JPH02133326A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPH02133326A
JPH02133326A JP28535688A JP28535688A JPH02133326A JP H02133326 A JPH02133326 A JP H02133326A JP 28535688 A JP28535688 A JP 28535688A JP 28535688 A JP28535688 A JP 28535688A JP H02133326 A JPH02133326 A JP H02133326A
Authority
JP
Japan
Prior art keywords
optical element
pressure
lens
molding cylinder
hollow hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28535688A
Other languages
Japanese (ja)
Inventor
Kazuo Kogure
和雄 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP28535688A priority Critical patent/JPH02133326A/en
Publication of JPH02133326A publication Critical patent/JPH02133326A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/44Flat, parallel-faced disc or plate products

Abstract

PURPOSE:To easily produce a lens having an arbitrary shape at a low cost by pressing the end of a hollow cylindrical molding cylinder to the stock in a softened state and reducing the pressure in the hollow hole or pressurizing the inside of the hole at the time of producing the flat plate optical element having the convex or concave lens. CONSTITUTION:The optical element stock 5 is formed to a flat plate and is fitted into the recess 2 of a holding mold 1 where the flat plat is heated and softened by a heater 6. The end part of the molding cylinder 4 having the hollow hole 3 is then pressed to the optical element stock 5 and the pressure in the hole 3 is reduced down to the pressure lower than the pressure on the outside of the molding cylinder 4. The optical element stock 5 is sucked into the hollow hole 3 of the molding cylinder 4 in this way and the convex lens of a spherical shape formed without contact at the point of the time when the pressure balances with the surface tension. On the other hand, the concave lens having a spherical shape is formed when the pressure in the hollow hole 3 of the molding cylinder 4 is regulated higher than the external pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、凸レンズまたは凹レンズを有する平板状の光
学素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a flat optical element having a convex lens or a concave lens.

〔従来の技術〕[Conventional technology]

一般に、平板状の光学素子の製造方法では、平板面中に
イオンの濃度分布に基づく屈折率の分布を生じさせるこ
とにより、凸レンズアレイを形成していた。ところが、
この方法にあっては、イオン交換に要する期間が著しく
長いという欠点があった。また、近年実用化が開始され
た光学素子のモールド成形法では、成形自体は簡単であ
るが、成形型の材質の選定および形状の制作が臘めて難
しいという欠点があった。
Generally, in a method for manufacturing a flat optical element, a convex lens array is formed by creating a refractive index distribution based on the ion concentration distribution in the flat plate surface. However,
This method has the disadvantage that the period required for ion exchange is extremely long. Furthermore, in the molding method for optical elements that has recently been put into practical use, although the molding itself is simple, it has the disadvantage that it is difficult to select the material for the mold and to create the shape.

そこで、従来、特開昭59−196226号公報に開示
されるように、加熱軟化された光学素子素材に球状の押
し込み部材(成形型)を押し込み、連続的に凹レンズ面
を有する平板状の光学素子を得る方法が行われている。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 59-196226, a spherical pushing member (molding mold) is pressed into a heat-softened optical element material to form a flat optical element having a continuous concave lens surface. There is a way to get it.

また、特開昭61266322号公報に開示されるよう
に、加熱軟化された光学素子素材を成形穴を有する平板
状成形型に対して押圧し、その成形穴から光学素子素材
を押し出すことにより、凸レンズを有する平板状の光学
素子を得る方法が行われている。
Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 61266322, a convex lens can be formed by pressing a heat-softened optical element material against a flat mold having a molding hole and extruding the optical element material from the molding hole. A method of obtaining a flat optical element having the following has been carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、特開昭59−196226号公報の従来技術で
は、レンズ面は、光学素子素材に球状の押し込み部材を
押し込んで接触的に形成される。
However, in the prior art disclosed in Japanese Unexamined Patent Publication No. 59-196226, the lens surface is formed in contact with the optical element material by pushing a spherical pushing member into the material.

したがって、押し込み部材の表面状態の維持管理には高
度な技術が要求され、その結果として成形されたレンズ
のコストが高くなってしまうとともに、凹面レンズしか
形成できないという問題があった。
Therefore, sophisticated techniques are required to maintain and manage the surface condition of the push-in member, resulting in an increase in the cost of the molded lens and the problem that only concave lenses can be formed.

また、特開昭61−266322号公報の従来技術では
、モールド成形法のような高精度の成形型を必要とせず
かつ非接触的にレンズを形成できる利点を有するものの
、平凸レンズの形状しか得ることができず、任意形状の
レンズを得ることができないという問題があった。
Furthermore, although the conventional technique disclosed in JP-A-61-266322 has the advantage of being able to form lenses in a non-contact manner without requiring a high-precision mold as in the molding method, only a plano-convex lens shape can be obtained. Therefore, there was a problem in that it was not possible to obtain a lens with an arbitrary shape.

本発明は、かかる従来の問題点に鑑みてなされたもので
、成形型の作成やその表面状態の維持管理に高度な技術
を要求することなく、非接触にして任意形状のレンズを
低コストでかつ簡単に得ることができる光学素子の製造
方法を提供することを目的とする。
The present invention has been made in view of these conventional problems, and allows lenses of arbitrary shapes to be produced without contact at low cost without requiring advanced technology for the creation of molds or the maintenance and management of their surface conditions. It is an object of the present invention to provide a method for manufacturing an optical element that can be easily obtained.

〔課題を解決するための手段] 上記目的を達成するために、本発明は、平板状の光学素
子の製造するにあたり、軟化状態にした光学素子素材に
中空穴を有する成形筒の端部を押し当て、成形筒の中空
穴内の圧力を成形筒外の圧力より減圧または増圧するこ
とにより、前記光学素子素材を変形せしめてレンズを形
成することとした。
[Means for Solving the Problems] In order to achieve the above object, the present invention, when manufacturing a flat optical element, presses the end of a molding cylinder having a hollow hole into a softened optical element material. The lens is formed by deforming the optical element material by reducing or increasing the pressure inside the hollow hole of the molding cylinder compared to the pressure outside the molding cylinder.

〔作用〕[Effect]

上記構成の光学素子の製造方法によれば、成形筒の中空
穴内の圧力を成形筒外の圧力よりも減圧することにより
、光学素子素材は成形筒の中空穴内に吸引され、表面張
力とつり合った時点で球面状の凸レンズが非接触にして
形成される。一方、成形筒の中空穴内の圧力を成形筒外
の圧力よりも増圧することにより、光学素子素材は中空
穴に対向した部分に凹部が形成され、表面張力とつり合
った時点で球面状の凹レンズが非接触にして形成される
According to the method for manufacturing an optical element having the above configuration, by reducing the pressure inside the hollow hole of the molding cylinder to be lower than the pressure outside the molding cylinder, the optical element material is sucked into the hollow hole of the molding cylinder and balances the surface tension. At this point, a spherical convex lens is formed in a non-contact manner. On the other hand, by increasing the pressure inside the hollow hole of the molding cylinder more than the pressure outside the molding cylinder, a concave part is formed in the optical element material in the part facing the hollow hole, and when the surface tension is balanced, it becomes a spherical concave lens. is formed without contact.

また、2個の成形筒を同軸的に対向配置して各成形筒の
端部をそれぞれ光学素子素材に押し当て、中空穴内の圧
力を適宜減圧または増圧することにより、平凸状、平凹
状レンズに限定されず、各種形状のレンズを形成するこ
とができる。
In addition, plano-convex and plano-concave lenses can be formed by arranging two molding cylinders coaxially and facing each other, pressing the ends of each molding cylinder against the optical element material, and reducing or increasing the pressure in the hollow hole as appropriate. Lenses of various shapes can be formed without being limited to.

〔実施例〕〔Example〕

(第1実施例) 本実施例では、1個の平凸レンズを形成した。 (First example) In this example, one plano-convex lens was formed.

第1図aは、本実施例で用いた光学素子の製造装置を示
すもので、保持型1の上面には円柱状の凹部2が形成さ
れており、この凹部2の底面2aは平面状に形成されて
いる。凹部2の底面2aは、レンズの平面側を成形する
成形型としての機能を有するので、鏡面加工が施されて
いる。
FIG. 1a shows the optical element manufacturing apparatus used in this example, in which a cylindrical recess 2 is formed on the upper surface of a holding mold 1, and the bottom surface 2a of this recess 2 is flat. It is formed. The bottom surface 2a of the recess 2 functions as a mold for molding the flat side of the lens, and is therefore mirror-finished.

保持型lの凹部2の上方には、円柱状の中空穴3を有す
る円筒状の成形筒4が保持型lに対して接近離反自在に
設けられている。すなわち、成形筒4は、図示を省略し
た加圧装置に連結されており、保持型lの凹部2内に収
容された光学素子素材5を押圧できるように設けられて
いる。また、成形筒4の中空穴3は、図示を省略した圧
力調整装置に連結されており、中空穴3内の圧力を成形
筒4外の圧力よりも減圧または増圧調整できるように設
けられている。さらに、保持型1および成形筒4の周囲
には、ヒータ6が配置されている。
Above the concave portion 2 of the holding mold l, a cylindrical molding cylinder 4 having a cylindrical hollow hole 3 is provided so as to be able to move toward and away from the holding mold l. That is, the molding cylinder 4 is connected to a pressure device (not shown) and is provided so as to be able to press the optical element material 5 housed in the recess 2 of the holding mold l. Further, the hollow hole 3 of the forming cylinder 4 is connected to a pressure regulating device (not shown), which is provided so that the pressure inside the hollow hole 3 can be adjusted to be lower or higher than the pressure outside the forming cylinder 4. There is. Furthermore, a heater 6 is arranged around the holding mold 1 and the molding cylinder 4.

このような構成の製造装置により平凸レンズを形成した
場合について説明する。
A case where a plano-convex lens is formed using a manufacturing apparatus having such a configuration will be described.

光学素子素材5としては重フリントガラスSF7を用い
た。先ず、光学素子素材5を直径12 mn 。
Heavy flint glass SF7 was used as the optical element material 5. First, the optical element material 5 was made to have a diameter of 12 mm.

厚さ3鵬の平板に形成した。そして、この光学素子素材
5を保持型1の凹部2内に嵌め込み、ヒータ6によって
610 ’Cになるまで加熱した。
It was formed into a flat plate with a thickness of 3 mm. Then, this optical element material 5 was fitted into the recess 2 of the holding mold 1 and heated to 610'C by the heater 6.

成形筒4の直径は8InI1)、中空穴3の内径は3報
にそれぞれ設定した。光学素子素材5を加熱軟化した後
、成形筒4の端部を10kg/c+aの圧力で光学素子
素材5に押し込むとともに、中空穴3内の圧力をI X
 10− ”Torrに減圧し、軟化状態にある光学素
子素材5の一部を中空穴3内に吸引した。この際、成形
筒4外の圧力は大気圧であった。これにより、光学素子
素材5は、前記減圧による吸引力と光学素子素材5の表
面張力とがつり合った状態で変形を停止し、球面状のレ
ンズとなった。このようにして成形したレンズを冷却し
て保持型1がら取り出すと、第1図すに示すような平凸
レンズ7を得ることができた。この平凸レンズ7の凸面
の形状は、有効形2.9Mまでが曲率半径1.82mm
であった。
The diameter of the forming cylinder 4 was set to 8InI1), and the inner diameter of the hollow hole 3 was set to 3 values. After heating and softening the optical element material 5, the end of the molding cylinder 4 is pushed into the optical element material 5 at a pressure of 10 kg/c+a, and the pressure inside the hollow hole 3 is increased by IX
The pressure was reduced to 10-'' Torr, and a part of the optical element material 5 in a softened state was sucked into the hollow hole 3. At this time, the pressure outside the molding cylinder 4 was atmospheric pressure. 5 stopped deforming when the suction force due to the reduced pressure and the surface tension of the optical element material 5 were balanced, and became a spherical lens.The lens thus molded was cooled and molded into the holding mold 1. When taken out, a plano-convex lens 7 as shown in Fig. 1 was obtained.The shape of the convex surface of this plano-convex lens 7 has a radius of curvature of 1.82 mm up to an effective shape of 2.9M.
Met.

なお、曲率半径を変更するには、光学素子素材5の加熱
温度を軟化点よりも高い温度で変更するか、中空穴3内
の圧力を調整すれば、容易に制御することができる。
Note that the radius of curvature can be easily controlled by changing the heating temperature of the optical element material 5 to a temperature higher than its softening point or by adjusting the pressure inside the hollow hole 3.

以上のように、本実施例においては、成形筒4に設けた
中空穴3内の圧力を減圧し、光学素子素材5を吸引する
ことによって平凸レンズ7を形成するので、球面を成形
するための高価な球面型を必要とせず、単に円筒状の成
形筒4を用いるだけでよく、非接触的に凸面を形成する
ことができ、成形筒4の製作や維持管理が掻めて簡単で
きれいな表面のレンズを極めて低コストにて製造するこ
とが可能となる。
As described above, in this embodiment, the plano-convex lens 7 is formed by reducing the pressure in the hollow hole 3 provided in the molding tube 4 and sucking the optical element material 5. There is no need for an expensive spherical mold, it is sufficient to simply use a cylindrical molding tube 4, and a convex surface can be formed in a non-contact manner, making it easy to manufacture and maintain the molding tube 4, resulting in a clean surface. lenses can be manufactured at extremely low cost.

なお、本実施例による平凸レンズ7を多数並べると複写
機用レンズアレイとして使用することができる。
Incidentally, when a large number of plano-convex lenses 7 according to this embodiment are arranged side by side, it can be used as a lens array for a copying machine.

(第2実施例) 本実施例では、1個の平凹レンズを形成した。(Second example) In this example, one plano-concave lens was formed.

第2図aは、本実施例で用いた光学素子の製造装置を示
すもので、この装置は第1実施例の装置と同一構成であ
る。
FIG. 2a shows the optical element manufacturing apparatus used in this example, and this apparatus has the same configuration as the apparatus of the first example.

光学素子素材5として、第1実施例と同様のSF7を用
いた。先ず、光学素子素材5を溶融し、適量を保持型l
の凹部2に流し込んだ、この状態の光学素子素材5の粘
度は10〜103ポアズと低いので、ヒータ6によって
106°5ポアズの粘度になるように制御した。
As the optical element material 5, SF7 similar to that in the first embodiment was used. First, the optical element material 5 is melted and an appropriate amount is placed in the holding mold l.
Since the viscosity of the optical element material 5 in this state poured into the recess 2 was as low as 10 to 103 poise, the heater 6 was used to control the viscosity to 106°5 poise.

光学素子素材5が前記粘度に軟化した後、成形筒4を5
 kg / cjの圧力で光学素子素材5に押し込むと
ともに、中空穴3内の圧力を2kg/c4に減圧し、軟
化状態にある光学素子素材5の一部を中空穴3の下方に
押しひろげた。この際、成形筒4外の圧力は大気圧であ
った。これにより、光学素子素材5は、前記増圧による
押圧力と光学素子素材5の表面張力とがつり合った状態
で変形を停止し、球面状のレンズとなった。このように
して成形したレンズを冷却して保持型lから取り出すと
、第1図すに示すような平凸レンズ8を得ることができ
た。この平凸レンズ8の凸面の形状は、有効形2.7鵬
までが曲率半径3.25mmであった。
After the optical element material 5 has softened to the above viscosity, the molding tube 4 is
It was pushed into the optical element material 5 with a pressure of kg/cj, and at the same time, the pressure inside the hollow hole 3 was reduced to 2 kg/c4, and a part of the optical element material 5 in a softened state was pushed and spread below the hollow hole 3. At this time, the pressure outside the molding cylinder 4 was atmospheric pressure. As a result, the optical element material 5 stopped deforming in a state where the pressing force due to the pressure increase and the surface tension of the optical element material 5 were balanced, and became a spherical lens. When the lens thus molded was cooled and taken out from the holding mold 1, a plano-convex lens 8 as shown in FIG. 1 could be obtained. The shape of the convex surface of this plano-convex lens 8 had a radius of curvature of 3.25 mm up to an effective shape of 2.7 mm.

なお、曲率半径を変更するには、光学素子素材5の粘度
をヒータ6によって変更するか、中空穴3内の圧力を調
整すれば制御できることは、第1実施例と同様である。
Note that the radius of curvature can be changed by changing the viscosity of the optical element material 5 using the heater 6 or by adjusting the pressure inside the hollow hole 3, as in the first embodiment.

本実施例においては、成形筒4に設けた中空穴3内の圧
力を増圧し、光学素子素材5を押しひろげることによっ
て平凸レンズ8を形成するので、球面を成形するための
高価な球面型を必要とせず、第1実施例と同様の効果を
得ることができる。
In this embodiment, the plano-convex lens 8 is formed by increasing the pressure in the hollow hole 3 provided in the molding tube 4 and pushing and expanding the optical element material 5, so an expensive spherical mold for molding the spherical surface is not required. This is not necessary, and the same effects as in the first embodiment can be obtained.

(第3実施例) 本実施例では、平板状の両凸レンズ壱形成した。(Third example) In this example, a flat plate-shaped double-convex lens was formed.

第3図aは、本実施例で用いた光学素子の製造装置を示
すもので、保持型9の上面には四角形状の凹部lOが形
成されており、この凹部10の底面10aは平板状に形
成されている。また、保持型9には、凹部10の底面1
0aに貫通する4個の貫通孔1)が穿設されている。各
貫通孔1)の中心位置は、−辺が10aiの正方形の4
隅位置にそれぞれ設けられている。
FIG. 3a shows the optical element manufacturing apparatus used in this example, in which a rectangular recess 10 is formed on the upper surface of the holding mold 9, and the bottom surface 10a of this recess 10 is shaped like a flat plate. It is formed. The holding mold 9 also has a bottom surface 1 of the recess 10.
Four through holes 1) are drilled through Oa. The center position of each through hole 1) is 4 of a square with − sides of 10 ai.
They are located at each corner.

一方、各貫通孔1)には、それぞれ下成形筒4aが摺動
自在に嵌合されている。下成形筒4aには、第1図に示
す成形筒4aと同様に、中空穴3aが形成されている。
On the other hand, a lower molding cylinder 4a is slidably fitted into each through hole 1). A hollow hole 3a is formed in the lower molding cylinder 4a, similar to the molding cylinder 4a shown in FIG.

また、各下成形筒4aの上方には、下成形筒4aと同軸
的に下成形筒4bが対向配置されている。下成形筒4b
には、下成形筒4aと同様に中空穴3bが形成されてい
る。
Moreover, a lower molding cylinder 4b is disposed above each lower molding cylinder 4a, coaxially with and facing the lower molding cylinder 4a. Lower molding cylinder 4b
A hollow hole 3b is formed in the lower molding cylinder 4a.

さらに、各上下成形筒4a、4bは、第1図に示す成形
筒4と同様に、図示を省略した加圧装置に連結されてお
り、保持型9の凹部10内に収容された光学素子素材5
を押圧できるように設けられている。そして、上下成形
14a、4bの各中空穴3a、3bは、図示を省略した
圧力調整装置に連結されており、中空穴3a、3b内の
圧力を調整自在に設けられている。
Further, each of the upper and lower molding cylinders 4a, 4b is connected to a pressure device (not shown), similar to the molding cylinder 4 shown in FIG. 5
It is provided so that it can be pressed. Each of the hollow holes 3a and 3b of the upper and lower moldings 14a and 4b is connected to a pressure adjusting device (not shown), so that the pressure inside the hollow holes 3a and 3b can be freely adjusted.

その他の構成は、第1図に示す製造装置と同様の構成で
ある。
The other configuration is similar to that of the manufacturing apparatus shown in FIG.

このような構成の製造装置により平板状の両凸レンズを
形成した場合について説明する。
A case where a flat plate-shaped biconvex lens is formed using a manufacturing apparatus having such a configuration will be described.

光学素子素材5として、重クラウンガラスSK20を用
いた。先ず、光学素子素材5を22 X 22 X3M
の平板に形成した。そして、これを保持型9の凹部10
に嵌め込み、 ヒータ6によって660’Cになるまで
加熱した。
Heavy crown glass SK20 was used as the optical element material 5. First, the optical element material 5 is sized 22 x 22 x 3M.
It was formed into a flat plate. Then, insert this into the recess 10 of the holding mold 9.
and heated to 660'C using heater 6.

上下成形筒4a、4bの直径は8mm、中空穴3a、3
bの内径は31nI1)にそれぞれ設定した。光学素子
素材5を加熱軟化した後、各−E成形筒4bを15kg
/c4の圧力で光学素子素材5に押し込むとともに、対
向している各下成形筒4aも貫通孔1)を介して15k
g/c−の圧力で光学素子素材5に押し込んだ、そして
、下成形m4bの中空穴3bおよび下成形筒4aの中空
穴3aの圧力をそれぞれl X 10− ”Torrに
減圧し、軟化状態にある光学素子素材5の一部を中空穴
3a、3b内に吸引した。
The diameter of the upper and lower molding cylinders 4a, 4b is 8 mm, and the hollow holes 3a, 3
The inner diameter of b was set to 31nI1). After heating and softening the optical element material 5, each -E molding cylinder 4b weighs 15 kg.
/c4 pressure into the optical element material 5, and each opposing lower molding cylinder 4a is also pressed 15k through the through hole 1).
g/c- into the optical element material 5, and the pressures in the hollow hole 3b of the lower molding m4b and the hollow hole 3a of the lower molding cylinder 4a are reduced to 1 x 10-'' Torr, respectively, to a softened state. A part of a certain optical element material 5 was sucked into the hollow holes 3a and 3b.

またこの際、上下成形筒4a、4b外の圧力は大気圧で
あった。これにより、光学素子素材5は、前記減圧によ
る吸引力と光学素子素材5の表面張力とがつり合った状
態で変形を停止し、球面状のレンズとなった。このよう
にして成形したレンズを冷却して保持型9から取り出す
と、第3図すに示すような4個の両凸レンズを有する平
板状のレンズ12を得ることができた。凸面の形状は、
有効形2.80までが曲率半径1.74Mであった。
Further, at this time, the pressure outside the upper and lower forming cylinders 4a and 4b was atmospheric pressure. As a result, the optical element material 5 stopped deforming in a state where the suction force due to the reduced pressure and the surface tension of the optical element material 5 were balanced, and became a spherical lens. When the lens thus molded was cooled and taken out from the holding mold 9, a flat lens 12 having four biconvex lenses as shown in FIG. 3 was obtained. The shape of the convex surface is
The radius of curvature was 1.74M up to the effective shape 2.80.

なお、曲率半径の変更は、第1実施例の場合と同様であ
る。
Note that the change in the radius of curvature is the same as in the first embodiment.

本実施例においては、4個の対向する上下成形筒4a、
4bに設けた中空穴3a、3b内の圧力を増圧し、光学
素子素材5を吸引することによって平板状の両凸レンズ
12を形成するので、前記第1実施例と同様の効果を得
ることができた。
In this embodiment, four opposing upper and lower forming cylinders 4a,
Since the flat biconvex lens 12 is formed by increasing the pressure in the hollow holes 3a and 3b provided in the hollow holes 3a and 3b provided in the optical element material 5 and sucking the optical element material 5, the same effect as in the first embodiment can be obtained. Ta.

なお、本発明は上記各実施例に限定されるものではなく
、成形筒の中空穴内の圧力を適宜残圧または増圧する組
み合わせを任意に設定することにより、例えば第4図a
およびbに示すように、凸凹レンズ13および両凹レン
ズ14を形成することもできる。また、成形筒の中空穴
の形状は円形に限らず、任意の形状にすることができる
。例えば、矩形の中空穴とした場合、第4図Cに示すよ
うなシリンドリカルレンズ15を形成することができる
。一方、光学素子素材はガラスに限定されず、熱可塑性
樹脂材等であっても本発明を適用できるのは勿論である
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be applied by arbitrarily setting the combination of residual pressure or pressure increase in the hollow hole of the molding cylinder, for example, as shown in FIG. 4a.
As shown in FIGS. and b, a convex-concave lens 13 and a biconcave lens 14 can also be formed. Further, the shape of the hollow hole of the molding cylinder is not limited to a circular shape, but can be made into any shape. For example, in the case of a rectangular hollow hole, a cylindrical lens 15 as shown in FIG. 4C can be formed. On the other hand, the optical element material is not limited to glass, and the present invention can of course be applied to thermoplastic resin materials and the like.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の光学素子の製造方法によれば、
軟化状態にした光学素子素材に中空穴を有する成形筒の
端部を押し当て、成形筒の中空穴内の圧力を成形筒外の
圧力より減圧または増圧することにより、前記光学素子
素材を変形せしめてレンズを形成することとしたので、
非接触的に任意の形状をした凸レンズや凹レンズを製造
することができ、球面を成形するための高価なLF面型
を必要とせず、単に中空穴を有した成形筒を用いるだけ
でよく、成形筒の製作や維持管理が極めて簡単になり、
欠陥のないきれいなレンズ表面の平板状光学素子を極め
て低コストで製造することができる。
As described above, according to the method for manufacturing an optical element of the present invention,
The end of a molding cylinder having a hollow hole is pressed against the softened optical element material, and the pressure inside the hollow hole of the molding cylinder is reduced or increased compared to the pressure outside the molding cylinder, thereby deforming the optical element material. Since we decided to form a lens,
It is possible to manufacture convex lenses and concave lenses of any shape in a non-contact manner, and there is no need for an expensive LF surface mold for molding spherical surfaces, just a molding cylinder with a hollow hole is required, and molding is possible. The production and maintenance of tubes has become extremely easy,
A planar optical element with a defect-free and clean lens surface can be manufactured at extremely low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の第1実施例で用いた光学素子の製造
装置を示す縦断正面図、第1図すは第1実施例で得られ
たレンズの正面図、第2図aは本発明の第2実施例で用
いた光学素子の製造装置を示す縦断正面図、第2図すは
第2実施例で得られたレンズの正面図、第3図aは本発
明の第3実施例で用いた光学素子の製造装置を示す縦断
正面図、第3図すは第3実施例で得られたレンズの正面
図、第4図a、bおよびCはそれぞれ本発明の他の実施
例で得られたレンズの正面図および斜視図である。 1.9・・・保持型 3.3a、3b・・・中空穴 44a、4b・・成形筒 5・・・ヒータ 6・・・光学素子素材 7 8.12.13.14 15・・・レンズ
Fig. 1a is a longitudinal sectional front view showing the optical element manufacturing apparatus used in the first embodiment of the present invention, Fig. 1 is a front view of the lens obtained in the first embodiment, and Fig. 2a is the main A longitudinal sectional front view showing the optical element manufacturing apparatus used in the second embodiment of the invention, FIG. 2 is a front view of the lens obtained in the second embodiment, and FIG. 3a is a third embodiment of the invention FIG. 3 is a front view of the lens obtained in the third embodiment, and FIGS. 4a, b, and C are respectively other embodiments of the present invention. FIG. 3 is a front view and a perspective view of the obtained lens. 1.9... Holding mold 3.3a, 3b... Hollow holes 44a, 4b... Molding tube 5... Heater 6... Optical element material 7 8.12.13.14 15... Lens

Claims (1)

【特許請求の範囲】[Claims] (1)軟化状態にした光学素子素材に中空穴を有する成
形筒の端部を押し当て、成形筒の中空穴内の圧力を成形
筒外の圧力より減圧または増圧することにより、前記光
学素子素材を変形せしめてレンズを形成することを特徴
とする光学素子の製造方法。
(1) The end of a molding cylinder having a hollow hole is pressed against the softened optical element material, and the pressure inside the hollow hole of the molding cylinder is reduced or increased compared to the pressure outside the molding cylinder, thereby molding the optical element material. A method for manufacturing an optical element, which comprises deforming it to form a lens.
JP28535688A 1988-11-11 1988-11-11 Production of optical element Pending JPH02133326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28535688A JPH02133326A (en) 1988-11-11 1988-11-11 Production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28535688A JPH02133326A (en) 1988-11-11 1988-11-11 Production of optical element

Publications (1)

Publication Number Publication Date
JPH02133326A true JPH02133326A (en) 1990-05-22

Family

ID=17690500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28535688A Pending JPH02133326A (en) 1988-11-11 1988-11-11 Production of optical element

Country Status (1)

Country Link
JP (1) JPH02133326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476316B1 (en) * 2002-10-17 2005-03-16 한국전자통신연구원 Method for fabricating micro lens using master

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476316B1 (en) * 2002-10-17 2005-03-16 한국전자통신연구원 Method for fabricating micro lens using master

Similar Documents

Publication Publication Date Title
US20040050104A1 (en) Forming information transfer lens array
US20080055736A1 (en) Optical element and production device for producing same
JPH01106003A (en) Lens element and manufacture thereof
WO2003023458A3 (en) Multiple lens molding system and method
US5867327A (en) Process for manufacturing cylindrical microlenses
US6624948B1 (en) Method of forming precision glass microlens arrays and a microlens array formed therewith
JPH02133326A (en) Production of optical element
TWI786235B (en) Glass mold
JPS6195912A (en) Molding method of microlens
JPH1138203A (en) Lenticular lens sheet
JPH04114924A (en) Production of optical element
JPS61266322A (en) Production of optical element
JP2001270724A (en) Optical lens and metal mold for forming the same
JP2010001177A (en) Manufacturing method of lens array made of optical glass
JPH05330832A (en) Method for molding calchogenide glass lens
JPS63295448A (en) Method for molding glass lens
JPH05301723A (en) Method for forming optical element
TWI401217B (en) Arrayed glass lenses and forming method, forming apparatus thereof
JPS61242920A (en) Molding device for lens
CN116500709A (en) Manufacturing method of adjacent micro-lens array
JPS61227929A (en) Forming device for glass lens
JPS63103837A (en) Molding of optical element
SU842062A1 (en) Method of making optical parts preferably anodizing diaphragms
JPH0255234A (en) Mold for forming optical element and production of optical element
JPH01176240A (en) Mold for forming optical element