JPH02132871A - Silent discharge type laser - Google Patents

Silent discharge type laser

Info

Publication number
JPH02132871A
JPH02132871A JP23374689A JP23374689A JPH02132871A JP H02132871 A JPH02132871 A JP H02132871A JP 23374689 A JP23374689 A JP 23374689A JP 23374689 A JP23374689 A JP 23374689A JP H02132871 A JPH02132871 A JP H02132871A
Authority
JP
Japan
Prior art keywords
gas
discharge
laser
silent
silent discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23374689A
Other languages
Japanese (ja)
Other versions
JPH0542839B2 (en
Inventor
Shigenori Yagi
重典 八木
Shuji Ogawa
小川 周治
Norikazu Tabata
田畑 則一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23374689A priority Critical patent/JPH02132871A/en
Publication of JPH02132871A publication Critical patent/JPH02132871A/en
Publication of JPH0542839B2 publication Critical patent/JPH0542839B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:Not only to increase a discharging power but also to improve a laser of this design in oscillation output power and oscillation efficiency by a method wherein the crosssectional width of a discharge space in a direction of the optical axis is almost equal to a gap length, and gap of a specified composition is used as a laser medium. CONSTITUTION:The crosssectional width of a silent discharge space 13, sandwiched in between electrodes 1a and 1b, in a direction of an optical axis is almost equal to a gap length d, and a gap medium, which contains at least three kinds of gases, CO2, N2 and He excluding H2O, is used as a laser medium, where the molar fractions of CO2 and N2 are 1-10% and 35-90% respectively. By this setup, a large discharging power can be applied and both an oscillation output power and an oscillation efficiency can be improved.

Description

【発明の詳細な説明】 この発明は,無声放電式レーザに係シ.とくに無声放電
式co2レーザのレーザ媒質として使用するガヌ成分の
最適化に関するものである。
[Detailed Description of the Invention] The present invention relates to a silent discharge laser. In particular, it relates to the optimization of the Ganu component used as the laser medium of a silent discharge type CO2 laser.

無声放電はレーザの励起に関しては全く新しい放電であ
見発明者らの研究以外その前例をみないものである。レ
ーザ媒質として用いるガスの最適成分についてもこれま
で全く知られていなかったのが実情であることを.説明
に先立って述べておく。
Silent discharge is a completely new discharge when it comes to laser excitation, and there is no precedent for it other than the inventors' research. The reality is that until now nothing was known about the optimal composition of the gas used as the laser medium. Before I explain, let me say something.

まず,無声放電式C02レーザについて,@交形レーザ
を例にとって説明する。レーザ用の媒質ガスは.従来.
百交形D,  C,放電式CO2レーザで用いられるc
o2−co−N2−He  混合ガスとほとんど同じ組
成で,これらのモル分率が5−2−15−re%,気体
圧が100Torrである。第1図は無声放電式CO2
レーザの構成図.第2図は第1図の1 − .1線断面
口を示す。これらの図において,la,lbは電極で幅
が2on,長さが2mであシ,2a,2bは電極la,
jbの各外面を被覆する誘電体で.これらは約10nF
の静電容量を有している。
First, a silent discharge type C02 laser will be explained using an @cross laser as an example. What is the medium gas for the laser? Conventional.
100-square D, C, C used in discharge type CO2 laser
It has almost the same composition as the o2-co-N2-He mixed gas, with a mole fraction of 5-2-15-re% and a gas pressure of 100 Torr. Figure 1 shows silent discharge type CO2
Diagram of laser configuration. Figure 2 is 1-. of Figure 1. 1-line cross section is shown. In these figures, la and lb are electrodes with a width of 2 on and a length of 2 m, and 2a and 2b are electrodes la and lb.
A dielectric covering each outer surface of jb. These are about 10nF
It has a capacitance of

3は両電極la,  1bで挾まれる無声放電空間で,
放電空隙長d==2O鶴である。すなわち,放電空間3
の光軸方向断面の幅と空隙長が略等しくなっている。ま
た,4は絶縁物からなるガスガイド,5は熱父換器,6
はフロア,7は金属製の容器で.電極1aとの最短距離
L=12)であり. 8は又流電源.9は全反射境, 
 Hlは部分反射鏡.11はレーザ出力光である。
3 is a silent discharge space sandwiched between electrodes la and 1b,
The discharge gap length d==2Otsuru. That is, discharge space 3
The width of the cross section in the optical axis direction and the gap length are approximately equal. In addition, 4 is a gas guide made of an insulator, 5 is a heat exchanger, and 6 is a gas guide made of an insulator.
is the floor, and 7 is the metal container. The shortest distance to the electrode 1a is L=12). 8 is a power supply. 9 is the total internal reflection boundary,
Hl is a partially reflecting mirror. 11 is laser output light.

第1図,第2図に示す無声放′這式co2  レーザで
.又流電源8によシ電極1a,  Ib  間に正弦波
電圧Vを印加すると.電極の電圧一電流の時間質化を示
す第3図からわかるように,時刻tAで放電期間に入っ
てパルス状放′畦竃流の重畳した′峨流Iが流れ,時刻
tBで放電が休止し,tB−t(が非放電期間となCe
tc−tl)が逆極性の放電期間である。放電空間にか
かる′成圧vgapは,第3図に示すように.放電期間
では一定値v本(約2KV )であシ.これは放電維持
電圧と呼ばれる。
With the silent CO2 laser shown in Figures 1 and 2. Furthermore, when a sinusoidal voltage V is applied between the electrodes 1a and Ib to the current power source 8. As can be seen from Figure 3, which shows the time quality of the electrode voltage and current, the discharge period begins at time tA, where a pulsating current I superimposed on the pulsed ridge current flows, and the discharge stops at time tB. Then, tB-t( is the non-discharge period and Ce
tc-tl) is a discharge period of opposite polarity. The forming pressure vgap applied to the discharge space is as shown in Figure 3. During the discharge period, a constant value of v (approximately 2KV) is applied. This is called the discharge sustaining voltage.

電圧Vと′#t流!とを掛けて得られるのは瞬間的な電
力である。このように無声放電では放電エネルギーは時
間的に不連続的K注入されるが.レーザの励起.発振出
力は゛1c源周波数として10KHz前後,ガス圧力と
してHIOTOrr前後の条件下ではいずれも時間的に
大体連続的であることがわかっている。
Voltage V and '#t flow! What you get by multiplying is the instantaneous power. In this way, in silent discharge, discharge energy is injected discontinuously in time. Laser excitation. It is known that the oscillation output is approximately continuous in time under the conditions that the 1c source frequency is around 10 KHz and the gas pressure is around HIOTOrr.

無声放電によってレーザ媒質は励起され.全反射鏡9.
部分反射鏡10で構成される光共振器内で発振が生じ.
発振光の一部がレーザ出力11として外に取フ出される
。レーザ媒質ガスはプロア6で加速され,放電空間3を
数10ms−1の高速で通過し次後.熱父挨器5で冷却
されて容器T内を循環する。
The laser medium is excited by the silent discharge. Total reflection mirror9.
Oscillation occurs within the optical resonator made up of the partially reflecting mirror 10.
A part of the oscillated light is extracted to the outside as laser output 11. The laser medium gas is accelerated by the proar 6 and passes through the discharge space 3 at a high speed of several tens of ms-1. It is cooled by the heat exchanger 5 and circulated in the container T.

そして,混合ガヌCO2−CO−N2−H2 = 5 
− 2−15−78(モル分墨).圧力,  p=10
0TOrr,周a数10KHzでの印加電圧の正の最大
個から負の最大値までのfl( peak−to−pe
ak l’i!.  以下ピークツウビーク個という)
 Vppと時間平均した放電電力Wdと祷られた発i出
力wr  との関係を第4図に示す。第4図において.
  Ml)I)=15KVのとき,発娠効出1 ( =
 Wr/Wd ) = 6.2 ’16で発振するCO
2レーザが祷られた。印加電圧vppを前述した以上に
上げると,容器Tと電極1aとの間に放電が発住し,む
だな放電電力がそこで消費されるのは勿論.放電ノイズ
で交流電源8が損傷を受けるなどの不都合金生じる。
And mixed Ganu CO2-CO-N2-H2 = 5
- 2-15-78 (mole fraction). pressure, p=10
fl (peak-to-pe
ak l'i! .. (hereinafter referred to as peak-to-beak)
FIG. 4 shows the relationship between Vpp, the time-averaged discharge power Wd, and the desired output i output wr. In Figure 4.
Ml) When I) = 15KV, pregnancy effect 1 ( =
Wr/Wd) = 6.2 CO oscillating at '16
2 lasers were prayed. If the applied voltage vpp is increased above the above-mentioned level, a discharge will occur between the container T and the electrode 1a, and wasteful discharge power will of course be consumed there. Inconveniences such as damage to the AC power supply 8 due to discharge noise occur.

印加電圧vppを増大させるのは.放屯電力Wdを増大
させ発揚出力を大きくシ.発振効率η(=Wr/Wd 
)fさらに上昇させようとして試みたことであるが.こ
れによって.前記ガス組成では放電電力の増大が困難で
あるという問題があることがわかった。
The applied voltage vpp is increased. By increasing the launch power Wd, the lifting power is increased. Oscillation efficiency η (=Wr/Wd
) This is what I tried to do to further increase f. by this. It has been found that there is a problem in that it is difficult to increase the discharge power with the above gas composition.

この発明は.前記ガス組成の問題に鑑み.放電電力の増
大が可能で.かつ発伽出力,発伽効率の大きい無声放電
式レーザを祷るために.ガス組成を最適化することを目
的としてなされ比ものである。
This invention... In view of the gas composition problem mentioned above. It is possible to increase the discharge power. In order to pray for a silent discharge laser with high output power and efficiency. This is a comparison made with the aim of optimizing the gas composition.

放電の電気的特性を研究した結果,無声放電の放電電力
Wdと印加′這圧のピークツウビーク値vpp無声放電
の放電維持′成圧v*.電源周波数f,電極の静電容量
CdO間には近似的に次式が成立することが明らかにな
った。
As a result of researching the electrical characteristics of discharge, we found that the discharge power Wd of silent discharge, the peak-to-beak value of applied pressure vpp, the discharge sustaining pressure of silent discharge v*. It has become clear that the following equation approximately holds true between the power supply frequency f and the electrode capacitance CdO.

Wd = f−Cd II2V* ( Vpp − 2
V1 )  ・−曲・・・(1)そして.放電維持電圧
V*は気体圧力p.放電空隙長dと, 2V1 : Apd −1+ B         ・
・・・・・・・・(2)(ただし, A,  BFiガ
スの常数である)の関係で結ばれる。またBは小さ〈通
常無視することができるので. 2V* : Apd            =−− 
131で表わすことができる。なお.以後Aを気体常数
と呼ぶ。印加できるvppmaxIIi同様に,かつ5
0チの安全車を見込んで, Vppmax=−,(ApL+B) = iApL −
・”i41(ここで.Lは高電圧無声放電′亀極と容器
あるい:i他の接地金属部分との最短距離である)で表
わせることが明らかになった。
Wd = f-Cd II2V* (Vpp-2
V1) - Song... (1) And. The discharge sustaining voltage V* is determined by the gas pressure p. Discharge gap length d and 2V1: Apd -1+ B ・
・・・・・・・・・(2) (However, A and BFi are constants of gas). Also, B is small (usually can be ignored). 2V*: Apd =--
131. In addition. Hereinafter, A will be referred to as the gas constant. Similar to vppmaxIIi that can be applied, and 5
Considering the safety car of 0chi, Vppmax=-, (ApL+B) = iApL -
・It became clear that it can be expressed as ``i41'' (where L is the shortest distance between the high-voltage silent discharge electrode and the container or other grounded metal part).

以上の結果を総合すると.放電電力Wdの上限Wdma
Xは. となる。
Putting the above results together. Upper limit Wdma of discharge power Wd
X is. becomes.

前記【5》式に基いて.レーザの構造を変えることな<
. WdfnaXを増大させるには,{1}電源周波数
fを上げる till  電極の静電容量cdを上げる(一 気体常
数Aの大きなガス組成を見出す(M  気体圧力pを上
げる ことの4つの手段が考えられる。
Based on the formula [5] above. Do not change the structure of the laser.
.. In order to increase Wdfna .

しかし,{1)の電源周波数fを上げることは,電源製
作費用が高くなる上K.電源のエネルギー効高が悪くな
る欠点がある。《鮒》の電極の静電容量Cdを上げるた
めに,電極面積を大きくすれば装置の大形化を伴い.ま
た誘電体の厚さを薄くすれば誘電体の耐電圧性能が低下
し,さらに誘電体の誘電率を上げれば誘′IItiSの
高い材質は一般に耐′成圧性能が不良であるという欠点
があシ.前記いずれかの手段を採る必要があるので.い
ずれかの欠点が生じる。+lv)の気体圧力pを上げる
方法は.放電電力の上限WdmaXを上げる効果がある
が,同時K発振に必要な最低の放電電力WOも大略気体
圧力pの2乗p2に比例して上がるので,結局レーザの
効率を上げることができず.よい手段ではない。
However, increasing the power supply frequency f in {1) increases the cost of manufacturing the power supply and also increases the cost of manufacturing the power supply. This has the disadvantage that the energy efficiency of the power source deteriorates. In order to increase the capacitance Cd of the ``carp'' electrode, increasing the electrode area would result in an increase in the size of the device. Furthermore, if the thickness of the dielectric is made thinner, the voltage resistance of the dielectric will decrease, and if the permittivity of the dielectric is increased, materials with high dielectric constants will generally have poor pressure resistance. C. It is necessary to take one of the above methods. Some drawbacks arise. +lv) How to increase the gas pressure p. Although this has the effect of increasing the upper limit of the discharge power WdmaX, the minimum discharge power WO required for simultaneous K oscillation also increases approximately in proportion to the square of the gas pressure p2, so in the end the efficiency of the laser cannot be increased. It's not a good method.

そこで.この発明では,気体常数Aが大きく,かつレー
ザ発振K好適な媒質ガスの組成を得て,高出力.高効率
の無声放電式co2 レーザを実現させようとするもの
である。
Therefore. In this invention, a medium gas composition with a large gas constant A and suitable for laser oscillation K is obtained, and high output is achieved. The aim is to realize a highly efficient silent discharge type CO2 laser.

ところで.気体常数Aのガスの種類への依存性は,ここ
で初めて明らかにされることであシ.これまでにその依
存性を知るべき根拠となる研究は全くない。これは,c
o2レーザに無声放電を応用することは,発明者らKよ
って最初になされたという事情に基いている。
by the way. The dependence of the gas constant A on the type of gas will be clarified for the first time here. To date, there has been no research that provides any basis for understanding this dependence. This is c
The application of silent discharge to the o2 laser is based on the fact that it was first made by the inventors K.

無声放電は.第3図にも示したように.電圧印加の1サ
イクル中に放電期間と非放電期間とがあシ.放電期間の
時間的並びに空間的な平均の放電電圧がV*である。放
電期間では.さらκ分散したパルス状の微細な放電が発
生と消滅を繰返すことが.空気中並びに酸素中の無声放
電について明らかにされており.C02レーザの媒質ガ
ス中でも同様の現象が生じるものと推定される。すなわ
ち。無声放電は.これ自体が放電の点火と,放電の維持
と,滅火という互にきわめて異なり几現象を全て含んで
いるので,前記電圧V本の絶対値.ガスのオ1類への依
.存性はいずれも火花放鑞.グロー放電などの研究分野
からの推定は不司能であった。
Silent discharge. As shown in Figure 3. A discharge period and a non-discharge period are different during one cycle of voltage application. The temporal and spatial average discharge voltage during the discharge period is V*. During the discharge period. In addition, minute pulse-like discharges with κ dispersion occur and disappear repeatedly. Silent discharges in air and oxygen have been revealed. It is presumed that a similar phenomenon occurs in the medium gas of the C02 laser. Namely. Silent discharge. This itself includes all of the phenomena of ignition of the discharge, maintenance of the discharge, and extinction of the discharge, which are all very different from each other, so the absolute value of the voltage V mentioned above. Dependence on gas class 1. All of their existence is spark-filled. Extrapolation from research fields such as glow discharge was impossible.

以下に気体常数Aのガス組成依存性を実験結果K基いて
鋭明する。
The dependence of the gas constant A on the gas composition will be explained below based on the experimental results K.

第1図,第2−に基いて前述した比較例のものと頌似の
CO2 −CO−N2−Heの混合ガス中で,  co
2が5係.COが2俤を保ったまま,  N2  のモ
ル分率を変化させ7’(揚合の2v*の変化の一例を第
5図に示す。これによる気体常数Aの変化およびこれに
伴う放電電力の上限Wdmaxの変化を第6図に示す。
Co
2 is in charge of 5. Figure 5 shows an example of a change in the 2v* value of 7' (increase) by changing the mole fraction of N2 while keeping CO at 2. FIG. 6 shows changes in the upper limit Wdmax.

さらに.それぞれの場合の発振に必要な最小の放電電力
WO,発揚出力wrと放心電力Wdの増分の比qo (
=ΔWr/Δwd )の変化を発振実験の結果から第T
図に示す。WOとη0 を用いれば発振出力の上限 W
rmaxと放電電力の上限Wdma)Cとは wr”ax=(Wd”ax−WO)1o    ”””
”’ 《6’で結ばれ,発振効率ηの上限ηmaxはと
なる。
moreover. The minimum discharge power WO required for oscillation in each case, the ratio of the increase in the oscillation output wr and the eccentric power Wd qo (
= ΔWr/Δwd) from the results of the oscillation experiment.
As shown in the figure. Using WO and η0, the upper limit of the oscillation output W
rmax and the upper limit of discharge power Wdma)C are wr”ax=(Wd”ax−WO)1o “””
``'《6', and the upper limit ηmax of the oscillation efficiency η is as follows.

第6図.第T図の結果から発振効率の上限ηmax発準
出力の上限W rIna Xを求めた結果を第8図に示
す。この第8図からわかるように.放電電力投入の観点
からはN2のモル分本35%以上で比較例の2倍以上の
効果が祷られ.発搗効率上昇の観点からtdN26Q%
〜To%カJi適,  N2 3 5 〜!I O 9
6で最適値の80%を達成できる。
Figure 6. FIG. 8 shows the results of determining the upper limit ηmax of the oscillation efficiency and the upper limit W rIna X of the oscillation output from the results shown in FIG. As you can see from this Figure 8. From the viewpoint of discharging power input, it is expected that the effect will be more than twice that of the comparative example when the molar amount of N2 is 35% or more. tdN26Q% from the perspective of increasing pumping efficiency
~To%KaJisuit, N2 3 5~! IO 9
6 can achieve 80% of the optimum value.

理解を容易にするために.1例としてN2のモル分高6
0%の実坤例と比較例の15係とを対比してwd,  
Wr,  Vl)1)の関係を第9図に示す。
To make it easier to understand. As an example, the molar content of N2 is 6
Comparing the 0% actual example and the 15th comparative example, wd,
The relationship between Wr, Vl)1) is shown in Figure 9.

N260%の実施例ではVl)pは28KVまで印加で
きるようになシWdは最大6.4KW, Wrは最大0
.72KWとなシ.η:1 1. 2チの無声放電式c
o2  レーザを実限することができ念。
In the example of N260%, Vl)p can be applied up to 28KV, Wd is maximum 6.4KW, and Wr is maximum 0.
.. 72KW. η:1 1. 2-chi silent discharge type c
o2 Just in case you can use the laser to its fullest potential.

以上鋭明したように前述の実施例Kよれば,  N2の
モル分率を35〜9096K選ぶことKよシ. 放電電
力を大きく投入することが可能となシ.かつ発振効率,
発振出力の大きな無声放電式co2  レーザを実現す
ることが可能になる。
As clearly explained above, according to the above-mentioned Example K, selecting the molar fraction of N2 from 35 to 9096 K is better than K. It is possible to input a large amount of discharge power. and oscillation efficiency,
It becomes possible to realize a silent discharge type CO2 laser with a large oscillation output.

なお,前述の実施例のガス組成の最適化は.第1図,第
2■に示す装置において.電極1aと容器Tあるいはそ
の他の接地金属部分との間に放電riIJ11が失じな
いことを条件として yppmaXの前記式(41 f
 Mたことが出発点の1つになっている。
The optimization of the gas composition in the above example is as follows. In the apparatus shown in Fig. 1 and 2. On the condition that the discharge riIJ11 is not lost between the electrode 1a and the container T or other grounded metal part,
One of the starting points was M.

装置の構造を.電極1aと容器Tあるいは他の接地金属
部分との距IfILが十分に長いように構成した場合に
は yppmaxは誘電体2a,  2b の耐電圧性
能で決まる大きな値(#40KV)になる。
The structure of the device. When the distance IfIL between the electrode 1a and the container T or other grounded metal part is configured to be sufficiently long, yppmax becomes a large value (#40 KV) determined by the withstand voltage performance of the dielectrics 2a and 2b.

この場合には前記式(1)でvppmaX ) 2y*
 を仮定すれば明らかなように, WdmaX ”ot. A  参vppmaXになる。
In this case, in equation (1) above, vppmaX ) 2y*
As is clear, if we assume that WdmaX ”ot.

気体常数Aの大きいガス組成によって.放電電力を増大
し.かつ発振効率の高いレーザを得る効果は,この場合
も発揮できる。
Due to the gas composition with a large gas constant A. Increase discharge power. The effect of obtaining a laser with high oscillation efficiency can also be achieved in this case.

次に.この発明の他の実施例について説明する。next. Other embodiments of this invention will be described.

前述した実施例テFiCO2 5 L  CO 2 ’
16の一定モル分率でN2のモル分率を変化させた場合
Kついて述べたが.ガス中の成分coは.もともとco
2がCOと02に解離することにょりレーザめガス組成
が賛化し,長時間ガス封じ切〕の条件下で発振効率が低
下するのを防ぐために用いられたものである。
The above-mentioned example FiCO2 5 L CO 2 '
As mentioned above, when the mole fraction of N2 is varied at a constant mole fraction of 16. The component co in the gas is. Originally co
This was used to improve the laser gas composition by dissociating 2 into CO and 02, and to prevent the oscillation efficiency from decreasing under conditions of long-term gas shut-off.

し次がって.ガスを入れ替えながら運転する場合には,
COは必ずしも必要ではない。また.ガス封じ切りで長
時間効出のiい安定な運転を行ないたい場合には.CO
のモル分元を最適値に設定しておくことが望ましい。
Then... When operating while exchanging gas,
CO is not always necessary. Also. If you want to perform efficient and stable operation for a long time by shutting off the gas. C.O.
It is desirable to set the mole fraction element to an optimal value.

以下にCOを含まない場合およびcoを含む場合のそれ
ぞれについて述べる。
The case where CO is not included and the case where co is included will be described below.

まず,  CO2−N2−He混合ガスにおいて,気体
定数Aと組成の関係を第10図に示す。第10図におい
て,気体定数Aの11iiilは専らN2によって決定
され,CO2,Heのモル分出が与える影響は小さいこ
とがわかる。したがって W d m a Xを上昇さ
せる目的は第6図の場合と同様にN2のモル分率35%
以上で達成できる。発振効元も同時K上昇させる効果は
,C02が1〜1(lの範囲で達成できる。C02のモ
ル分率がこの範囲を外れると40は1(1以下になり.
レーザ発珈器としては実用性の少ないものとなる。
First, Figure 10 shows the relationship between the gas constant A and the composition of a CO2-N2-He mixed gas. In FIG. 10, it can be seen that 11iii of the gas constant A is determined exclusively by N2, and the influence of the molar fraction of CO2 and He is small. Therefore, the purpose of increasing W d m a
The above can be achieved. The effect of simultaneously increasing the K of the oscillation effect source can be achieved when C02 is in the range of 1 to 1 (l). When the mole fraction of C02 is outside this range, 40 becomes 1 (1 or less).
This makes it less practical as a laser emitter.

次に.  CO2 −CO−N2−He混合ガスに訃い
では第11図に示すように,COのモル分率が0〜5チ
で.気体常数Aは急激に大きくなる。一方.η0はCO
のモル分率が10チを越えると10チ以下になる。C0
2モル分高の異なる状態での結果を総合すると.次のよ
うに伝える。すなわち. COのモル分名はCO2のモ
ル分高のO〜2倍の範囲で,かつN2のモル分元が35
〜ロチの範囲であれば.ydmaXを大きく.かつηm
a*を大きくする結果が発揮でき.さらKガス封じ切シ
運転条件下でも長時間安定した発振出力のco2レーザ
が得られる。
next. When using a CO2 -CO-N2-He mixed gas, as shown in Figure 11, the mole fraction of CO is 0 to 5. The gas constant A increases rapidly. on the other hand. η0 is CO
If the molar fraction exceeds 10 Ti, it becomes less than 10 Ti. C0
Combining the results for different states of 2 molar height. Say the following: In other words. The molar fraction of CO is in the range of 0 to 2 times the molar height of CO2, and the molar fraction of N2 is 35
~If it is within the range of Lochi. Increase ydmaX. and ηm
The result of increasing a* can be achieved. Furthermore, a CO2 laser with stable oscillation output for a long time can be obtained even under K gas-filled operating conditions.

さらに,  Heの一部をArに置換し次ガスでも.こ
の発明は有効である。すなわち,  CO2−CO−N
2一He −A r混合ガスでArのモル分兜が気体常
数AK与える影轡の一例を第12図に示す。この第12
図からArのモル分元は気体常数Aの値に.したがって
Wd m a Xに余ク影Wt与えないことがわかる。
Furthermore, some of the He was replaced with Ar and the next gas was also used. This invention is effective. That is, CO2-CO-N
FIG. 12 shows an example of the effect that the molar fraction of Ar has on the gas constant AK in a 2-He-Ar mixed gas. This twelfth
From the figure, the mole component of Ar is the value of the gas constant A. Therefore, it can be seen that no residual shadow Wt is given to Wd m a X.

一万,  Arのモル分率が17 4t− 越えすなわ
ちHeのそル分率を越えると.η0が10%未満とな)
ηmaxを上昇させる効果が小さくなる。そして,C0
2のモル分出が1〜10%,coのモル分率が002の
0〜2倍のいずれの範囲Kついても,大体同じ状態であ
った。すなわち,CO2のモル分塞が1〜10チ,  
coがco2の0〜2倍,  N2のモル分率が35〜
90%のすべてを渦たし,がっArかHeの0〜1倍の
範囲ではWd m a Xを 大きくシ,かつηmax
を大きくするガス組成が祷られる。そして,  Heを
ArKf!if!換することは,  Heが高価なガス
であるからレーザの運転費用が安くなる実用的効果が大
きい。
10,000, if the mole fraction of Ar exceeds 174t-, that is, the mole fraction of He. η0 is less than 10%)
The effect of increasing ηmax becomes smaller. And C0
The situation was almost the same regardless of the range K where the mole fraction of 2 was 1 to 10% and the mole fraction of co was 0 to 2 times that of 002. That is, the molar fraction of CO2 is 1 to 10 cm,
CO is 0 to 2 times that of CO2, and the mole fraction of N2 is 35 to 2.
90% of the vortex, and in the range of 0 to 1 times that of Ar or He, increase WdmaX, and increase ηmax.
A gas composition that increases the And, He is ArKf! If! Since He is an expensive gas, replacing it has a great practical effect of reducing the operating cost of the laser.

前述した実施例では.いずれもガス流と光軸方向が百交
する面交形の無声放醒式C02レーザを示したが.軸流
形の構成の場合にも,  yppmaX  を決定する
距離Lの対象となる個所が異なるだけで,この発明を適
用でき,その効果も同じである。
In the example described above. In both cases, a silent open-circuit C02 laser is shown in which the gas flow and the optical axis direction intersect with each other. Even in the case of an axial flow type configuration, the present invention can be applied and the effect is the same, only that the location targeted by the distance L that determines yppmaX is different.

第13図は軸流形の無声放電式レーザの構成原理図であ
シ.断面円環状の絶縁管15の電極1a,1bに被覆さ
れた部分が誘電体2a,2b  として慟らき.電極l
a,lbは絶縁1−14で包まれている。ま九.放電空
隙長dは誘′1体2a,  2b  間の距離と等しい
ため,放電空間30光軸方向断面の幅と空隙長は等しく
なっている。更に全反射鏡9.部分反射鏡tort接地
された金属裂のミラーホルダ13で保待され.絶縁物か
らなるガスガイド4には図示してない熱父換器とブロア
とが接続されている。この実施例では電極1aとミラー
ホルダ13との最短距離がyp,maxを決定する距離
Lとなる。
Figure 13 is a diagram showing the principle of construction of an axial flow type silent discharge laser. The portions of the insulating tube 15, which has an annular cross section and are covered with the electrodes 1a and 1b, are used as dielectric materials 2a and 2b. electrode l
a, lb are wrapped with insulation 1-14. Nine. Since the discharge gap length d is equal to the distance between the dielectrics 2a and 2b, the width of the cross section of the discharge space 30 in the optical axis direction is equal to the gap length. Furthermore, a total reflection mirror 9. The partial reflector is held in a grounded metal mirror holder 13. A heat exchanger and a blower (not shown) are connected to the gas guide 4 made of an insulating material. In this embodiment, the shortest distance between the electrode 1a and the mirror holder 13 is the distance L that determines yp and max.

以上説明したように.この発明によれば,無声放電式レ
ーザのガス媒質として.少なくともC02−N2−He
の3種類のガス成分を含み.かつCO2のモル分率が1
〜10%かつN2のモル分富力135〜90%の範囲の
混合ガスを用いたことによプ.放電電力が大きく投入で
き.発振効塞の大きい.すなわち.大出力のレーザを実
現させることができるという効果がある。
As explained above. According to this invention, it can be used as a gas medium for a silent discharge laser. At least C02-N2-He
Contains three types of gas components. and the mole fraction of CO2 is 1
~10% and N2 molar enrichment range of 135-90%. A large amount of discharge power can be input. The oscillation effect is large. In other words. This has the effect of realizing a high-output laser.

なお.この発明Kおいて.ガス媒質として前記CO2−
N2−Heの混合ガスにCO’kflS加し,  CO
 のモル分率がC02のモル分尤の2倍以下Kすること
により.ガス封じ切シ条件下で長期間にわたシ安定した
大出力のレーザを提供できる。また.ガス媒質として前
記CO2−N2−HeあるいfIico2−co−N 
2 − H eの混合ガスのHeをArに一部置換し,
  Arのモル分名がHeの1倍以下Kすることによシ
,大出力無声放電弐C02レーザ用の安価なガスを提供
できる。
In addition. In this invention K. The CO2- as a gas medium
CO'kflS is added to the N2-He mixed gas, and CO
By making the mole fraction of K less than twice the mole fraction of C02. It is possible to provide a stable high-output laser for a long period of time under gas-filled conditions. Also. The above CO2-N2-He or fIico2-co-N as a gas medium
Partially replacing He in the 2-He mixed gas with Ar,
By making the molar fraction of Ar less than 1 times that of He, it is possible to provide an inexpensive gas for a high-output silent discharge C02 laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無声放電式C02レーザの一例を示す側面図.
第2図は第1図の夏−1−に沿う断面図,第3図は第1
図,第2図に示すレーザの電流・電圧の説明図.第4図
は比較例のガス組成での放電電力.発揚出力と印加電圧
のピークツウピーク値を示す図.第5図は放1!維待電
圧v本と気体圧力p.放電空隙長dの槓pciとの関係
を示す図,第6図はガス中のN2のモル分元と最大放電
電力WdmaX,気体定数Aの関係を示す図,第T図は
ガス中のN2のモル分率と放電電力に対する発揚出力η
0と発揚に必要な最小放電電力WOの関係を示す図.第
8図はガス中のN2のモル分率と最大発揚効率ηmax
の関係を示す図.第9因はこの発明の一実施例のガスに
おける放電電力Wd,  発振出力wrと印加電圧のピ
ークツウピーク値vppとの関係を比較例のガスと比較
して示した図,第10図は気体定数Aに与えるC02の
モル分率の影響をCO2−N2−He混合ガスについて
示した図.第11図は気体定数Aに与えるCOのモル分
率の影響をCO2−CO−N2−He混合ガスについて
示した図,第12図は気体定数AK与えるArのモル分
塞の影響をCO2−CO−N2 −He−Ar混合ガス
について示した図,第13図[alおよびlbld軸流
形無声放電弐〇O2レーザにこの発明を適用した例を示
す側断面図および横断面図である。 la,lb・・・電極,2a,2b・・・誘電体.3・
・・放電空間.4・・・ガスガイド,5・・・熱ダ換器
.6・・・プロワ.T・・・容器,8・・・交流電源.
9・・・全反射鏡.10・・・部分反射鏡.13・・・
ミラーホルダ.15・・・絶縁管。 なお.図中同一符号は同一または相当部分を示す。
Figure 1 is a side view showing an example of a silent discharge type C02 laser.
Figure 2 is a cross-sectional view along the summer-1- of Figure 1, and Figure 3 is a cross-sectional view along the
An explanatory diagram of the laser current and voltage shown in Fig. 2. Figure 4 shows the discharge power for the gas composition of the comparative example. Diagram showing peak-to-peak values of lifting power and applied voltage. Figure 5 is 1! Maintenance voltage v and gas pressure p. Figure 6 is a diagram showing the relationship between the discharge gap length d and pci, Figure 6 is a diagram showing the relationship between the molar fraction of N2 in the gas, the maximum discharge power WdmaX, and the gas constant A, and Figure T is the relationship between the molar fraction of N2 in the gas and the gas constant A. Lifting power η versus mole fraction and discharge power
A diagram showing the relationship between 0 and the minimum discharge power WO required for liftoff. Figure 8 shows the mole fraction of N2 in the gas and the maximum lift efficiency ηmax
Diagram showing the relationship between. The ninth factor is a diagram showing the relationship between the discharge power Wd, the oscillation output wr, and the peak-to-peak value vpp of the applied voltage in the gas of one embodiment of the present invention in comparison with the gas of the comparative example. A diagram showing the influence of the mole fraction of C02 on the constant A for a CO2-N2-He mixed gas. Figure 11 shows the influence of the mole fraction of CO on the gas constant A for a CO2-CO-N2-He mixed gas, and Figure 12 shows the influence of the mole fraction of Ar on the gas constant AK on the CO2-CO -N2 -He-Ar mixed gas, and Figure 13 is a side sectional view and a transverse sectional view showing an example in which the present invention is applied to an al and lbld axial flow type silent discharge two O2 laser. la, lb... electrode, 2a, 2b... dielectric. 3.
...discharge space. 4... Gas guide, 5... Heat exchanger. 6... Prowa. T... Container, 8... AC power supply.
9... Total reflection mirror. 10...partial reflecting mirror. 13...
Mirror holder. 15...Insulating tube. In addition. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一方が誘電体で放電面が被覆された1
組の電極間に交流電圧を引加し、両電極で挾まれる放電
空間に無声放電を生じさせるようにした無声放電式レー
ザにおいて、上記放電空間の光軸方向断面の幅と空隙長
を略等しくすると共に、ガス媒質がH_2Oを除した少
なくともCO_2−N_2−Heの3種類のガス成分を
含み、CO_2のモル分率が1〜10%で、かつN_2
のモル分率が35〜90%の範囲であることを特徴とす
る無声放電式レーザ。
(1) At least one side is covered with a dielectric material 1
In a silent discharge laser in which an AC voltage is applied between a pair of electrodes to generate a silent discharge in a discharge space sandwiched between the two electrodes, the width of the cross section in the optical axis direction of the discharge space and the gap length are and the gas medium contains at least three types of gas components, CO_2-N_2-He, excluding H_2O, and the mole fraction of CO_2 is 1 to 10%, and N_2
A silent discharge laser characterized in that the molar fraction of is in the range of 35 to 90%.
(2)放電空間のガスがH_2Oを除した少なくともC
O_2−CO−N_2−Heの4種類のガス成分を含む
ことを特徴とする特許請求の範囲第1項記載の無声放電
式レーザ。(3)放電空間のガスがH_2Oを除した少
なくともCO_2−N_2−He−Arの4種類のガス
成分を含むことを特徴とする特許請求の範囲第1項また
は第2項記載の無声放電式レーザ。
(2) The gas in the discharge space is at least C less than H_2O
The silent discharge laser according to claim 1, characterized in that it contains four types of gas components: O_2-CO-N_2-He. (3) The silent discharge laser according to claim 1 or 2, wherein the gas in the discharge space contains at least four types of gas components, CO_2-N_2-He-Ar, excluding H_2O. .
JP23374689A 1989-09-08 1989-09-08 Silent discharge type laser Granted JPH02132871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23374689A JPH02132871A (en) 1989-09-08 1989-09-08 Silent discharge type laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23374689A JPH02132871A (en) 1989-09-08 1989-09-08 Silent discharge type laser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55034593A Division JPS6035838B2 (en) 1980-03-18 1980-03-18 Silent discharge laser

Publications (2)

Publication Number Publication Date
JPH02132871A true JPH02132871A (en) 1990-05-22
JPH0542839B2 JPH0542839B2 (en) 1993-06-29

Family

ID=16959930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23374689A Granted JPH02132871A (en) 1989-09-08 1989-09-08 Silent discharge type laser

Country Status (1)

Country Link
JP (1) JPH02132871A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979799A (en) * 1972-11-15 1974-08-01
JPS52115690A (en) * 1976-03-24 1977-09-28 Mitsubishi Electric Corp Laser device
JPS53113496A (en) * 1977-03-15 1978-10-03 Mitsubishi Electric Corp Gas laser device
JPS5424591A (en) * 1977-07-26 1979-02-23 Mitsubishi Electric Corp Gas laser unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979799A (en) * 1972-11-15 1974-08-01
JPS52115690A (en) * 1976-03-24 1977-09-28 Mitsubishi Electric Corp Laser device
JPS53113496A (en) * 1977-03-15 1978-10-03 Mitsubishi Electric Corp Gas laser device
JPS5424591A (en) * 1977-07-26 1979-02-23 Mitsubishi Electric Corp Gas laser unit

Also Published As

Publication number Publication date
JPH0542839B2 (en) 1993-06-29

Similar Documents

Publication Publication Date Title
EP0152084B1 (en) Gas laser device
US20170222389A1 (en) Gas laser
Christensen et al. High efficiency microwave discharge XeCl laser
JPH0141263B2 (en)
JPS603170A (en) Silent discharge type gas laser device
JPH02132871A (en) Silent discharge type laser
JPS6037189A (en) Silent discharge exciting coaxial type laser oscillator
US3396301A (en) Gas laser tube having a hollow elongated cathode electrode
Dyer et al. Miniature 250 Hz, TEA CO2 laser using H2 buffered gas mixture
JPS61280689A (en) Gas laser apparatus
US3935547A (en) High pressure gas laser using uniform field electrode configuration with irradiation by corona discharge
JPS6035838B2 (en) Silent discharge laser
Johnson Excitation of an atmospheric-pressure CO 2-N 2-He laser by capacitor discharges
Biswas et al. Operation of a helium-free TEA CO2 laser
Smith et al. High repetition-rate and quasi-cw operation of a waveguide CO2 TE laser
JPS60178681A (en) Gas laser device
JPS61159780A (en) Silent discharge type gas laser device
US5095490A (en) Asymmetric rf excited gas laser electrode configuration
Bahrampour et al. A Compact Simple Structure TEA CO2 Laser with Dielectric Corona Preionization
CN105846289B (en) A kind of radio frequency CO2Laser and its non-steady-waveguide mixing chamber
JPS6052070A (en) Coaxial type laser oscillator
JPS5917871B2 (en) gas laser equipment
JPS6235278B2 (en)
JPS631086A (en) Gas laser oscillator
CN108933377A (en) A kind of pulse CO2Laser discharge cavity