JPH02132308A - Depth measuring instrument - Google Patents

Depth measuring instrument

Info

Publication number
JPH02132308A
JPH02132308A JP28563388A JP28563388A JPH02132308A JP H02132308 A JPH02132308 A JP H02132308A JP 28563388 A JP28563388 A JP 28563388A JP 28563388 A JP28563388 A JP 28563388A JP H02132308 A JPH02132308 A JP H02132308A
Authority
JP
Japan
Prior art keywords
light
optical heterodyne
depth
heterodyne interferometer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28563388A
Other languages
Japanese (ja)
Inventor
Akira Tsumura
明 津村
Tamiyoshi Yasunaga
安永 民好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28563388A priority Critical patent/JPH02132308A/en
Publication of JPH02132308A publication Critical patent/JPH02132308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent measuring light intensity from decreasing owing to the staining of a window through which the light enters/goes out provided to a chamber where a body to be measured is mounted by separating light from a light source into two linear polarized components which differ in frequency and guiding them to 1st and 2nd optical heterodyne interferometers. CONSTITUTION:The laser light from the laser oscillator 1 is made incident on a frequency shifter 3 and separated into the P-polarized light and S-polarized light, which are made incident on a beam splitter 4 as laser light having the two orthogonal linear polarized components differing in frequency. One of the light components which are separated here illuminates a position where the groove of the body (a) to be measured in the chamber 10 is being formed through an optical heterodyne interferometer 5 and the other illuminates a part where the groove of the body (a) to be measured is not formed through an optical heterodyne interferometer 7. The output signal of the optical heterodyne interferometer 7 is used as a reference signal for the output of the optical heterodyne interferometer 5 and an arithmetic part calculates their phase difference to measure the depth of the groove without being affected by the deviation in light intensity.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は被測定物体の深溝の深さを測定する深さ測定装
置に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a depth measuring device for measuring the depth of a deep groove in an object to be measured.

(従来の技術) 従来、半導体装置等の製造過程において、ドライエッチ
ングなどレジストをマスクにして配線パターンあるいは
素子パターンを食刻形成する工程があった。これはスル
ーホールの形成のように食刻を2段階行うようなものが
あり、このような工程での食刻の終了点を監視する必要
が生じていた。そのための深さを測定する装置の開発が
行われている。
(Prior Art) Conventionally, in the manufacturing process of semiconductor devices and the like, there has been a process such as dry etching in which a wiring pattern or an element pattern is etched using a resist as a mask. In some cases, such as through-hole formation, etching is performed in two stages, and it has become necessary to monitor the end point of etching in such a process. For this purpose, a device for measuring depth is being developed.

このような技術は基本的には第4図に示したようなもの
である。被測定物体に所定波長の光を照射し、この照射
された光の反射光を受光し、その光強度を検出する。こ
のとき、被測定物体表面で反射した光と、食刻されてい
る溝の底面で反射した光との干渉が生じ、第5図のグラ
フに示したように反射光の光強度は溝の深さが照射した
光のλ/2の正数倍の深さになるごとにピークを検出す
る。この光強度のピークの回数を算出することで溝の深
さを検出することができる。
Such a technique is basically as shown in FIG. The object to be measured is irradiated with light of a predetermined wavelength, the reflected light of the irradiated light is received, and the intensity of the light is detected. At this time, interference occurs between the light reflected from the surface of the object to be measured and the light reflected from the bottom surface of the etched groove, and as shown in the graph of Fig. 5, the light intensity of the reflected light increases at the depth of the groove. A peak is detected every time the depth becomes a positive multiple of λ/2 of the irradiated light. The depth of the groove can be detected by calculating the number of times the light intensity peaks.

また、別の方法として特開昭60−86833号公報に
開示されたような反射光の代りに回折光を検出する方法
が考えられている。これは溝部分の回折光と溝部分以外
の部分からの回折光との光強度が同程度になることによ
り深さを測定するものである。
Further, as another method, a method of detecting diffracted light instead of reflected light as disclosed in Japanese Patent Laid-Open No. 60-86833 has been considered. This measures the depth when the light intensity of the diffracted light from the groove portion and the diffracted light from a portion other than the groove portion become approximately the same.

(発明が解決しようとする課題) 上述のような手段では、被測定物体が食刻のためのチャ
ンバー内に載置されるため、照射する光を取り入れるた
めにチャンバーに設けられた測定光入出射用の窓に食刻
工程により発生した物質が付着し、測定強度を低下させ
るなどの問題点が生じていた。
(Problem to be Solved by the Invention) In the above-described means, since the object to be measured is placed in a chamber for etching, a measurement light input/output interface is provided in the chamber to take in the irradiation light. Substances generated during the etching process adhered to the windows for use, causing problems such as lowering the measurement strength.

本発明はこのような課題を解決した深さ変化測定装置を
提供するものである。
The present invention provides a depth change measuring device that solves these problems.

[発明の構成] (課題を解決するための手段) 単色光を照射する光源と、この光源より発した光を周波
数の異なる互いに直交した2つの直線偏光成分に分離し
て出力する周波数シフタと、この周波数シフタによって
周波数がシフトされた光を被測定物体の深溝が形成され
つつある所定部位に光を照射しその反射光束を干渉させ
る第1の光ヘテロダイン干渉計と、光源より発した光を
被測定物体の深溝を形成していない所定部位に光を照射
しその反射光束を干渉させる第2の光ヘテロダイン干渉
計と、この第2の光ヘテロダイン干渉計の出力結果を第
1の光ヘテロダイン干渉計の出力結果の参照信号として
出力し、この出力結果の位相変化から溝の深さを測定す
る演算部とを具備した深さ測定装置である。
[Structure of the Invention] (Means for Solving the Problems) A light source that emits monochromatic light, a frequency shifter that separates the light emitted from the light source into two mutually orthogonal linearly polarized components with different frequencies, and outputs the separated light components. A first optical heterodyne interferometer that irradiates the light whose frequency has been shifted by the frequency shifter to a predetermined part of the object to be measured where deep grooves are being formed and interferes with the reflected light flux; A second optical heterodyne interferometer that irradiates light onto a predetermined part of the measurement object that does not form a deep groove and interferes with the reflected light flux, and a first optical heterodyne interferometer that transmits the output result of this second optical heterodyne interferometer. This depth measuring device is equipped with an arithmetic unit that outputs the output result as a reference signal and measures the depth of the groove from the phase change of this output result.

(作用) 上述のように深さ測定装置を構成すると、第1の光ヘテ
ロダイン干渉計の出力に対して、第2の光ヘテロダイン
干渉計の出力を参照信号とし、この位相差を算出するこ
とで光強度の変位に影響されない深さ測定装置が構成で
きる。これは反射光あるいは被測定物体からの反射光全
体の光強度が低下した場合にも、位相差を取ることで溝
がらの一つだけの光ヘテロダイン干渉計で検出した場合
におこる光強度の低下による誤検出を解消できるもので
ある。
(Function) When the depth measuring device is configured as described above, the output of the second optical heterodyne interferometer is used as a reference signal and the phase difference between the output of the first optical heterodyne interferometer and the output of the first optical heterodyne interferometer is calculated. A depth measuring device that is not affected by changes in light intensity can be constructed. This also occurs when the light intensity of the reflected light or the entire reflected light from the object being measured decreases, but by taking the phase difference, the light intensity decreases when detected by an optical heterodyne interferometer with only one groove. This can eliminate false detection caused by

(実施例) 以下に本発明の実施例を図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例の深さ測定装置の構成を示した構成図
である。レーザ発振器(1)より放出したレーザ光の光
軸上に偏光板(2)、周波数シフタ(3)設けられてい
る。この周波数シフタ(3)の構成を第2図に示す。周
波数シフタ(8)に入射したレーザ光は偏光ビームスプ
リッタ(3a)により分離され、それぞれブラッグセル
(3b) . (3c)に入射する。ブラッグセル(3
b) , (3c)に入射したレーザ光は、それぞれ別
々の周波数にシフトざれ出刀される。この2つの周波数
の異なるレーザ光はそれぞれミラ(ad) ,(Be)
により反射され、偏光ビームスピリッタ(3f)に入射
し、ここで合成され出力される。
FIG. 1 is a configuration diagram showing the configuration of a depth measuring device according to this embodiment. A polarizing plate (2) and a frequency shifter (3) are provided on the optical axis of laser light emitted from a laser oscillator (1). The configuration of this frequency shifter (3) is shown in FIG. The laser light incident on the frequency shifter (8) is separated by a polarizing beam splitter (3a) and sent to Bragg cells (3b), . (3c). Bragg Cell (3
The laser beams incident on b) and (3c) are shifted to different frequencies and output. These two laser beams with different frequencies are Mira (ad) and (Be), respectively.
The beams are reflected by the polarizing beam splitter (3f), where they are combined and output.

この周波数シフタ(3)より発した光束の光軸上にビー
ムスプリッタ(4)が配置されている。このビームスプ
リッタ(4)を透過したレーザ光は第1の光ヘテロダイ
ン干渉計(5)に入射するように配置され、ビームスプ
リッタ(4)を反射したレーザ光の光軸上にはミラー(
6)と、これによって偏向した光軸上に第2の光ヘテロ
ダイン干渉計(8)が設けられている。
A beam splitter (4) is arranged on the optical axis of the light beam emitted from the frequency shifter (3). The laser beam transmitted through this beam splitter (4) is arranged so as to be incident on the first optical heterodyne interferometer (5), and a mirror (
6), and a second optical heterodyne interferometer (8) is provided on the optical axis deflected by this.

この光ヘテロダイン干渉計(5).(7)の構成を以下
に説明する。光源より入射した光束を偏向方向ごとに参
照光と測定光とに分離する偏光ビームスブリッタ(5a
) , (7a)と、この偏光ビームスプリッタ(5a
) . (7a)を透過した参照光を再び偏光ビームス
プリッタ(5a) ,(7a)に反射させるミラー(5
c) ,(7c)と、偏光ビームスプリッタ(5a) 
,(7a)とミラー(5c) , (7c)との間にλ
/4波長板(5b), (7b)とが設けられている。
This optical heterodyne interferometer (5). The configuration of (7) will be explained below. A polarizing beam splitter (5a
), (7a) and this polarizing beam splitter (5a
). A mirror (5) that reflects the reference light transmitted through (7a) back to the polarizing beam splitter (5a) and (7a).
c) , (7c) and polarizing beam splitter (5a)
, (7a) and mirrors (5c), (7c).
/4 wavelength plates (5b) and (7b) are provided.

また、偏光ビームスプリッタ(5a) . (7a)を
下方に反射した測定光の光軸上にはλ/4波長板(5d
) . (7d)が設けられている。さらに、この参照
光と測定光とを同軸上に合わせて射出する偏光ビームス
プリッタ(5a) , (7a)上方に偏光板(5e)
 , (7e)  光量検出素子(5f).(7f)が
順次光軸上に設けられている。
Also, a polarizing beam splitter (5a). (7a) On the optical axis of the measurement light reflected downward is a λ/4 wavelength plate (5d
). (7d) is provided. Furthermore, a polarizing beam splitter (5a), (7a) that aligns the reference light and the measurement light on the same axis and emits them, and a polarizing plate (5e)
, (7e) Light amount detection element (5f). (7f) are sequentially provided on the optical axis.

この第1及び第2の光ヘテロダイン干渉計(5),(7
)の光量検出素子(5f) , (7f’)の検出出力
を受信可能なように演算部(8)が接続されている。
These first and second optical heterodyne interferometers (5), (7
) is connected to an arithmetic unit (8) so as to be able to receive the detection outputs of the light quantity detection elements (5f) and (7f').

さらに、第1及び第2の光ヘテロダイン干渉計(5),
 (7)下方には被測定物体(a)を内部に載置したエ
ッチング装置のチャンバー(1o)が設けてあり、光ヘ
テロダイン干渉計(5) , (7)の測定光の光軸上
にはそれぞれ測定光入出射窓(11−5) , (11
−7)が設けられている。
Furthermore, first and second optical heterodyne interferometers (5),
(7) At the bottom, there is a chamber (1o) of an etching device in which the object to be measured (a) is placed, and on the optical axis of the measurement light of the optical heterodyne interferometers (5) and (7) Measurement light input/output window (11-5), (11
-7) is provided.

以下の本実施例の作用について説明する。The operation of this embodiment will be explained below.

レーザ発振器(1)より放出したレーザ光は偏光板(2
)を透過する際に、所定の偏光方向を統一され、周波数
シフタ(3)に入射される。
The laser beam emitted from the laser oscillator (1) passes through the polarizing plate (2
), the predetermined polarization direction is unified, and the light is input to the frequency shifter (3).

この周波数シフタ(3)に入射したレーザ光は、周波数
シフタ(3)に入射したレーザ光は偏光ビームスプリッ
タ(3a)によりP偏波とS偏波に分離され、それぞれ
ブラッグセル(3b) ,(lc)に入射する。
The laser light incident on the frequency shifter (3) is separated into P polarization and S polarization by the polarization beam splitter (3a), and the laser light enters the frequency shifter (3) into P polarization and S polarization, respectively. ).

ブラッグセル(3b) , (Be)に入射したレーザ
光は、それぞれもとの周波数fOに対してf,[2分だ
けシフトしたfθ十f,   f. +f2の周波数と
なる。この2つの周波数の異なるレーザ光はそれぞれミ
ラー(3d) , (3e)により反射され、偏光ビー
ムスピリッタ(3f)に入射し、ここで合成され、互い
に直交した2つの直線成分のレーザ光となって出力され
る。
The laser beams incident on the Bragg cells (3b) and (Be) are respectively f, [fθ+f shifted by 2 minutes with respect to the original frequency fO, f. The frequency is +f2. These two laser beams with different frequencies are reflected by mirrors (3d) and (3e), respectively, and enter the polarizing beam splitter (3f), where they are combined and become two linear components of laser beam that are perpendicular to each other. is output.

周波数シフタ(3)より出力されたレーザ光はビームス
ブリッタ(4)に入射され、ここで2つに分離される。
The laser beam output from the frequency shifter (3) is incident on the beam splitter (4), where it is separated into two beams.

分離された2つの光束の一つであるビームスブリッタ(
4)を透過したレーザ光は第1の光ヘテロダイン干渉計
(5)へ、もう一方のビームスプリッタ(4)を反射し
たレーザ光は第2の光ヘテロダイン干渉計(7)へ入射
される。
A beam splitter (one of the two separated beams)
4) is incident on the first optical heterodyne interferometer (5), and the laser beam reflected on the other beam splitter (4) is incident on the second optical heterodyne interferometer (7).

第1及び第2の光ヘテロダイン干渉計(5),(7)に
入射したレーザ光はそれぞれ偏光ビームスピリッタ(5
a) + (7a)に入射し、それぞれの周波数のこと
なる直線偏光成分ごとに基準位相用光束と測定用光束と
に光軸を分離される。分離された基準位相用光束はλ/
4波長板(5b) , (7b)によって円偏光にされ
、ミラー(5c) ,(7c)に入射し、このミラー 
(5c) , (7c)によって反射した光は再びλ/
4波長板(5b) , (7b)により直線偏光にされ
、偏光ビームスプリッタ(5a) ,(7a)に再入射
する。この再入射してきた基準位相用光束は、偏光ビー
ムスプリッタ(5a) , (7a)を透過した際の偏
光方向と直交しているので、偏光ビームスプリッタ(5
a) , (7a)で反射し、上方の光量検出素子(5
f),(7f)に偏光板(5e) , (7e)を介し
て入射するようになっている。
The laser beams incident on the first and second optical heterodyne interferometers (5) and (7) are polarized beam splitters (5), respectively.
a) + (7a), and the optical axis is separated into a reference phase light beam and a measurement light beam for each linearly polarized light component having a different frequency. The separated reference phase light flux is λ/
The four-wavelength plates (5b) and (7b) turn the light into circularly polarized light, which enters the mirrors (5c) and (7c).
The light reflected by (5c) and (7c) is again λ/
The light is converted into linearly polarized light by the four-wavelength plates (5b) and (7b), and re-enters the polarization beam splitters (5a) and (7a). This re-entering reference phase light flux is orthogonal to the polarization direction when it passes through the polarizing beam splitters (5a) and (7a), so the polarizing beam splitters (5a) and (7a)
a), (7a), and is reflected by the light amount detection element (5) above.
f) and (7f) via polarizing plates (5e) and (7e).

一方、ビームスブリッタ(5a) ,(7a)により分
離された測定用光束はλ/4波長板(5d) , (6
d)により円偏光にされ、チャンバー(10)に設けら
れた測定用光束人出窓(11−4) , (11−8)
を透過し、チャンバー(10)内の被測定物体(a)の
所定位置にそれぞれ照射される。この照射位置からの反
射光が再び測定用光束人出窓(11−4),(11−6
)およびλ/4波長板(5d) . (6d)を順次透
過し、偏光ビームスプリッタ(5a) , (7a)に
再入射する。再入射してきた測定用光束は基準位相用光
束とは逆に偏光ビームスブリッタ(5a) , (7a
)を透過し、光量検出素子(5f).(H)に偏光板(
5e) ,(7e)を介して入射するようになっている
。このとき、偏光ビームスプリッタ(5a) ,(7a
)を光量検出素子(5f),(7f)に向けて出射した
基準位相用光束と測定用光束とは、互いに直交した直線
偏光成分を持つ光なので、互いに干渉しない。そこで偏
光板(5e) ,(7e)を介すことにより基準位相用
光束および測定用光束の偏光方向を可干渉方向に偏光し
、基準位相用光束と測定用光束とを干渉させるようにし
、この干渉した光を光量検出素子(5f’),(7f)
が受光する。
On the other hand, the measurement light beams separated by the beam splitters (5a) and (7a) are λ/4 wavelength plates (5d) and (6
d) into circularly polarized light and provided in the chamber (10) with a light beam for measurement (11-4), (11-8)
are transmitted through the chamber (10) and irradiated to predetermined positions of the object to be measured (a) in the chamber (10). The reflected light from this irradiation position is again used for measurement at the bay window (11-4), (11-6).
) and λ/4 wavelength plate (5d). (6d) and re-enters the polarizing beam splitters (5a) and (7a). The re-entering measurement light flux is polarized by the polarization beam splitter (5a), (7a) in the opposite direction to the reference phase light flux.
) and passes through the light amount detection element (5f). (H) Polarizing plate (
5e) and (7e). At this time, polarizing beam splitters (5a), (7a
) toward the light quantity detection elements (5f) and (7f), the reference phase light beam and the measurement light beam are lights having linearly polarized components orthogonal to each other, so they do not interfere with each other. Therefore, the polarization directions of the reference phase light beam and the measurement light beam are polarized in the coherent direction by passing through the polarizing plates (5e) and (7e), so that the reference phase light beam and the measurement light beam interfere with each other. The interfered light is detected by light amount detection elements (5f'), (7f)
receives light.

この光量検出素子(5f).(’H’)の出力結果は基
準位相用光束と測定用光束の周波数の差によりビートを
起こした信号、つまりビート信号となって送られてくる
。ただし、この第1の光ヘテログイン干渉計(5)の測
定用光束は被測定物体(a)の溝が形成されつつある箇
所に照射し、第2の光ヘテロダイン干渉計(7)の測定
用光束は被測定物体(a)の溝が形成されない箇所に照
射されている。
This light amount detection element (5f). The output result ('H') is sent as a beat signal, that is, a beat signal caused by the difference in frequency between the reference phase light beam and the measurement light beam. However, the measurement light beam of this first optical heterodyne interferometer (5) is irradiated onto the part of the object to be measured (a) where the groove is being formed, and the measurement beam of the second optical heterodyne interferometer (7) is The light beam is irradiated onto a portion of the object to be measured (a) where no groove is formed.

ここでもう一度上述の作用を詳述すると、周波数シフタ
(3)より出力される周波数のことなる互いに直交する
2つの直線偏光成分を有する光束を2分して、第1およ
び第2の光ヘテロダイン干渉計(5) , (7)に導
く。このとき、第3図に示したように被測定物体(a)
の表面より反射してきた光の複素振幅をU1、同じく溝
の底面より反射してきた光の複素振幅をU2、ミラー(
5c) ,(7c)からの反射してきた光の複素振幅を
U3、A1,A1,A3をそれぞれの光束の振幅、Φ1
,Φ2,Φ3を同じく位相、dを溝の深さ、k==2π
/λとすると、tを時間、U2,U2,U3はそれぞれ
、U + − A Iexp(2 π(fo +f2 
)t+δ1),U 2 − A 2 exp(2 yr
 (f’o +f2 )t+(δ, +2kd)),U
s =A3exp(2 yt (f’o +l’, )
t+δ3)、と表すことができる。ここで、光量検出素
子(7f)の受光する光は、被測定物体(a)の表面よ
り反射光と、ミラー(7c)からの反射光とであるから
、光量検出素子(7r)の出力結果は、 1+ =lU+ +Ua  l2 =A, 2 +Al2 + 2 AH  A3  cos(2 yr (r2 
 +f1)t+Φ1 )・・・(1) の式で表せる。(ただし、Φ1−δ1−δ3)この(1
)式を横軸を時間、縦軸を光強度とした第3図(a)の
グラフに示す。
Here, to explain the above-mentioned operation in detail once again, the light beam having two mutually orthogonal linearly polarized components with different frequencies outputted from the frequency shifter (3) is divided into two, and the first and second optical heterodyne interference is performed. This leads to totals (5) and (7). At this time, as shown in Figure 3, the object to be measured (a)
The complex amplitude of the light reflected from the surface of the groove is U1, the complex amplitude of the light reflected from the bottom of the groove is U2, and the mirror (
5c), the complex amplitude of the light reflected from (7c) is U3, A1, A1, A3 is the amplitude of each luminous flux, Φ1
, Φ2, Φ3 are the same phase, d is the depth of the groove, k==2π
/λ, t is time, U2, U2, U3 are respectively U + − A Iexp(2 π(fo + f2
)t+δ1), U2−A2exp(2yr
(f'o +f2)t+(δ, +2kd)), U
s = A3exp (2 yt (f'o + l', )
t+δ3). Here, since the light received by the light amount detection element (7f) is the reflected light from the surface of the object to be measured (a) and the reflected light from the mirror (7c), the output result of the light amount detection element (7r) is is, 1+ =lU+ +Ua l2 =A, 2 +Al2 + 2 AH A3 cos(2 yr (r2
+f1)t+Φ1)...(1) It can be expressed by the following equation. (However, Φ1-δ1-δ3) This (1
) is shown in the graph of FIG. 3(a) with time on the horizontal axis and light intensity on the vertical axis.

次に光量検出素子(5f)の受光する光は、被測定物体
(a)の表面および溝底面からの反射光と、ミラー(5
c)からの反射光とであるから、光量検出素子(5f)
の出力結果は、 12 − l Ul +U2 +LJ3  12==A
, ’2 +A2 2 +A9 2+2 AH A2 
cos(Φ2) + 2 AIA3 cos(2 yr (f2 +f1
)t十Φ1 )+ 2 A2  A3 cos(2π(
h +[1  )t十Φ3)・・・(2) である。(ただし、Φ2−2kd,Φ3−δ1−δ3+
2kdである。) この出力結果を演算部(8)が受信する。ここで求める
べき溝の深さdは、位相Φ3はδ1−δ3+2kdで表
せるので、位相Φ3を求めることで算出できる。そこで
(1)式より(2)式の差を取る。
Next, the light received by the light amount detection element (5f) is composed of the reflected light from the surface of the object to be measured (a) and the groove bottom, and the reflected light from the mirror (5f).
c), so the light amount detection element (5f)
The output result is 12 − l Ul +U2 +LJ3 12==A
, '2 +A2 2 +A9 2+2 AH A2
cos (Φ2) + 2 AIA3 cos (2 yr (f2 + f1
)t10Φ1)+2 A2 A3 cos(2π(
h + [1)t10Φ3)...(2). (However, Φ2-2kd, Φ3-δ1-δ3+
It is 2kd. ) The arithmetic unit (8) receives this output result. The depth d of the groove to be determined here can be calculated by determining the phase Φ3, since the phase Φ3 can be expressed as δ1-δ3+2kd. Therefore, take the difference between equation (2) and equation (1).

I,−I2 =A1 2+2AI A2 cos(Φ2)+ 2 A
2 A3 cos(2 yr (f2 +(’+ )t
+Φ3)・・・(3) この(3)式を(1)式と同様に第3図(b)に示す。
I, -I2 = A1 2+2AI A2 cos(Φ2)+2 A
2 A3 cos(2 yr (f2 +('+)t
+Φ3)...(3) This equation (3) is shown in FIG. 3(b) similarly to equation (1).

(2)式からΦ3−Φ, +2kdであるから、位相計
で(Φ3−ΦI)を求めることで深さdを算出できる。
Since Φ3-Φ, +2kd from equation (2), the depth d can be calculated by finding (Φ3-ΦI) with a phase meter.

以上の方法で、ある瞬間の深さを算出することができる
。ここで食刻により刻々と変化す,る深さの変化を測定
するためには、第3図(e)に示すように位相の変化を
随時求めておくことで算出できる。ここで位相2πは波
長λ/2の変化であり、この位相の数を計算することで
容易に深さの変化を求めることができるものである。
The depth at a certain moment can be calculated using the above method. In order to measure the change in depth that changes moment by moment due to etching, it can be calculated by determining the change in phase at any time as shown in FIG. 3(e). Here, the phase 2π is a change in wavelength λ/2, and by calculating the number of phases, the change in depth can be easily determined.

[発明の効果コ 上述のように深さ測定装置を構成することで、チャンバ
ーの測定光入出射窓の汚れにより(3)式にA,および
A2に変動が出ても、位相成分のみを算出するようにし
ているため、深さ測定に影響がでない安定した測定を行
える。
[Effects of the invention] By configuring the depth measuring device as described above, even if there are fluctuations in A and A2 in equation (3) due to dirt on the measurement light input/output window of the chamber, only the phase component can be calculated. As a result, stable measurements can be made without affecting the depth measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の深さ測定装置の一実施例の構成を示し
た構成図、第2図は同じく周波数シフタの構成図、第3
図は同じく本発明の深さ測定原理を説明するためのグラ
フ、第4図は従来の技術の深さ測定の原理を示すための
説明図、第5図は同じくグラフである。 1・・・レーザ発振器、  2・・・偏光板、3・・・
周波数シフタ、 3a   ・・・偏光ビームスプリツタ,3b,3c・
・・ブラッグセル, ad,Be・・・ミラー 3f   ・・・偏光ビームスピリッタ,4・・・ビー
ムスプリツタ、 6・・・ミラー5・・・第1の光ヘテ
ロダイン干渉計、7・・・第2の光ヘテロダイン干渉計
、5a, 7a・・・偏光ビームスプリツタ,5c,7
c・・・ミラー 5b,7b・・・λ/4波長板, 5d,7d・・・λ/4波長板, 5e. 7e・・・偏光板, 5f,7f・・・光量検出素子, 8・・・演算部。
FIG. 1 is a block diagram showing the configuration of an embodiment of the depth measuring device of the present invention, FIG. 2 is a block diagram of a frequency shifter, and FIG.
The figure is also a graph for explaining the depth measurement principle of the present invention, FIG. 4 is an explanatory diagram for showing the depth measurement principle of the prior art, and FIG. 5 is a graph. 1... Laser oscillator, 2... Polarizing plate, 3...
Frequency shifter, 3a...Polarizing beam splitter, 3b, 3c...
... Bragg cell, ad, Be... Mirror 3f... Polarizing beam splitter, 4... Beam splitter, 6... Mirror 5... First optical heterodyne interferometer, 7... Third No. 2 optical heterodyne interferometer, 5a, 7a...Polarizing beam splitter, 5c, 7
c...Mirrors 5b, 7b...λ/4 wavelength plate, 5d, 7d...λ/4 wavelength plate, 5e. 7e... Polarizing plate, 5f, 7f... Light amount detection element, 8... Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 微細な深溝を形成されつつある被測定物体の深溝の深さ
を測定する深さ測定装置において、単色光を照射する光
源と、この光源より発した光を周波数の異なる互いに直
交した2つの直線偏光成分に分離して出力する周波数シ
フタと、この周波数シフタによって周波数がシフトされ
た光を被測定物体の深溝が形成されつつある所定部位に
照射しその反射光束を干渉させる第1の光ヘテロダイン
干渉計と、上記周波数シフタによって周波数がシフトさ
れた光を被測定物体の深溝を形成していない所定部位に
照射しその反射光束を干渉させる第2の光ヘテロダイン
干渉計と、この第2の光ヘテロダイン干渉計の出力結果
を上記第1の光ヘテロダイン干渉計の出力結果の参照信
号として出力し、この出力結果の位相変化から溝の深さ
を測定する演算部とを具備したことを特徴とする深さ測
定装置。
In a depth measuring device that measures the depth of deep grooves in an object being formed, a light source emits monochromatic light and the light emitted from this light source is divided into two mutually orthogonal linearly polarized lights with different frequencies. A frequency shifter that separates and outputs the components; and a first optical heterodyne interferometer that irradiates the light whose frequency has been shifted by the frequency shifter to a predetermined part of the object to be measured where a deep groove is being formed and causes the reflected light flux to interfere with each other. and a second optical heterodyne interferometer that irradiates light whose frequency has been shifted by the frequency shifter to a predetermined part of the object to be measured that does not form a deep groove and interferes with the reflected light beam, and this second optical heterodyne interference. a calculation section that outputs the output result of the meter as a reference signal for the output result of the first optical heterodyne interferometer, and measures the depth of the groove from the phase change of this output result. measuring device.
JP28563388A 1988-11-14 1988-11-14 Depth measuring instrument Pending JPH02132308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28563388A JPH02132308A (en) 1988-11-14 1988-11-14 Depth measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28563388A JPH02132308A (en) 1988-11-14 1988-11-14 Depth measuring instrument

Publications (1)

Publication Number Publication Date
JPH02132308A true JPH02132308A (en) 1990-05-21

Family

ID=17694059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28563388A Pending JPH02132308A (en) 1988-11-14 1988-11-14 Depth measuring instrument

Country Status (1)

Country Link
JP (1) JPH02132308A (en)

Similar Documents

Publication Publication Date Title
JP3273501B2 (en) Apparatus and method for measuring variation in refractive index of gas in measurement path
KR100322938B1 (en) Superheterodyne interferometry and method for compensating the refractive index of air using electronic frequency multiplication
US7333214B2 (en) Detector for interferometric distance measurement
KR100746515B1 (en) Frequency transform phase shifting interferometry
EP0506297B1 (en) Three wavelength optical measurement apparatus
JPH01503172A (en) Method and apparatus for two-wavelength interferometry with optical heterodyning and use for position or distance measurement
KR20070110390A (en) Heterodyne reflectometer for film thickness monitoring and method for implementing
JPH085314A (en) Method and apparatus for measuring displacement
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
US5321502A (en) Measuring method and measuring apparatus
JPH0339605A (en) Optical surface shape measuring instrument
JP5888111B2 (en) Etching monitor device
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
US20230062525A1 (en) Heterodyne light source for use in metrology system
JPH02132308A (en) Depth measuring instrument
JP3621325B2 (en) Angular dispersive heterodyne profilometry system
EP0920599B1 (en) Measuring the effects of the refractive index of a gas using different multiple path interferometry ( superhetrodyne )
JP2997765B2 (en) High sensitivity space positioning method
JP3499044B2 (en) Micro displacement measurement method and device
JPS63128211A (en) Spacing measuring method
JP3095036B2 (en) Method and apparatus for measuring displacement using diffraction grating
JP2775000B2 (en) Moving amount measuring method and moving amount measuring device
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
RU2060475C1 (en) Method of measurement of harmonic oscillation amplitudes
JP2517551B2 (en) Phase distribution measuring device