected for reuse of the used chemicals. This makes the operation complicated.For this reason, H+ ions.

NH,″′イオン、Na (I>イオン、 K (I)
イオンか好ましく、H+イオン、NH,+イオンが特に
好ましい。
NH,'' ion, Na (I> ion, K (I)
ions are preferred, and H+ ions, NH,+ ions are particularly preferred.

陽イオン交換体の対イオンはカラムへ錯形成剤を通液す
る方向から実質的に11“型とした場合か好ましい、 
ここでいう実質的とは、H+が吸着された部分(以下、
H″吸着層と呼ぶ)の対イオンに対するH+の比率が8
0%以上であることを示めし、これは吸着等混線図、破
過曲線から容易に判る。また、H+以外の対イオンを以
下Mイオンと呼ぶ、即ち、陽イオン交換体に錯形成剤水
溶液を通液する方向から、H+吸着層、Mイオン吸着層
の順に積層状に存在させなカラムに調製する。
It is preferable that the counter ion of the cation exchanger is substantially 11" type from the direction in which the complex forming agent passes through the column.
Substantially here means the part where H+ is adsorbed (hereinafter referred to as
The ratio of H+ to the counter ion of the H″ adsorption layer is 8.
0% or more, which can be easily seen from the adsorption equidistant diagram and breakthrough curve. In addition, counter ions other than H+ are hereinafter referred to as M ions, that is, the column is not made to exist in a layered manner in the order of H+ adsorption layer and M ion adsorption layer from the direction in which the aqueous complexing agent solution is passed through the cation exchanger. Prepare.

その調製方法としては特に限定されないが、例えば、−
例として以下の方法が挙げられる。まず、陽イオン交換
体を充填したカラムを用意し、Mイオンを含む水溶液を
通液し、Mイオンを吸着させ水洗する0次いで、カラム
上部より酸を通液することにより、1」“を吸着させ、
陽イオン交換体の対イオンを、錯形成剤水溶液を通液す
る方向から実質的にH+どなるように調製されなカラム
、即ち、H+吸@層、H+以外のMイオン吸着層の順に
積層状に存在させたカラムを作成することが出来る。こ
の積層状態は、H”、Mイオンの吸着等1品線図、破過
曲線を求めることにより用意に知ることが出来る6次に
、該カラムにあらかじめ、混合希土類元素を吸着させた
カラムを連結して、混合希土類元素を吸着させたカラム
の先端から錯形成剤を通液し、希土類元素の相互分離を
行なう。
The preparation method is not particularly limited, but for example, -
Examples include the following methods. First, prepare a column filled with a cation exchanger, pass an aqueous solution containing M ions through it, adsorb the M ions, and wash with water.Next, by passing an acid through the top of the column, 1 is adsorbed. let me,
The counter ions of the cation exchanger are arranged in a column that is not prepared in such a way that substantially H+ is formed from the direction in which the aqueous complex forming agent solution flows, that is, an H+ absorption layer and a layer that adsorbs M ions other than H+ in the order of stacking. You can create existing columns. This stacked state can be easily known by determining the one-product diagram and breakthrough curve for adsorption of H'' and M ions.Next, connect a column to which a mixed rare earth element has been adsorbed in advance. Then, a complexing agent is passed through the column from the tip of the column adsorbing the mixed rare earth elements to separate the rare earth elements from each other.

他の方法として、陽イオン交換体を充填したカラムにM
イオンを含む水溶液を通液し、Mイオンを吸着させ水洗
する0次いで、カラム上部よりPH調製した混合品土類
元素の水溶液を通液し、錯形成剤水溶液を通液する方向
から混合希土類元素吸着層、1(”吸着層、H’″以外
Mイオン吸着層のnI″iに積I―状に存在させたカラ
ムを作成する。次いで、カラムの先端から錯形成剤を通
液し、希土類元素の相互分離を行なう。
Another method is to fill a column packed with a cation exchanger with M
An aqueous solution containing ions is passed through the column, and the M ions are adsorbed and washed with water.Next, an aqueous solution of mixed rare earth elements whose pH has been adjusted is passed from the top of the column, and a mixed rare earth element is passed from the direction in which the aqueous complex forming agent solution is passed through. Adsorption layer 1 ("Adsorption layer, H'") A column is created in which M ions other than H' are present in a product I- shape in nI"i of the M ion adsorption layer. Next, a complex forming agent is passed through the column tip, and rare earth Perform mutual separation of elements.

H+の吸着層は、以下の式で表されるH’比率て′6′
!≦〜80%当量が好ましい。
The H+ adsorption layer has an H' ratio of '6' expressed by the following formula.
! ≦~80% equivalent is preferred.

H”   比 率 =([H”   ]X100)/(
[H”   ]十[N丁イオン]) [H”]:イオン交換体操体+量(g当量)〔Mイオン
〕:イオン交IQ体中Mイオン4!(g当量) このうち、イオン交換体中H′量及びイオン交換体中M
イオン量は、強酸性陽イオン交ti基に吸着されれた1
11、及びMイオンを指す、また、イオン交換体中1(
“址には、Mイオン吸着層中のH゛は含まれない、H1
比率がこれより低いと希土類元素の相互分M性は著しく
悪化し、高純度希土類元素を得ることが出来ない。また
、H+比率がこれよりも高いと高純度の希土類元素が得
られろものの、その回収率は低下する。
H” ratio = ([H”]×100)/(
[H”] 10 [N ions]) [H”]: Ion exchange exercise body + amount (g equivalent) [M ions]: Ion exchange IQ 4 M ions in the body! (g equivalent) Among these, the amount of H' in the ion exchanger and the amount of M in the ion exchanger
The amount of ions is 1 adsorbed on the strongly acidic cationic Ti group.
11, and refers to the M ion, and also refers to 1 (
“The area does not include H in the M ion adsorption layer, H1
If the ratio is lower than this, the mutual component property of the rare earth elements will deteriorate significantly, making it impossible to obtain high purity rare earth elements. Furthermore, if the H+ ratio is higher than this, highly pure rare earth elements may be obtained, but the recovery rate will be reduced.

本発明に使用される混合希土類元素の水溶液は、特に限
定しないか、例えば、ゼノタイム、モナザイト、バスト
ネサイト等の鉱石を鉱酸や苛性ソーダ等のアルカリで分
解忍解して得られる水溶液、またはこれら水/8液から
抽出法、晶析法等により粗精製して得られる希土類元素
の酸化物、水酸化物等を鉱酸で忍解した水溶液等が挙げ
られる。該水溶液は、pH0,5〜4.0が好ましく、
更には、1.0〜3.0か好ましい、PHが低すぎると
希土類元素の吸着率が低下する。逆に高ずき゛ると希土
類元素の水酸化物か析出する。
The aqueous solution of mixed rare earth elements used in the present invention is not particularly limited, and may be, for example, an aqueous solution obtained by decomposing ores such as xenotime, monazite, bastnaesite, etc. with a mineral acid or an alkali such as caustic soda, or an aqueous solution thereof. Examples include aqueous solutions in which rare earth element oxides, hydroxides, etc. obtained by rough purification from water/8 liquid by extraction methods, crystallization methods, etc. are dissolved with mineral acids. The aqueous solution preferably has a pH of 0.5 to 4.0,
Furthermore, the pH is preferably 1.0 to 3.0; if the pH is too low, the adsorption rate of rare earth elements will decrease. On the other hand, if the temperature increases, hydroxides of rare earth elements will precipitate.

又、希土類元素イオンは、全対イオンに対して5〜50
当量%用いることが好ましい、これよりも少ないと、工
業的規模で行なう場合、膨大な樹脂か必要になり、又、
得られる溶出液中の希土類元素濃度が非常に低くなる。
In addition, rare earth element ions have a concentration of 5 to 50 with respect to all counter ions.
It is preferable to use equivalent %; if it is less than this, a huge amount of resin will be required when carried out on an industrial scale, and
The concentration of rare earth elements in the resulting eluate becomes very low.

又、これよりも多いと、充分な分離が行なわれない、よ
り好ましくは、10〜40当量%である。
Moreover, if the amount is more than this, sufficient separation will not be carried out, and the amount is more preferably 10 to 40 equivalent %.

混合希土類元素吸着帯の先端から通液する鋸形成剤には
、エチレンジアミン四酢酸(EDTA)。
Ethylenediaminetetraacetic acid (EDTA) is used as the saw-forming agent that passes through the tip of the mixed rare earth element adsorption zone.

N−ヒドロキシエチルエチレンジアミン三酢酸(HED
TA)、1.2−ジアミノシクロヘキサン五酢a (D
CPA)、ジエチレントリアミン五酢酸(DTPA)、
ニトリロ三酢酸(NTA)。
N-Hydroxyethylethylenediaminetriacetic acid (HED)
TA), 1,2-diaminocyclohexanepentaacetic acid a (D
CPA), diethylenetriaminepentaacetic acid (DTPA),
Nitrilotriacetic acid (NTA).

イミノニ酢酸(IMPA>等のアミノポリ酢酸類りエン
酸、乳酸、グリコール酸、リンゴ酸、酒石酸等のオキシ
カルボン酸類等が好ましく、アミノポリ酢酸類が特に好
ましく、希土類元素の相互後分離性が向上する。
Aminopolyacetic acids such as iminodiacetic acid (IMPA), oxycarboxylic acids such as enoic acid, lactic acid, glycolic acid, malic acid, tartaric acid, etc. are preferred, and aminopolyacetic acids are particularly preferred, as they improve the mutual separation of rare earth elements.

錯形成剤水溶液の濃度は、溶離時の温度に於てカラム内
で析出しない範囲であれば、特に制限はないが、低すぎ
ると生産効率が悪くなる。又、錯形成剤水溶液のρ■(
は、4〜10が好ましく、このpH1li整剤には、ア
ンモニア水が好ましい。
The concentration of the complexing agent aqueous solution is not particularly limited as long as it does not precipitate in the column at the temperature during elution, but if it is too low, production efficiency will deteriorate. In addition, ρ■(
is preferably 4 to 10, and aqueous ammonia is preferable for this pH1li adjuster.

本発明を実施する際、温度が低いと、錯形成剤水溶液中
の鋸形成剤か析出する恐れが有り、高いと、陽イオン交
換体が劣化し、鋸形成剤の安定性が低下する恐れが有り
、更には、高圧操作を必要とするので、20〜120℃
で展開溶離することが好ましい、更に好ましくは、30
〜80°Cである。
When carrying out the present invention, if the temperature is low, the saw-forming agent in the complex-forming agent aqueous solution may precipitate, and if the temperature is high, the cation exchanger may deteriorate and the stability of the saw-forming agent may decrease. Yes, and since high pressure operation is required, 20 to 120℃
It is preferable to develop and elute at 30
~80°C.

又、本発明に於て陽イオン交換体の再生、H+の吸着量
調製、溶液のpH調製の為の酸としては塩酸、硫酸等の
鉱酸、またアルカリとしては水酸化ナトリウム、アンモ
ニア水等を使用することが出来る。
In addition, in the present invention, mineral acids such as hydrochloric acid and sulfuric acid are used as acids for regenerating the cation exchanger, adjusting the adsorption amount of H+, and adjusting the pH of the solution, and sodium hydroxide, aqueous ammonia, etc. are used as the alkalis. It can be used.

[発明の効果] 以上の説明から明らかなように、希土類元素を相互分離
する方法に於て、陽イオン交換体として、スルホン酸基
と弱酸性陽イオン交換基とを有する球状陽イオン交換体
を用いることによる効果を以下列記する。
[Effect of the invention] As is clear from the above explanation, in the method for mutually separating rare earth elements, a spherical cation exchanger having a sulfonic acid group and a weakly acidic cation exchange group is used as a cation exchanger. The effects of using it are listed below.

(1)より高純度、即ち3N以上更には4N以上の希土
類元素を容易に得ることが出来る6(2)高純度希土類
元素の回収率は、70%以上更には90%以上と高く出
来る。
(1) Rare earth elements of higher purity, that is, 3N or higher, even 4N or higher, can be easily obtained.6 (2) The recovery rate of high purity rare earth elements can be as high as 70% or higher, and even 90% or higher.

(3)高速分離が出来、生産効率を高めることが出来る
(3) High-speed separation is possible and production efficiency can be increased.

(4)簡単な操作で希土類元素を相互分離できる。(4) Rare earth elements can be separated from each other with simple operations.

(5)常に安定した状態で希土類元素を相互分離でき、
運転管理及び品質管理が容易である。
(5) Rare earth elements can be separated from each other in a stable state at all times.
Operation management and quality control are easy.

以下、実施例及び比較例を示すが、本発明はこれらの方
法に限定されるものでない。
Examples and comparative examples will be shown below, but the present invention is not limited to these methods.

実施例1゜ 単量体としてグリシジルメタクリレート、架橋単蔗体と
してエチレングリコールメタクリレート、希釈剤として
トルエンを用いて懸濁重合を行ない、全多孔性保持体粒
子を製造した6次に、この全多孔性保持体粒子を70°
C17時間で亜硫酸ナトリウム水溶液で処理しスルホン
酸基を導入な、その後、70°C5−昼夜、IN水酸化
ナトリウム水溶液で処理しカルボン酸基を導入した。得
られた全多孔性陽イオン交換樹脂は洗浄し、乾燥し、分
級した。その結果、平均粒径は50μ■1.95%以上
の粒子が25〜75μmであった。又、真球度は、95
%以上が2.0以下であり、体積空孔率は51%、総陽
イオン交換容量は、3.0meq/g、中性塩分解容量
は、2.1meq/gであった。この全多孔性陽イオン
交換樹脂を内径15φ、長さ300 m rnのフィル
ター付ガラス性充填塔に充填した後、充填塔上部よりI
 N−HClを通液し、水洗し、IN−NH2OIを通
液し、水洗し、スルホン酸基の対イオンをNH4+型と
した。
Example 1 Fully porous carrier particles were produced by suspension polymerization using glycidyl methacrylate as a monomer, ethylene glycol methacrylate as a crosslinked monomer, and toluene as a diluent. Holder particles at 70°
The sample was treated with an aqueous sodium sulfite solution for 17 hours at C17 to introduce sulfonic acid groups, and then treated with an IN aqueous sodium hydroxide solution at 70° C. day and night to introduce carboxylic acid groups. The resulting fully porous cation exchange resin was washed, dried, and classified. As a result, the average particle size was 50 μm, and 1.95% or more of the particles were 25 to 75 μm. Also, the sphericity is 95
% or more and 2.0 or less, the volume porosity was 51%, the total cation exchange capacity was 3.0 meq/g, and the neutral salt decomposition capacity was 2.1 meq/g. After filling this fully porous cation exchange resin into a filter-equipped glass packed column with an inner diameter of 15φ and a length of 300 mrn, I
A solution of N-HCl was passed through the solution, followed by washing with water, followed by a solution of IN-NH2OI and washing with water, so that the counter ion of the sulfonic acid group was changed to the NH4+ type.

次に、Sm、Nd、Prを各々8mmol/1含む混合
希土類元素水/B液(pH1,54)111m1を充填
塔上部から通液し、水洗し希土類元素吸着帯を形成した
。その後、0.25W/V%EDTA、pH8,5水溶
液を充填塔上部より05 m I / rn i n 
、の速度で通液した。充填塔温度は、60°Cで行なっ
た。
Next, 111 ml of mixed rare earth element water/B solution (pH 1,54) containing 8 mmol/1 each of Sm, Nd, and Pr was passed through the top of the packed column and washed with water to form a rare earth element adsorption zone. Thereafter, a 0.25 W/V% EDTA, pH 8.5 aqueous solution was added from the top of the packed column at 05 m I/rn in
The liquid was passed at a speed of . The temperature of the packed column was 60°C.

充填塔から流出してくる流出液をフラクションに分画し
、ICP発光分析装置にて、希土類元素を分析した結果
、純度3N (99,9%)以上の希土類元素の回収率
は、Smで92%、Ndで91%、Prで93%であっ
た。
The effluent flowing out from the packed tower was divided into fractions and analyzed for rare earth elements using an ICP emission spectrometer. As a result, the recovery rate of rare earth elements with a purity of 3N (99.9%) or higher was 92 Sm. %, 91% for Nd and 93% for Pr.

実施例2゜ mi体としてグリシジルメタクリレート、架橋Llkと
してエチレングリコールメタクリレ−1・、を用いてゲ
ル型保持体粒子を製造した。このゲル型保持体粒子を7
0℃、7時間で亜硫酸ナトリウム水7容液で処理しスル
ホン酸基を導入し、その後、70℃、−昼夜、IN水酸
化ナトリウム水溶液で処理しカルボン酸基を導入した。
Example 2 Gel-type carrier particles were produced using glycidyl methacrylate as the 〈mi body and ethylene glycol methacrylate-1 as the crosslinked Llk. This gel-type support particle is
Sulfonic acid groups were introduced by treatment with 7 volumes of sodium sulfite aqueous solution at 0° C. for 7 hours, and then, carboxylic acid groups were introduced by treatment with IN sodium hydroxide aqueous solution at 70° C. day and night.

得られたゲル型陽イオン交tlnh)1脂は洗浄し、乾
燥し、分級しな。
The resulting gel-type cation exchanger tlnh)1 is washed, dried, and classified.

その結果、平均粒径は50μm、95%以上の粒子か2
5〜75μmであった。又、真球度は、95°g以上か
2.0以下であり、比隣イオン交換容量は、3.2me
q/g、中性塩分解容量容址は、2.3+neq/gで
あった。このゲル型陽イオン交換樹脂を内径15φ、長
さ300 m mのフィルター付カラス性充填塔に充填
した後、充填塔上部より、IN−MCIを通液し、水洗
し、IN−NH,CIを通清し、水洗し、スルホン酸基
の対イオンをNH4+型とした。
As a result, the average particle size was 50 μm, and 95% or more of the particles were
It was 5 to 75 μm. In addition, the sphericity is 95°g or more and 2.0 or less, and the specific ion exchange capacity is 3.2me
q/g, and the neutral salt decomposition capacity was 2.3+neq/g. After filling this gel-type cation exchange resin into a filter-equipped glass packed column with an inner diameter of 15φ and a length of 300 mm, IN-MCI was passed through the top of the packed column, washed with water, and IN-NH and CI were poured. It was cleared and washed with water, and the counter ion of the sulfonic acid group was changed to NH4+ type.

次に、Sm、Nd、Prを各々8mmol/1含む混合
希土類元素水溶液(pH1,54>117m1を充填塔
上部から通液し、水洗し、希土類元素吸着帯を形成した
。その後、実施例1と同様の操作を行った。その結果、
純度3N以上の希土類元素の回収率はSmで45%、N
dで25%4Prで40%であった。
Next, a mixed rare earth element aqueous solution (pH 1,54>117 ml) containing 8 mmol/1 each of Sm, Nd, and Pr was passed through the top of the packed column and washed with water to form a rare earth element adsorption zone. A similar operation was performed.As a result,
The recovery rate of rare earth elements with a purity of 3N or higher is 45% for Sm and 45% for N.
d was 25%, and 4Pr was 40%.

比較例1゜ 単量体としてグリシジルメタクリレート、架橋単量体と
してエチレングリコールメタクリレ−1〜、希釈剤とし
て1〜ルエンを用いて懸濁重合を行ない、全多孔性保持
体粒子を製造した。次に、この全多孔性保持体粒子を7
0 ’C17時間で亜硫酸ナトリウム水溶液で処理しス
ルポン酸基を導入した。得ちれた全多孔性陽イオン交換
樹脂は洗浄し、乾燥し、分級した。その結果、平均粒径
は50μm、95%以上の粒子が25〜75μmであっ
た。又、真球度は、95%以上が2.0以下であり、体
積空孔率は49%、比隣イオン交換容置は、2.1me
q/gであった。この全多孔性陽イオン交換樹脂を内径
15φ、長さ300mmめフィルター付ガラス訃充jj
5塔に充填した後、実施例1と同様な操作を行なった結
果、純度3N(99,9%)以上の希土類元素の回収率
は、S mで8091;、Ndで71 %、 P rで
82L:′iであった。
Comparative Example 1 Suspension polymerization was carried out using glycidyl methacrylate as a monomer, ethylene glycol methacrylate 1 to 1 as a crosslinking monomer, and 1 to luene as a diluent to produce fully porous carrier particles. Next, this fully porous support particle was
A sulfonic acid group was introduced by treatment with an aqueous sodium sulfite solution at 0'C for 17 hours. The resulting fully porous cation exchange resin was washed, dried, and classified. As a result, the average particle diameter was 50 μm, and 95% or more of the particles were 25 to 75 μm. In addition, the sphericity is 95% or more and 2.0 or less, the volume porosity is 49%, and the relative ion exchange container is 2.1me.
q/g. This fully porous cation exchange resin is packed with a glass filter with an inner diameter of 15φ and a length of 300mm.
After filling the 5 columns, the same operation as in Example 1 was performed. As a result, the recovery rate of rare earth elements with a purity of 3N (99.9%) or higher was 8091% for S m, 71% for Nd, and 71% for P r. 82L:'i.

比較例2 中tr水としてクリシシ” /レメタクリレー1・、架
橋中ν体とじて工・1−レンゲリコールメタクリレ−1
へ、と用いてゲル型保持体粒子を製造した。次いで、こ
のゲル型保持体粒子を70°C17時間で亜硫酸すトリ
ウノ\水溶液で処理しスルホン酸基を導入し、得られた
ゲルを陽イオン交換樹脂は洗浄し、乾燥し、分級した。
Comparative Example 2 As a medium tr water, 1-remethacrylate/remethacrylate 1, cross-linked ν-form 1-rengelicol methacrylate-1
Gel-type carrier particles were manufactured using the following methods. Next, the gel-type carrier particles were treated with an aqueous solution of sulfite triuno at 70° C. for 17 hours to introduce sulfonic acid groups, and the resulting gel was washed with a cation exchange resin, dried, and classified.

その結果、平均粒径は50μm、95?6以−Fの粒子
か25〜75ノ、Z 】I+であった。又、真球度は、
952も以上か2.0以下であり、比隣イオン交換容量
は、2.3meq/gであった。
As a result, the average particle size was 50 μm, particles of 95?6 or more -F or 25 to 75, Z]I+. Also, the sphericity is
952 was also greater than or equal to 2.0, and the specific ion exchange capacity was 2.3 meq/g.

このゲル型陽イオン交換(51脂を内径15φ、長さ3
00 m mのフィルター付カラス性充填塔に充填した
後、実施例2と同様の操作を行なった結果、純度3N以
上の希土類元素の回収率はSmて3,196、Ndで8
?≦、Prで33%であった。
This gel-type cation exchange (51 fat, inner diameter 15φ, length 3
After filling a glass packed column with a 00 mm filter, the same operation as in Example 2 was performed, and as a result, the recovery rate of rare earth elements with a purity of 3N or higher was 3,196 for Sm and 8 for Nd.
? ≦, Pr was 33%.

Claims (1)

【特許請求の範囲】[Claims] 錯形成剤と陽イオン交換体を用いて希土類元素を相互分
離する方法において、陽イオン交換体として、スルホン
酸基と弱酸性陽イオン交換基とを有する球状陽イオン交
換体を用いることを特徴とする希土類元素の相互分離方
A method for mutually separating rare earth elements using a complexing agent and a cation exchanger, characterized in that a spherical cation exchanger having a sulfonic acid group and a weakly acidic cation exchanger is used as the cation exchanger. Mutual separation method of rare earth elements
JP63283733A 1988-11-11 1988-11-11 How to separate rare earth elements Expired - Fee Related JP2763044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283733A JP2763044B2 (en) 1988-11-11 1988-11-11 How to separate rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283733A JP2763044B2 (en) 1988-11-11 1988-11-11 How to separate rare earth elements

Publications (2)

Publication Number Publication Date
JPH02133532A true JPH02133532A (en) 1990-05-22
JP2763044B2 JP2763044B2 (en) 1998-06-11

Family

ID=17669396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283733A Expired - Fee Related JP2763044B2 (en) 1988-11-11 1988-11-11 How to separate rare earth elements

Country Status (1)

Country Link
JP (1) JP2763044B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115273A1 (en) * 2011-02-22 2012-08-30 National Institute For Materials Science Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
RU2579327C1 (en) * 2014-10-02 2016-04-10 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method for sorptive extraction of rare-earth elements from solutions
RU2610201C1 (en) * 2015-12-02 2017-02-08 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method of sorption extraction of rare-earth elements from pulps
CN114369182A (en) * 2021-12-20 2022-04-19 南京亘闪生物科技有限公司 Preparation method of porous high-molecular polymer microspheres with amphoteric structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377888A (en) * 1976-12-03 1978-07-10 Sentrachem Ltd Improved manufacture of anion exchange resin and use thereof
JPS5732341A (en) * 1980-08-04 1982-02-22 Asahi Chem Ind Co Ltd Separation of rare earth element
JPS5735650A (en) * 1980-08-08 1982-02-26 Asahi Chem Ind Co Ltd Separation of rare earth element
JPS5845341A (en) * 1981-09-11 1983-03-16 Agency Of Ind Science & Technol Separation of rare earth metal
JPS5976838A (en) * 1982-10-25 1984-05-02 Agency Of Ind Science & Technol Selective separation of rare earth metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377888A (en) * 1976-12-03 1978-07-10 Sentrachem Ltd Improved manufacture of anion exchange resin and use thereof
JPS5732341A (en) * 1980-08-04 1982-02-22 Asahi Chem Ind Co Ltd Separation of rare earth element
JPS5735650A (en) * 1980-08-08 1982-02-26 Asahi Chem Ind Co Ltd Separation of rare earth element
JPS5845341A (en) * 1981-09-11 1983-03-16 Agency Of Ind Science & Technol Separation of rare earth metal
JPS5976838A (en) * 1982-10-25 1984-05-02 Agency Of Ind Science & Technol Selective separation of rare earth metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115273A1 (en) * 2011-02-22 2012-08-30 National Institute For Materials Science Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
CN103392018A (en) * 2011-02-22 2013-11-13 独立行政法人物质·材料研究机构 Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
US9267188B2 (en) 2011-02-22 2016-02-23 National Institute For Materials Science Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements
RU2579327C1 (en) * 2014-10-02 2016-04-10 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method for sorptive extraction of rare-earth elements from solutions
RU2610201C1 (en) * 2015-12-02 2017-02-08 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method of sorption extraction of rare-earth elements from pulps
CN114369182A (en) * 2021-12-20 2022-04-19 南京亘闪生物科技有限公司 Preparation method of porous high-molecular polymer microspheres with amphoteric structures

Also Published As

Publication number Publication date
JP2763044B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
El Ouardi et al. The recent progress of ion exchange for the separation of rare earths from secondary resources–A review
US4599175A (en) Process for separating and purifying metallic elements by displacement chromatography
Peng et al. One-step and acid free synthesis of γ-Fe2O3/SBA-15 for enhanced arsenic removal
US11458448B2 (en) Magnetic strong base anion exchange resin with high mechanical strength, and preparation method thereof
KR101206826B1 (en) Improved preparation of metal ion imprinted microporous polymer particles
Jing et al. Free-standing large-mesoporous silica films decorated with lanthanum as new adsorbents for efficient removal of phosphate
GB2065495A (en) Separation of rare earth metals
JP2007229551A (en) Adsorbent
CA2641370C (en) Amphoteric ion exchangers
JPH02133532A (en) Separation of rare earth element from each other
US4411793A (en) Process for the separation of elements by chromatography
JPH11501942A (en) Purification method of dimethyl sulfoxide (DMSO)
Urano et al. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 3. Desorption of phosphate and regeneration of adsorbent
EP1078885B1 (en) Material for introducing physiologically-essential inorganic elements into drinkable water
CN114367267A (en) Mesoporous composite material and preparation method and application thereof
CN1083802C (en) Elimination of molybdenum from tungstate soltuion
JP4023148B2 (en) Ion exchange resin and mixed ion exchange resin bed using the same
JPH01126222A (en) Separation of rare earth element and purifying method therefor
JPS60137821A (en) Production of alumina of high purity
JPH10202119A (en) Mixed-bed type ion-exchange resin tower
JP7024967B2 (en) Manufacturing method of adsorbent
JPH02111822A (en) Separation of rare earth element
JP2957054B2 (en) How to prevent or eliminate ion exchange resin clamping
JP4238111B2 (en) Fluorine ion recovery material manufacturing method and fluorine ion recovery method
JPH0116778B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees