JPH02133213A - Bad road detecting device - Google Patents

Bad road detecting device

Info

Publication number
JPH02133213A
JPH02133213A JP28707288A JP28707288A JPH02133213A JP H02133213 A JPH02133213 A JP H02133213A JP 28707288 A JP28707288 A JP 28707288A JP 28707288 A JP28707288 A JP 28707288A JP H02133213 A JPH02133213 A JP H02133213A
Authority
JP
Japan
Prior art keywords
lateral
signal
lateral acceleration
road
bad road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28707288A
Other languages
Japanese (ja)
Inventor
Shinobu Kakizaki
柿崎 忍
Minoru Taniguchi
稔 谷口
Fukashi Kanai
金井 深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP28707288A priority Critical patent/JPH02133213A/en
Priority to DE3937841A priority patent/DE3937841A1/en
Publication of JPH02133213A publication Critical patent/JPH02133213A/en
Priority to US08/152,880 priority patent/US5487006A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/821Uneven, rough road sensing affecting vehicle body vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/922Travelling distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/102Damping action or damper stepwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/916Body Vibration Control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To enable the discrimination of a bad road by detecting the lateral acceleration acted upon a car body as well as the frequency of the detected acceleration valve exceeding the specified band width. CONSTITUTION:A lateral acceleration sensor 2 detects the lateral acceleration acted upon a car body and inputs it to the input circuit 1a of a controller 1 as an electric signal. The input circuit 1a removes the noise of the same electric signal, converts its level and inputs it into an arithmetic circuit 1b. The arithmetic circuit 1b disposes of the signal according to a flow chart as well as performs the comparative disposal with the data in a control condition setting circuit 1c by its timer and counter function, discriminates a bad road in case of exceeding the specified band width by the specified frequency within the specified time, outputs the signal to driving circuits 1d, 1e and ultimately drives the motor 16 of the hydraulic pressure buffer 3 of a wheel so as to perform buffer action. A device for detecting a bad road accurately can be thus obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等の車両に適用され、悪路を検出する
悪路検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rough road detection device that is applied to vehicles such as automobiles and detects rough roads.

(従来の技術) 従来、悪路を検出することのできる装置としては、特開
昭60−151111号公報に開示されているものがあ
る。
(Prior Art) Conventionally, as a device capable of detecting rough roads, there is one disclosed in Japanese Patent Laid-Open No. 151111/1983.

この従来装置は、路面状況に応じた車体の上下振動を検
出する上下振動検出器を有し、この上下振動検出器の検
出信号中の高周波成分及び低周波成分のレベルに基づき
悪路と判定するようにしたものであった。
This conventional device has a vertical vibration detector that detects the vertical vibration of the vehicle body depending on the road surface condition, and determines that the road is rough based on the levels of high frequency components and low frequency components in the detection signal of this vertical vibration detector. It was done like this.

(発明が解決しようとする課題) しかしながら、上述した従来装置にあっては、単に、上
下振動検出器の検出レベルが所定以上がどうかで判定し
ていたため、操舵時において大きくロールした場合にも
、上下振動のレベルが太き(なって、悪路と判定してし
まうという問題があった。
(Problem to be Solved by the Invention) However, in the conventional device described above, the determination was made simply based on whether the detection level of the vertical vibration detector was above a predetermined level, so even if there was a large roll during steering, There was a problem in that the level of vertical vibration was too high and the road was determined to be rough.

本発明は、上述のような問題点に着目して成されたもの
で、悪路を的確に検出できる悪路検出装置を提供するこ
とを目的とする。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a rough road detection device that can accurately detect rough roads.

(課題を解決するための手段) 上記目的を達成するために、本発明のサスペンションシ
ステムでは、車体に作用する横方向加速度(以下、横G
という)を検知する横加速度センサ(以下、横Gセンサ
という)と、この横加Gセンサからの信号を入力し、所
定時間もしくは所定距離を走行する間に、横Gが所定の
バンド幅を所定回数以上越えると悪路と判定する悪路判
定手段とを設けた。
(Means for Solving the Problems) In order to achieve the above object, the suspension system of the present invention is designed to reduce lateral acceleration (hereinafter referred to as lateral acceleration) acting on the vehicle body.
A lateral acceleration sensor (hereinafter referred to as lateral acceleration sensor) that detects the lateral acceleration sensor (hereinafter referred to as lateral acceleration sensor) is input, and the signal from this lateral acceleration sensor is input, and the lateral acceleration is detected within a prescribed band width for a prescribed number of times while driving for a prescribed time or a prescribed distance. A rough road determining means is provided which determines that the road is rough if the road exceeds the limit.

(作 用) 本発明の悪路検出装置の作動について説明する。(for production) The operation of the rough road detection device of the present invention will be explained.

車両が悪路を走行すると、それにより生じる車体振動は
、上下方向だけでなく横方向への揺れも含んだ振動とな
る。よって、この横揺れが横Gとして横Gセンサで検出
される。
When a vehicle travels on a rough road, the resulting vehicle body vibration includes vibration not only in the vertical direction but also in the lateral direction. Therefore, this lateral vibration is detected as lateral G by the lateral G sensor.

悪路判定手段では、横Gセンサからの信号を入力してい
て、この横Gが、所定時間もしくは所定走行距離中にお
いて所定の大きさの範囲であるバンド幅を何回越えたか
が数えられ、所定回数以上越えた場合に悪路であると判
定される。
The rough road determining means inputs the signal from the lateral G sensor, counts how many times the lateral G exceeds a band width within a predetermined size range during a predetermined time or a predetermined traveling distance, and calculates a predetermined value. If it exceeds the number of times, it is determined that the road is rough.

また、ロールにより横Gが作用した場合には、横Gがバ
ンド幅を越えることはあっても、その回数は、操舵を行
った回数に等しく、悪路の場合と比較すると極めて少な
くて所定回数を越えず、このロールによる横Gにより悪
路と判定されることはない。
In addition, when lateral G is applied due to roll, even though the lateral G exceeds the band width, the number of times it exceeds the band width is equal to the number of times the steering is performed, which is extremely small compared to the case of a rough road, and is a predetermined number of times. , and the road will not be determined to be rough due to the lateral G caused by this roll.

尚、横Gセンサは、例えば、4輪操舵装置等の他の装置
の制御にも併用することができる。
Note that the lateral G sensor can also be used for controlling other devices such as a four-wheel steering device, for example.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、実施例の構成を説明する。First, the configuration of the embodiment will be explained.

第1図は本発明実施例の悪路検出装置を適用したサスペ
ンションシステムSを示す全体図、第2図は実施例サス
ペンションシステムSの液圧緩衝器を示す断面図、第3
図は実施例装置のコントローラの作動流れを示すフロー
チャート、第4図は横Gセンサで検出する横Gと時間と
の関係を示すグラフである。
FIG. 1 is an overall view showing a suspension system S to which a rough road detection device according to an embodiment of the present invention is applied, FIG. 2 is a cross-sectional view showing a hydraulic shock absorber of the suspension system S of the embodiment, and FIG.
The figure is a flowchart showing the operation flow of the controller of the embodiment device, and FIG. 4 is a graph showing the relationship between lateral G detected by the lateral G sensor and time.

第1図において、1はコントローラを示している。この
コントローラ1には、入力側に横Gセンサ2が設けられ
、出力側に減衰力可変式の液圧緩衝器3,3,3.3が
設けられている。
In FIG. 1, 1 indicates a controller. This controller 1 is provided with a lateral G sensor 2 on the input side, and a variable damping force type hydraulic shock absorber 3, 3, 3.3 on the output side.

ここで、まず、液圧緩衝器3について説明すると、この
液圧緩衝器3は、車体の各4輪と車体4との間にそれぞ
れ設けられている。そして、この液圧緩衝器3は、第2
図に示すように、密封された外筒5と、外筒5に内蔵さ
れたシリンダ6と、シリンダ6の一端から挿入されたピ
ストンロッド7とピストンロッド7の先端に設けられて
シリンダ6の内壁を軸方向に摺動するピストン8と、シ
リンダ6の下端に設けられた図外のボトムバルブと、外
筒5の内壁およびシリンダ6によって形成されるリザー
バ室9と、ピストンロッド7を支持するロッドガイド1
0とを含んで構成されている。
First, the hydraulic shock absorber 3 will be explained. The hydraulic shock absorber 3 is provided between each of the four wheels of the vehicle body and the vehicle body 4. Then, this hydraulic shock absorber 3
As shown in the figure, there is a sealed outer cylinder 5, a cylinder 6 built into the outer cylinder 5, a piston rod 7 inserted from one end of the cylinder 6, and an inner wall of the cylinder 6 provided at the tip of the piston rod 7. A piston 8 that slides in the axial direction, a bottom valve (not shown) provided at the lower end of the cylinder 6, a reservoir chamber 9 formed by the inner wall of the outer cylinder 5 and the cylinder 6, and a rod that supports the piston rod 7. Guide 1
0.

前記ピストン8は、シリンダ6の内部を、液圧緩衝器3
の伸行程時に内部容積が減少される伸側液室11と、そ
の圧行程時に内部容積が減少される圧制液室12とに画
成する。そして、このピストン8には、伸側液室11と
圧側液室12とを連通する連通孔8a、8bが穿設され
ていて、両速通孔8a、8bはそれぞれ伸側減衰バルブ
8cと圧側減衰バルブ8dにより開閉される。
The piston 8 connects the inside of the cylinder 6 to the hydraulic shock absorber 3.
It is divided into an extension side liquid chamber 11 whose internal volume is reduced during the extension stroke, and a compression liquid chamber 12 whose internal volume is reduced during the compression stroke. The piston 8 is provided with communication holes 8a and 8b that communicate the expansion side liquid chamber 11 and the compression side liquid chamber 12, and the both speed communication holes 8a and 8b are connected to the expansion side damping valve 8c and the compression side, respectively. It is opened and closed by a damping valve 8d.

また、ピストンロッド7には、伸側液室11と圧側液室
12とを連通ずる連通路13が形成されていて、この連
通路13の途中には、断面積の異なる2つのオリフィス
孔14a(一つのみ図示)を有した調整子14が回転可
能に設けられていて、この調整子14の回転に基づき連
通路13の流路断面積が変化し、それによって、低減衰
力特性モード、中減衰力特性モード、高減衰力特性モー
ドの3通りに減衰力が変化可能となっている。
Further, a communication passage 13 is formed in the piston rod 7 to communicate the expansion side liquid chamber 11 and the pressure side liquid chamber 12, and in the middle of this communication passage 13, there are two orifice holes 14a ( An adjuster 14 is rotatably provided, and the cross-sectional area of the communicating passage 13 changes based on the rotation of the adjuster 14, thereby changing the mode between the low damping force characteristic mode and the medium damping force characteristic mode. The damping force can be changed in three ways: damping force characteristic mode and high damping force characteristic mode.

尚、この調整子14は、操作ロッド15を介してピスト
ンロッド7の車体4側基端に設けられたモータ16に連
結されていて、このモータ16の駆動により回転される
The adjuster 14 is connected via an operating rod 15 to a motor 16 provided at the base end of the piston rod 7 on the vehicle body 4 side, and is rotated by the drive of the motor 16.

次に、第1図に基づき、全体のシステムについて説明す
る。
Next, the entire system will be explained based on FIG.

前記横Gセンサ2は、車体4に作用する横方向の加速度
(横G)を検出し、検出槽Gに比例した電気信号である
加速度信号(横G信号g)を出力するもので、例えば、
横Gを受けて揺動可能な振子を備え、その振子の振れ量
に応じた電圧を発生するもの等が用いられる。尚、この
横Gセンサ2は、図外の4輪操舵装置の制御を行うため
にも併用されるようになっている。
The lateral G sensor 2 detects the lateral acceleration (lateral G) acting on the vehicle body 4 and outputs an acceleration signal (lateral G signal g) which is an electric signal proportional to the detection tank G. For example,
A device that includes a pendulum that can swing in response to lateral G and generates a voltage according to the amount of swing of the pendulum is used. The lateral G sensor 2 is also used to control a four-wheel steering device (not shown).

前記コントローラlは、いわゆるマイクロコンピュータ
であって、図示のように入力回路1a。
The controller 1 is a so-called microcomputer, and has an input circuit 1a as shown in the figure.

演算回路1b、制御条件設定回路1c、前輪側駆動回路
1d、後輪側駆動回路1eから構成されている。
It is comprised of an arithmetic circuit 1b, a control condition setting circuit 1c, a front wheel drive circuit 1d, and a rear wheel drive circuit 1e.

前記入力回路1aは、横G信号gを、演算回路lbで受
けられる信号レベルに変換すると共に、信号gに含まれ
るノイズを除去する機能を有している。
The input circuit 1a has the function of converting the lateral G signal g to a signal level that can be received by the arithmetic circuit lb, and also removing noise contained in the signal g.

前記演算回路1bは、入力回路1aからの信号を受け、
後述の第3図に示すフローチャートにしたがって、信号
を処理すると共に、制御条件設定回路lc内のデータと
比較処理し、かつ、必要に応じて両駆動回路1d、1e
に駆動信号を出力する機能を有する。また、この演算回
路1bは、タイマ機能やカウンタ機能を有している。
The arithmetic circuit 1b receives a signal from the input circuit 1a,
In accordance with the flowchart shown in FIG. 3, which will be described later, the signal is processed and compared with data in the control condition setting circuit lc, and both drive circuits 1d and 1e are processed as necessary.
It has the function of outputting a drive signal to. Further, this arithmetic circuit 1b has a timer function and a counter function.

前記制御条件設定回路1cは、演算処理回路lbの処理
信号に対し、比較値やその結果に対するアクチュエータ
の制御条件を予め記憶していると共に、演算回路1bに
よりデータを読み込み書き込みが可能となっている。
The control condition setting circuit 1c previously stores comparison values and actuator control conditions for the results of the processing signals of the arithmetic processing circuit 1b, and is capable of reading and writing data by the arithmetic processing circuit 1b. .

両駆動回路1d、1eは、演算回路1bからの駆動信号
にしたがって、それぞれ、前輪側の液圧緩衝器3のモー
タ16及び後輪側の液圧緩衝器3のモータ16を駆動さ
せる電圧信号Vを出力する電力増幅機能を有する。
Both drive circuits 1d and 1e receive a voltage signal V that drives the motor 16 of the front wheel side hydraulic shock absorber 3 and the motor 16 of the rear wheel side hydraulic pressure shock absorber 3, respectively, in accordance with the drive signal from the calculation circuit 1b. It has a power amplification function that outputs.

次に、第3図及び第4図に基づき実施例の作動を説明す
る。
Next, the operation of the embodiment will be explained based on FIGS. 3 and 4.

コントローラlの演算回路1bでは、第3図に示すよう
な流れの作動が成される。即ち、ステップ101では、
横Gセンサ2から横G信号gを読み込む処理を行う。
In the arithmetic circuit 1b of the controller 1, the flow shown in FIG. 3 is performed. That is, in step 101,
A process of reading the lateral G signal g from the lateral G sensor 2 is performed.

次に、ステップ102では横G信号gが所定のバンド幅
Bの上限を越えたかどうかの判断が成される。つまり、
車両が走行すると、車体に対し横Gが作用する。この横
Gに対して、制御条件設定回路1cには、第4図に示す
ような、悪路走行を示す幅を持ったバンド幅Bが設定さ
れていて、演算回路ibは必要に応じてこのバンド幅B
を呼び出して、入力される横G信号gと比較する。そし
てステップ102でバンド幅Bを越えた(Yes)と判
断するとステップ103に進み、越えていない(No)
と判断するとリターンされる。
Next, in step 102, it is determined whether the lateral G signal g exceeds the upper limit of the predetermined bandwidth B. In other words,
When a vehicle travels, lateral G acts on the vehicle body. For this lateral G, the control condition setting circuit 1c is set with a band width B that indicates driving on a rough road, as shown in FIG. Band width B
is called and compared with the input lateral G signal g. If it is determined in step 102 that the bandwidth B has been exceeded (Yes), the process proceeds to step 103, and if it has not been exceeded (No).
If it is judged as such, it will be returned.

次に、ステップ103では、演算回路lb内のタイマを
作動する処理を行う。尚、このタイマの作動時間は、車
速に応じて車速か早いと短くなり遅いと長くなるという
ように加減するようにしてもよい。
Next, in step 103, a process of operating a timer in the arithmetic circuit lb is performed. Note that the operating time of this timer may be adjusted depending on the vehicle speed, such that it becomes shorter when the vehicle speed is faster and becomes longer when the vehicle speed is slower.

次に、ステップ104では、演算回路1bの内のカウン
タを+lとするカウント処理を行いステップ105に進
む。
Next, in step 104, a counting process is performed to set the counter in the arithmetic circuit 1b to +l, and the process proceeds to step 105.

ステップ105では、横G信号gが前記バンド幅Bを越
えたかどうかの判断を行う。その判断がYesであれば
ステップ106に進み、NOであれば、ステップ107
に進む。
In step 105, it is determined whether the lateral G signal g exceeds the bandwidth B or not. If the judgment is YES, proceed to step 106; if NO, step 107
Proceed to.

ステップ106では、カウンタを+1するカウント処理
を行い、ステップ107に進む。
In step 106, the counter is incremented by 1, and the process proceeds to step 107.

ステップ107では、タイマがタイムアツプかどうかの
判断処理を行う。この判断がYesであればステップl
O8に進み、Noであればロターンする。
In step 107, it is determined whether or not the timer has timed up. If this judgment is Yes, step l
Proceed to O8, and if No, turn around.

ステップ10Bでは、カウンタによるカウント数が所定
値を越えたかどうかの判断が成される。
In step 10B, it is determined whether the count by the counter exceeds a predetermined value.

即ち、第4図に示すように、車両が悪路を走行する場合
には、横G信号gは、g−1で示すように周波数の高い
振れとなって、所定の短時間内に、バンド幅Bの上限と
下限とを交互に繰り返し越える。それに対し、車両が操
舵によりロールした場合には、同図g−2に示すように
、操舵を行った回数だけのピークを有した横G信号とな
る。従って、悪路の場合には、タイマがタイムアツプす
る前に、ステップ102及びステップ105の判断に基
づき、カウンタのカウント数が多くなっている。よって
、このステップ108の判断により、バンド幅Bを越え
た横G信号gが、所定以上の凹凸状態の悪路を走行して
いるためのものか、単なるロールによるものかを判断で
きる。
That is, as shown in FIG. 4, when the vehicle is traveling on a rough road, the lateral G signal g has a high frequency swing as shown by g-1, and the band changes within a predetermined short time. The upper and lower limits of width B are alternately and repeatedly exceeded. On the other hand, when the vehicle rolls due to steering, the lateral G signal has a peak equal to the number of times the steering is performed, as shown in g-2 in the figure. Therefore, in the case of a rough road, the number of counts on the counter increases based on the judgments in step 102 and step 105 before the timer times out. Therefore, by the determination in step 108, it is possible to determine whether the lateral G signal g exceeding the band width B is due to the vehicle traveling on a rough road with more than a predetermined level of unevenness or due to mere roll.

そして、このステップ108でYesと判断されるとス
テップ109に進み、NOと判断されるとステップ11
0に進む。
If YES is determined in this step 108, the process proceeds to step 109, and if NO is determined, step 11
Go to 0.

ステップ109では、液圧緩衝器3の減衰力を中減衰力
特性モードにすべくモータ16を駆動させる信号Vを出
力する処理を行う、従って、悪路走行時には中減衰力特
性モードとされ、乗り心地と車輪の接地性(操縦安定性
)の両立が図られる。尚、平坦な路面を走行する場合に
は、例えば、低速では低減衰力特性モードで、高速では
高減衰力特性モードというような、車速等の他の制御条
件に基づいて減衰力特性が制御される。
In step 109, a process is performed to output a signal V for driving the motor 16 in order to set the damping force of the hydraulic shock absorber 3 to the medium damping force characteristic mode. Therefore, when driving on a rough road, the mode is set to the medium damping force characteristic mode, and the Achieves both comfort and wheel ground contact (steering stability). Furthermore, when driving on a flat road surface, the damping force characteristics are controlled based on other control conditions such as vehicle speed, such as a low damping force characteristic mode at low speeds and a high damping force characteristic mode at high speeds. Ru.

ステップ110では、カウンタ・タイマをリセットする
処理を行った後にリターンする。
In step 110, the process returns after performing processing to reset the counter/timer.

以上のように、本実施例装置では、横Gセンサ2からの
横G信号gのみに基づいて、ロールによる横Gと間違え
ることなく悪路を的確に判断できるものである。
As described above, in the device of this embodiment, it is possible to accurately determine a rough road based only on the lateral G signal g from the lateral G sensor 2 without mistaking it for lateral G due to roll.

また、このように横Gセンサ2のみの信号で判断するよ
うにしたため、取付部の確保が容易であったり、ハーネ
スの配索が容易であったり、コントローラの入力ボート
数が少なくて済んだりして、全体システムを簡素化でき
る。
In addition, since the decision is made based on the signal from only the lateral G sensor 2, it is easier to secure the mounting area, easier to route the harness, and the number of input ports for the controller can be reduced. The overall system can be simplified.

以上、本発明の実施例を図面に基づいて説明したが、具
体的な構成はこの実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲における設計変更等があっ
ても本発明に含まれる。
Although the embodiments of the present invention have been described above based on the drawings, the specific configuration is not limited to these embodiments, and even if there is a design change or the like within the scope of the invention, the present invention include.

例えば、実施例では、悪路検出に際し、所定時間内のカ
ウント数が所定値を越えたかどうかで判断するようにし
たが、車速と時間等に基づいて、所定の走行距離内のカ
ウント数が所定以上かどうかで悪路を判断するようにし
てもよい。
For example, in the embodiment, when detecting a rough road, the judgment is made based on whether the number of counts within a predetermined time exceeds a predetermined value. A rough road may be determined based on whether the road is above or below.

(発明の効果) 以上説明してきたように本発明の悪路検出装置では、横
加速度センサからの信号を入力し、所定時間もしくは所
定距離を走行する間に、横方向加速度が所定のバンド幅
を所定回数以上越えると悪路と判定する悪路判定手段を
設けたため、ロールによる横加速度によっては悪路と判
定することはな(、的確な悪路判定ができるという効果
が得られる。
(Effects of the Invention) As explained above, in the rough road detection device of the present invention, the signal from the lateral acceleration sensor is input, and the lateral acceleration is within a predetermined band width while traveling for a predetermined time or a predetermined distance. Since a rough road determining means is provided that determines that the road is bad when the number of times exceeds a predetermined number, the road is not determined to be bad depending on the lateral acceleration caused by the roll (it is possible to accurately determine the rough road).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の悪路検出装置を適用したサスペ
ンションシステムSを示す全体図、第2図は実施例サス
ペンションシステムSの液圧緩衝器を示す断面図、第3
図は実施例装置のコントローラの作動流れを示すフロー
チャート、第4図は横Gセンサで検出される横Gと時間
との関係を示すグラフである。 l・・・コントローラ(悪路判定手段)2・・・横加速
度センサ 4・・・車体 第4図
FIG. 1 is an overall view showing a suspension system S to which a rough road detection device according to an embodiment of the present invention is applied, FIG. 2 is a cross-sectional view showing a hydraulic shock absorber of the suspension system S of the embodiment, and FIG.
The figure is a flowchart showing the operation flow of the controller of the embodiment device, and FIG. 4 is a graph showing the relationship between lateral G detected by the lateral G sensor and time. l...Controller (bad road judgment means) 2...Lateral acceleration sensor 4...Vehicle body Fig. 4

Claims (1)

【特許請求の範囲】 1)車体に作用する横方向加速度を検知する横加速度セ
ンサと、 この横加速度センサからの信号を入力し、所定時間もし
くは所定距離を走行する間に、横方向加速度が所定のバ
ンド幅を所定回数以上越えると悪路と判定する悪路判定
手段と、 を備えていることを特徴とする悪路検出装置。
[Claims] 1) A lateral acceleration sensor that detects lateral acceleration acting on the vehicle body; and a signal from the lateral acceleration sensor is input, and the lateral acceleration reaches a predetermined value while traveling for a predetermined time or a predetermined distance. A rough road detection device comprising: a rough road determining means that determines that the road is rough when the bandwidth of the road exceeds a predetermined number of times or more.
JP28707288A 1988-11-14 1988-11-14 Bad road detecting device Pending JPH02133213A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28707288A JPH02133213A (en) 1988-11-14 1988-11-14 Bad road detecting device
DE3937841A DE3937841A1 (en) 1988-11-14 1989-11-14 Road unevenness detector for vehicle suspension control - has lateral acceleration sensor for vehicle body with discriminator circuit
US08/152,880 US5487006A (en) 1988-11-14 1993-11-16 System for detecting road roughness for suspension control and automotive suspension control system utilizing thus detected road roughness as control parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28707288A JPH02133213A (en) 1988-11-14 1988-11-14 Bad road detecting device

Publications (1)

Publication Number Publication Date
JPH02133213A true JPH02133213A (en) 1990-05-22

Family

ID=17712691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28707288A Pending JPH02133213A (en) 1988-11-14 1988-11-14 Bad road detecting device

Country Status (1)

Country Link
JP (1) JPH02133213A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130600A (en) * 1982-10-07 1984-07-27 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Method and apparatus for treatng sewage sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130600A (en) * 1982-10-07 1984-07-27 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Method and apparatus for treatng sewage sludge

Similar Documents

Publication Publication Date Title
JP2528781Y2 (en) Suspension system
JP3037735B2 (en) Vehicle suspension device
JPH0899513A (en) Vehicle suspension device
JP3084054B2 (en) Vehicle suspension device
JPH0920121A (en) Vehicle suspension system
JPH05124413A (en) Vehicle suspension device
JP3083113B2 (en) Vehicle suspension system
JP2954411B2 (en) Vehicle suspension system
JP2002219921A (en) Control device for semiactive suspension system
JP3342622B2 (en) Loading status judgment device
JPH02133213A (en) Bad road detecting device
JP3194451B2 (en) Vehicle suspension system
JP3358117B2 (en) Vehicle suspension system
JPH11198624A (en) Vehicle behavior operation device and vehicle suspension device
JPH08216642A (en) Vehicle suspension device
JP3411429B2 (en) Loading status judgment device
JP2953675B2 (en) Vehicle suspension system
JP3379742B2 (en) Vehicle suspension system
JP3520288B2 (en) Vehicle suspension system
JPH0732842A (en) Vehicle suspension device
JP2590075Y2 (en) Vehicle suspension system
JP2956054B2 (en) Shock absorber damping force control device
KR19980084126A (en) Semi-active suspension device for automobiles and control method thereof
JPH05294124A (en) Vehicle suspension device
JP3189176B2 (en) Vehicle suspension system