JPH02132162A - Dispersion of pigment by very small ball of calcined zirconia - Google Patents

Dispersion of pigment by very small ball of calcined zirconia

Info

Publication number
JPH02132162A
JPH02132162A JP28385988A JP28385988A JPH02132162A JP H02132162 A JPH02132162 A JP H02132162A JP 28385988 A JP28385988 A JP 28385988A JP 28385988 A JP28385988 A JP 28385988A JP H02132162 A JPH02132162 A JP H02132162A
Authority
JP
Japan
Prior art keywords
mill
zirconia
ball
balls
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28385988A
Other languages
Japanese (ja)
Other versions
JPH0546248B2 (en
Inventor
Masayoshi Nakamura
正義 中村
Hiroyoshi Kawase
川瀬 広嘉
Shiyougo Kodama
児玉 詔吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP28385988A priority Critical patent/JPH02132162A/en
Publication of JPH02132162A publication Critical patent/JPH02132162A/en
Publication of JPH0546248B2 publication Critical patent/JPH0546248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To shorten time of pigment dispersion process and to make it uniform by dispersing pigment with very small calcined ball of zirconia having high sphericity. CONSTITUTION:For example, (A) zirconia powder is blended with (B) 6-15wt.% water, stirred at 1,500-2,500rpm of stirring shaft at <=70 deg.C for 25-40 minutes, dried and heat-treated to give calcined ball of zirconia having 200-500mum particle diameter. Pigment is uniformly dispersed into vehicle with a ball mill, peddle mill or sand mill by using the calcined ball of zirconia.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はボールミル、ベブルミルまたはサンドミルを用
いて顔料をビヒクル中へ分散させる方法に関するもので
ある. [従来の技術] 塗料の製造分野では、顔料を樹脂}^および溶剤等から
成るビヒクル中へ分散させる工程が中心的作業の一つに
なっており、この分散工程を効果的におこなうために各
種の方法が採用されていろ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for dispersing pigments into a vehicle using a ball mill, a bevel mill or a sand mill. [Prior Art] In the field of paint manufacturing, one of the central operations is the process of dispersing pigments into a vehicle consisting of a resin, a solvent, etc., and various methods are used to effectively carry out this dispersion process. method should be adopted.

すなわち、主に、金属ボールを用いるボールミル,また
はセラミ・ノクホ゛−ルを使用するペブルミルが広く採
用され,また、サンドミルと呼ばれる高速攪拌ミルによ
る分散工程も使用が広まりつつある。
Specifically, ball mills using metal balls or pebble mills using ceramic particles are widely used, and a dispersion process using a high-speed stirring mill called a sand mill is also becoming more widely used.

これらは,いずれも、ミルとその中に入れた適量のボー
ルとから構成されており,この中に顔料とビヒクルが入
れられて回転によって分散が行はれる. ボールとしては、従来,金属ボール、セラミックボール
あるいはガラスポール(ガラスビーズとも呼ばれる》か
用いられてきた. スチールを中心とした金属ボールでは一最にモリブデン
,クロム,二・ノケル,マンガンなどを少量混合した高
炭素鋼か用いられ、特殊用途にはステンレススチールボ
ールが用いられる。これら金属ボールには各種の大きさ
のものかあり.最も小さいものは平均直径200〜30
0μmでその真球度も高い.しかし、従来からの金属ホ
ールは使用中摩耗による金属扮がビヒクル中に混入する
欠点があり、汚染をきらう製品には用いることができな
い.セラミ・ソクボールも多く用いられ、特にハ,イア
ルミナやジルコニアなどの硬度の高いもの、密度の大き
いものか団用される.セラミックボールは高硬度で耐摩
耗性に優れており、耐用期間も金属ホ′−ルより長い.
さらに、セラミックボールを使用する場合は一殻にミル
器壁も同質のセラミック材でライニングされるので、金
属ボールの場合のようなク耗による製品への汚染が著し
く少ない.しかし、セラミ・ソクボールは金属ボールに
比較してVJ造工程がWmでコストが高い. ガラスポール(又はガラスビーズ)は500μ01〜5
mm程度の硬質ガラスビーズあるいは鉛含有ガラスビー
ズで主としてサンドミルに使用される.しかし,ガラス
ポールは金属ボールやセラミックボールよりも硬度が低
く,また分散工程中に破砕し易い欠点がある. [発明が解決しようとする課題] 従来のボールミル、ベブルミルまたはサンドミルでは、
それぞれ、使用するボールに上述のような欠点が多く、
効果的な分散のために改良すべき点が残されている. 本発明の目的は,ボールミル、ペブルミルまたはサンド
ミルを用いて顔料をビヒクル中に分散させる工程におい
て、硬度が高く,靭性に富み、密度の大きい,かつ球径
が500μm以下のジルコニア焼成ボールを用いて効果
的に顔料を分散させる方法分提供するにある. [課題を解決するための手段] ボールミル、ベブルミルまたはサンドミルによる分散工
程で顔Hの分散に最も支配的な要因は顔トIに加えられ
る術撃力と剪断応力である.衝撃力と剪断応力を大きく
する為には(1)ミルの回転数を上げること(2)ボー
ルの密度が大きく、直径が小さいこと (3)顎科とビ
ヒクルの比率を適当に選ぶことが要点になる. このうちボールの密度と直径について述べると、ボール
ミルでは容器の回転によって容器内で持ち上げられたボ
ールが落下してボールとボールが接触するときに接触点
にある顔料への衝撃力と剪断応力が(4r−用し分散が
行なわれる.ボールの直径が小さい程ミルの単位回転当
りの衝撃力と剪断応力が加えられる回数が多くなり一定
の容積内では分散(F用の行なわれる接触点の数と面積
が多くなる.また、ボールの直径が小さくなるとボール
間の間隙が小さくなるので、その間隙に入ってしまって
良好な分散を妨けている塗料の塊の大きさら制限できる
.これら衝撃力と剪断応力はボールに働く重力によって
生じ、その重力はボールの密度に正比例する.逆に、ボ
ールの直径が大きいと必要以上の衝撃力や剪断応力を与
え、動力の浪費,ボールの損傷をきたす.したがって、
ボールの密度が大きく直径が小さいほうが分散の効果が
上がる.例えば,直径250μmのジルコニア焼成ボー
ルと直径500μInの硬質ガラスポールを比較すると
、単位休債中の接触点の数は250μmボールが500
μmボールの8倍となる.また,両甚の比重が異なるこ
とを加味すれば分散度の増加は48倍になると考えられ
る.また、直径5 0 0 B mの鉛ガラスポールと
比較しても24倍になる.これらのことから、直径25
0μm前後のジルコニアボールによる顔料の分散効果が
確認されたので,本発明者はジルコニア焼成ボールの製
造および利用について研究を進めた結果、直径250μ
mのジルコニア焼成ボールの′!A逍に成功し、特許出
願したく特願昭62−32754号》.さらに、この方
法で製造した微小粒子のジルコニア焼成ボールによって
顕料の効果的な分散方法を発明するにに至ったものであ
る. すなわち,本発明は、ボールミル,ベフルミルまたはサ
ンドミルによる顔料の分散工程おいて,粒子直径200
ないし500μmのジルコニア焼成ボールを用いること
を特徴とする顔料のビヒクル中への分散方法である. 次にジルコニア焼成ボールの製造方法をのべる.ジルコ
ニアボール(グリーンボール,すなわち焼成前のボール
》の造粒に使用する攪拌装置は特公昭39−21502
号公報、実公昭4 4 −19507号公報,実公昭4
8−4 1284号公報および実公昭53−39737
号公報等に記載されている遣粒装置である. 造粒方法はまず、ジルコニア粉体、有機溶媒および水《
バインダー》を造粒装置に入れ、一定条件下に攪拌する
ことによってジルコニア粉体は高真球度の小球となる.
特に、次に述べる特定の条件下に直径500μm以下、
好ましくは250μm前後の微小粒子(グリーンボール
)になる.ジルコニアボール(グリーンボール)@遣拉
菌仔原科粉体・・・・・・市販されている通常の、安定
化剤を少量混合したジルコニア粉体. 安定化剤として、例えばイットリ アの含有量、その他の混合成分の 含有量についても通常程度であれ ば特に制限はない。
Each of these consists of a mill and an appropriate amount of balls placed inside it, into which the pigment and vehicle are placed and dispersed by rotation. Conventionally, metal balls, ceramic balls, or glass poles (also called glass beads) have been used as balls. Metal balls, mainly made of steel, are made by mixing small amounts of molybdenum, chromium, Ni-Nokel, manganese, etc. High carbon steel is used, and stainless steel balls are used for special applications.These metal balls come in various sizes, the smallest having an average diameter of 200 to 30 mm.
It has a high sphericity of 0 μm. However, conventional metal holes have the disadvantage that the metal holes are mixed into the vehicle due to wear during use, and cannot be used in products where contamination is a concern. Ceramic balls are also often used, especially those with high hardness and density such as alumina and zirconia. Ceramic balls have high hardness and excellent wear resistance, and have a longer service life than metal balls.
Furthermore, when ceramic balls are used, the shell and mill wall are lined with the same ceramic material, so there is significantly less contamination of the product due to abrasion, which is the case with metal balls. However, compared to metal balls, ceramic balls require a VJ manufacturing process of Wm and are therefore more expensive. Glass pole (or glass beads) is 500μ01~5
Hard glass beads or lead-containing glass beads with a diameter of about mm, and are mainly used in sand mills. However, glass poles have lower hardness than metal balls or ceramic balls, and they also have the disadvantage of being easily crushed during the dispersion process. [Problem to be solved by the invention] In the conventional ball mill, bevel mill or sand mill,
Each ball used has many drawbacks as mentioned above.
There are still points that need to be improved for effective dispersion. The object of the present invention is to use fired zirconia balls, which have high hardness, high toughness, and high density and have a spherical diameter of 500 μm or less, to be effective in dispersing pigments in a vehicle using a ball mill, pebble mill, or sand mill. It provides a method for dispersing pigments. [Means for Solving the Problems] The most dominant factors for the dispersion of the face H in the dispersion process using a ball mill, bevel mill or sand mill are the operative impact force and shear stress applied to the face H. In order to increase the impact force and shear stress, it is important to (1) increase the rotation speed of the mill, (2) increase the density of the ball and reduce its diameter, and (3) select an appropriate ratio of jaw and vehicle. become. Regarding the density and diameter of the balls, in a ball mill, when the balls that are lifted up in the container by the rotation of the container fall and come into contact with each other, the impact force and shear stress on the pigment at the point of contact are ( 4r - Dispersion takes place.The smaller the diameter of the ball, the more impact forces and shear stresses are applied per unit revolution of the mill, and within a given volume the dispersion (number of contact points made for F and In addition, as the diameter of the balls decreases, the gaps between the balls become smaller, which limits the size of paint lumps that can get into those gaps and prevent good dispersion.These impact forces and Shear stress is caused by the gravitational force acting on the ball, and the gravitational force is directly proportional to the density of the ball. Conversely, if the diameter of the ball is large, more impact force and shear stress will be applied than necessary, resulting in wasted power and damage to the ball. therefore,
The higher the density of the ball and the smaller the diameter, the better the dispersion effect. For example, when comparing a fired zirconia ball with a diameter of 250 μm and a hard glass pole with a diameter of 500 μIn, the number of contact points during a unit break is 500 for the 250 μm ball.
This is 8 times the μm ball. Furthermore, if we take into account the difference in the specific gravity of the two strands, the increase in dispersion is thought to be 48 times greater. It is also 24 times more powerful than a lead glass pole with a diameter of 500 Bm. From these things, the diameter is 25
Having confirmed the pigment dispersion effect of zirconia balls with a diameter of around 0 μm, the present inventor conducted research on the production and use of fired zirconia balls, and found that zirconia balls with a diameter of 250 μm
’ of the zirconia fired ball of m! I succeeded in meeting A and would like to apply for a patent.Patent Application No. 32754/1982. Furthermore, we were able to invent an effective method for dispersing pigments using the microparticle fired zirconia balls produced by this method. That is, in the present invention, in a pigment dispersion process using a ball mill, beflu mill, or sand mill, particles with a diameter of 200
This is a method for dispersing a pigment in a vehicle, which is characterized by using fired zirconia balls with a diameter of 500 to 500 μm. Next, we will discuss the manufacturing method of zirconia fired balls. The stirring device used for granulating zirconia balls (green balls, i.e. balls before firing) was manufactured by the Japanese Patent Publication No. 39-21502.
Publication No. 4-19507, Publication No. 4-19507, Publication No. 4-19507
8-4 Publication No. 1284 and Utility Model Publication No. 53-39737
This is the granulation device described in the publication. The granulation method begins with zirconia powder, an organic solvent, and water.
By placing the binder in a granulating device and stirring under certain conditions, the zirconia powder becomes small spheres with high sphericity.
In particular, under the following specific conditions, diameters of 500 μm or less,
Preferably, the particles are microparticles (green balls) with a diameter of around 250 μm. Zirconia ball (green ball) @ 拉拉子原体 powder...Commercially available regular zirconia powder mixed with a small amount of stabilizer. As a stabilizer, for example, the content of yttria and the content of other mixed components are not particularly limited as long as they are within normal levels.

バインダー・・・水道水、使用原料粉体に対して6〜1
5%、好ましくは9〜11重 量%. 造粒条件・・・・・・攪拌軸回転数: 1500〜25
0(l rpm好ましくは1800〜2000 rpm
温度:70℃以下, 好ましくは、45℃以下. 時間:25〜40分、 好ましくは、30〜35分. 上述の,グリーンボールを60゜Cで24時間乾燥した
後、電気炉で高温処理して最終目的のジルコニア焼成ボ
ールに調製する. このようにして得られた粒子直径200ないし500μ
m、好ましくは240〜350μm前後のジルコニア焼
成ボールを用いて顔料の分散を行うにはつぎのようにす
る. 顔料,樹脂液、溶剤および添加剤を混合してミルベース
を:AHする.このミルベースと、ミルベースとほぼ同
容積のジルコニア焼成ボールとを分散用ミルに入れ、回
転数500〜2 0 0 O rpmで15分ないし2
時間処理して、顕料をヒヒクル中に分散させろ。分散用
ミルにはボールミル,ペブルミルあるいはサンドミル等
が使用できる.顔料としては無機血料、有da料のいず
れも使用できる.使用対象は塗料に限らず、微細粉体を
高粘度液状物に分散させる工程であれば適用でき、例え
ば,インキ、染料等にも応用できる. つぎに実施例を示して本発明をさらに詳細に説明するが
、これに限定されるものではない.実施例1 ジルコニア焼成ボールは次のようにして製造した. 内容積3000mlの円筒型造粒容器に市販の部分安定
化剤を少量混合したジルコニア粉末80g(平均粒子径
0.49μm、比表面積7. 5rr?/(1)インパ
ラフィン溶剤2 8 0 0 mlおよび水10gを入
れ、回転数1800rpm,円筒内温度40゜Cないし
45゜Cで30分間造粒を行った.得られたグリーンボ
ールの最大径(L)とそれに垂直な最大径(1)を画偶
分析装置((株)ニレコ製LUZEX500)を用いて
50涸の試料について測定し、L/Iを求めて真球度と
した.測定結果を第1表に示した. 次いで、上記のグリーンボールを60゜Cで24時間乾
燥した後,電気炉に入れ,一鍜的な昇温工程によって昇
温し、1500゜Cに到達させた後、さらに1500゜
Cで2時間保持した.得られたジルコニア焼成ボールを
同じ画偶分析装置を用いてボールの大きさ、真珠度を測
定した。また、密度はアルキメデス法により測定した.
測定結果を第2表および第3表に示した。
Binder: 6 to 1 per tap water and raw material powder used
5%, preferably 9-11% by weight. Granulation conditions: Stirring shaft rotation speed: 1500-25
0(l rpm preferably 1800-2000 rpm
Temperature: 70°C or less, preferably 45°C or less. Time: 25-40 minutes, preferably 30-35 minutes. The above-mentioned green balls are dried at 60°C for 24 hours and then subjected to high temperature treatment in an electric furnace to produce the final zirconia fired balls. The particles thus obtained have a diameter of 200 to 500μ.
Pigment dispersion using fired zirconia balls having a diameter of approximately 240 to 350 μm is carried out as follows. Mix the pigment, resin liquid, solvent, and additives to make a mill base: AH. This mill base and a fired zirconia ball having approximately the same volume as the mill base were placed in a dispersion mill and heated at a rotational speed of 500 to 200 rpm for 15 minutes to 2 hours.
Allow time to disperse the pigment into the vehicle. A ball mill, pebble mill, or sand mill can be used as a dispersion mill. As pigments, both inorganic blood and DA pigments can be used. The application is not limited to paints, but can be applied to any process that involves dispersing fine powder into a highly viscous liquid, such as ink and dyes. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 A fired zirconia ball was manufactured as follows. In a cylindrical granulation container with an internal volume of 3000 ml, 80 g of zirconia powder mixed with a small amount of a commercially available partial stabilizer (average particle diameter 0.49 μm, specific surface area 7.5 rr?/(1) Imparaffin solvent 2 80 0 ml and 10 g of water was added and granulation was carried out for 30 minutes at a rotation speed of 1800 rpm and a cylinder temperature of 40°C to 45°C.Draw the maximum diameter (L) of the obtained green ball and the maximum diameter (1) perpendicular to it. Fifty samples were measured using an even analyzer (LUZEX500 manufactured by Nireco Co., Ltd.), and the L/I was determined to determine the sphericity.The measurement results are shown in Table 1.Then, the green ball described above was measured. After drying at 60°C for 24 hours, it was placed in an electric furnace and heated through a step-by-step heating process until it reached 1500°C, and then held at 1500°C for an additional 2 hours. The size and pearliness of the fired zirconia balls were measured using the same figurine analyzer.The density was also measured using the Archimedes method.
The measurement results are shown in Tables 2 and 3.

実施例2 顔料として酸化チタン、1M脂としてアルキ・ノト樹脂
、分散剤としてソルビタン系界面活性剤,溶剤としてト
ルエンを用いてミルベースを調製した.このミルベース
の配合は次のとおりである.酸化チタン      2
0重量% アルキッド樹脂    30  1ノ 分散剤         IIノ 溶剤         49 ノノ 上記のミルベースと同容積の、実施例1で製造した平均
粒子直径250μmのジルコニア焼成ボールを用い,2
01ルノトルのボールミルを使用し、回転数1300r
pmで1時間分散処理した結果、顔料は全く均一に分散
されていることか認められた. 実施例3 血科として酸1ヒ鉄、樹脂としてアクリル樹脂、分散剤
としてソルビタン系界面活性剤,溶剤としてキシレンを
用いてミルベースを調製しな.このミルヘースの配合は
次のとうりである。
Example 2 A mill base was prepared using titanium oxide as a pigment, an alkinoto resin as a 1M fat, a sorbitan surfactant as a dispersant, and toluene as a solvent. The composition of this mill base is as follows. Titanium oxide 2
0% by weight Alkyd resin 30 1.Dispersant II.Solvent 49.2
Using a 01 Lenotre ball mill, rotation speed 1300r
As a result of dispersion treatment at pm for 1 hour, it was observed that the pigment was completely uniformly dispersed. Example 3 A millbase was prepared using monoarsenic acid as a hematologist, an acrylic resin as a resin, a sorbitan surfactant as a dispersant, and xylene as a solvent. The composition of this Milhose is as follows.

酸化鉄         20重量% アクリル樹脂      30  1ノ分散剤    
     1 ノノ }容剤               4QJ7上記の
ミルヘースと同容績の平均粒子直径250/lmのジル
コニア焼戊ボールを用い、20リットルのボールミルを
使用し、四転it 1 3 0 0 r p mで1時
間分散処理した結果、血ト■ほ全く均一に分散されてい
ろことが認められた. 実施例・1 シルコニア焼成ボールを次のようにして製造しな. 内容積3000mlの円筒型造粒容器に市販の部分安定
化剤を少量混合したジルコニア粉体40g(平均粒子径
0.75μm、比表面積約7nf/g)ノリマル・イソ
パラフィン溶剤2 8 0 0 miおよひyk2gを
入れ、回転数1800rpm,円筒内温度40”Cない
し45゜Cで77分間造粒を行った.次いで、上記のグ
リーンボールを60゜Cで24時間乾燥した後,電気炉
に入れ、−i的な昇温行程によって昇温し、1500゜
Cに到達させた後,さちに1500゜Cで2時間保持し
た.得られたジルコニア焼成ボールの最大径の平均値は
345μm,L,/I値は1.052であった.実施P
A5 顔料としてカーボン、樹脂としてアルキリド{A脂、分
散削としてエチレンオキサイド系界面活性剤,溶剤とし
てトルエンを用いてミルベースを調製しな.このミルベ
ースの配合は次のとうりである. カーホン       23重量% アルキッド樹脂    30 9 分散剤         I  g 溶剤         46tt −E記のミルヘースと同容積の、実施例4で製造した平
均粒子直径345μmのジルコニア焼成ポールを用い、
20リットルのボールミルを使用し、回転数1500r
pmで1時間分敗処理した結果、顔ト1は全く均一に分
散されていることが!2められた。
Iron oxide 20% by weight Acrylic resin 30 1 No. dispersant
1 Nono}Container 4QJ7 Using zirconia fired balls with an average particle diameter of 250/lm having the same capacity as the above-mentioned millhose, dispersion was carried out for 1 hour using a 20 liter ball mill with a four-wheel rotation at 1300 rpm. As a result of the treatment, it was observed that the blood was almost completely uniformly dispersed. Example 1 A fired silconia ball was manufactured as follows. In a cylindrical granulation container with an internal volume of 3000 ml, 40 g of zirconia powder (average particle diameter 0.75 μm, specific surface area approximately 7 nf/g) mixed with a small amount of a commercially available partial stabilizer was placed in a normal isoparaffin solvent 2 800 mi and 2 g of yk was added and granulation was carried out for 77 minutes at a rotational speed of 1800 rpm and a cylinder temperature of 40"C to 45°C.Then, the above green balls were dried at 60°C for 24 hours, and then placed in an electric furnace. -i heating process to reach 1500°C, and then held at 1500°C for 2 hours. The average maximum diameter of the obtained zirconia fired balls was 345 μm, L, / The I value was 1.052.Implementation P
A5 Prepare a mill base using carbon as the pigment, alkylide {A resin as the resin, ethylene oxide surfactant as the dispersion milling agent, and toluene as the solvent. The composition of this mill base is as follows. Carphone 23% by weight Alkyd resin 30 9 Dispersant I g Solvent 46tt - Using the same volume of Milhose as described in E, fired zirconia poles with an average particle diameter of 345 μm manufactured in Example 4,
Using a 20 liter ball mill, rotation speed 1500 r
As a result of processing with PM for 1 hour, it was found that the face 1 was completely evenly distributed! I got hit twice.

[発明の効果] 従来製造できなかった真珠度の高い,粒子直径200な
いし500μmのジルコニア焼成ボールを用いたポーノ
レミノレ、ペフノレミノレあるいはサンドミルによって
顔[■をビヒクル中に効果的に分散させることかできた
.この結果、分散工程時間を短縮でき、あるいは分散の
均一性を増大することができる. 第1表 グリーンボールの大きさおよび真球度 真球度 δ子真岸 平均値 <:8f 第3表 焼成ボールの密度 浸  液: 精製水 測定温度= 30℃ 真空条件: 2 0sn}Igx l 5時間1回の試
料量:約log 拭」L星−」  密』工/圧 10.0134     6.007210.0944 5.9660 9.9650 5.9873 平均値 5.9868
[Effects of the Invention] It was possible to effectively disperse face [■] in a vehicle using a pono reminole, a pefno reminole, or a sand mill using fired zirconia balls with a particle diameter of 200 to 500 μm, which had a high nacre content that could not be produced conventionally. As a result, the dispersion process time can be shortened or the uniformity of dispersion can be increased. Table 1 Size and sphericity of green balls Sphericity δ Makishi average value <: 8f Table 3 Density of fired balls Immersion Liquid: Purified water measurement temperature = 30°C Vacuum conditions: 2 0sn}Igx l 5 Amount of sample per hour: Approximately log wiping ``L Star-''Density'' work/pressure 10.0134 6.007210.0944 5.9660 9.9650 5.9873 Average value 5.9868

Claims (1)

【特許請求の範囲】[Claims] ボールミル、ペブルミルまたはサンドミルによる顔料の
分散工程において、粒子直径200ないし500μmの
ジルコニア焼成ボールを用いることを特徴とする顔料の
ビヒクル中への分散方法。
A method for dispersing a pigment in a vehicle, which comprises using fired zirconia balls having a particle diameter of 200 to 500 μm in a pigment dispersion step using a ball mill, pebble mill or sand mill.
JP28385988A 1988-11-11 1988-11-11 Dispersion of pigment by very small ball of calcined zirconia Granted JPH02132162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28385988A JPH02132162A (en) 1988-11-11 1988-11-11 Dispersion of pigment by very small ball of calcined zirconia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28385988A JPH02132162A (en) 1988-11-11 1988-11-11 Dispersion of pigment by very small ball of calcined zirconia

Publications (2)

Publication Number Publication Date
JPH02132162A true JPH02132162A (en) 1990-05-21
JPH0546248B2 JPH0546248B2 (en) 1993-07-13

Family

ID=17671095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28385988A Granted JPH02132162A (en) 1988-11-11 1988-11-11 Dispersion of pigment by very small ball of calcined zirconia

Country Status (1)

Country Link
JP (1) JPH02132162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646415A2 (en) * 1993-09-20 1995-04-05 Showa Shell Sekiyu Kabushiki Kaisha Method for producing ultra fine particles
EP0655279A2 (en) * 1993-11-30 1995-05-31 Showa Shell Sekiyu Kabushiki Kaisha Method for dispersing pigments
US5718388A (en) * 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252911A (en) * 1975-08-06 1977-04-28 Europ Prod Refract Beads of ceramic materials
JPS5815079A (en) * 1981-07-14 1983-01-28 日本化学陶業株式会社 Crusher member comprising zirconia sintered body
JPS60106549A (en) * 1983-11-15 1985-06-12 電気化学工業株式会社 Abrasion-resistant material
JPH0231844A (en) * 1988-07-21 1990-02-01 Matsushita Electric Ind Co Ltd Grinding machine and method for grinding ceramic powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252911A (en) * 1975-08-06 1977-04-28 Europ Prod Refract Beads of ceramic materials
JPS5815079A (en) * 1981-07-14 1983-01-28 日本化学陶業株式会社 Crusher member comprising zirconia sintered body
JPS60106549A (en) * 1983-11-15 1985-06-12 電気化学工業株式会社 Abrasion-resistant material
JPH0231844A (en) * 1988-07-21 1990-02-01 Matsushita Electric Ind Co Ltd Grinding machine and method for grinding ceramic powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646415A2 (en) * 1993-09-20 1995-04-05 Showa Shell Sekiyu Kabushiki Kaisha Method for producing ultra fine particles
EP0646415A3 (en) * 1993-09-20 1995-08-16 Showa Shell Sekiyu Method for producing ultra fine particles.
US5556038A (en) * 1993-09-20 1996-09-17 Showa Shell Sekiyu K.K. Method for producing ultra fine particles
EP0655279A2 (en) * 1993-11-30 1995-05-31 Showa Shell Sekiyu Kabushiki Kaisha Method for dispersing pigments
EP0655279A3 (en) * 1993-11-30 1995-08-16 Showa Shell Sekiyu Method for dispersing pigments.
US5730793A (en) * 1993-11-30 1998-03-24 Nikkato Corp. Method for dispersing pigments
US5718388A (en) * 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances

Also Published As

Publication number Publication date
JPH0546248B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
WO2021248813A1 (en) Alumina ceramic and preparation method therefor
EP1713743B9 (en) Grinding balls and production method thereof
CN110683578A (en) Production method of high-activity electrofused zirconia
JPH0788391A (en) Production of superfine powder
CN111393874A (en) Method for producing high-temperature-resistant zirconium iron red pigment by electrically melting zirconia
JPH02132162A (en) Dispersion of pigment by very small ball of calcined zirconia
KR20150099600A (en) Method for producing aluminum flake paste
CN109455734A (en) A kind of kaolin wet method processing technology
CN106116532A (en) A kind of preparation method of wear-resisting alumina porcelain ball
CN107573064A (en) Zirconia ceramics microballon and preparation method thereof
JP3400836B2 (en) Pigment dispersion method
CN113399093B (en) Method for preparing spheroidic powder by mechanical crushing method and spheroidic powder
CN108210352A (en) A kind of zinc oxide compound powder end convenient for dispersion
JP2015186814A (en) Alumina group sliding nozzle charging sand
WO2018142661A1 (en) Method for producing coal ash, coal ash, and cement composition
CN109607540B (en) Process for preparing nano silicon carbide by sol-gel method
CN110938409A (en) Zeolite porous flexible wear-resistant particles and preparation method thereof
JPH01201369A (en) Granulated carbon black
JPS62279838A (en) Manufacture of fine grain type inorganic filler dispersion
JP4152150B2 (en) Mullite whisker manufacturing method
CN113578464B (en) Method for improving sphericity of inorganic powder and spherical inorganic powder
CN112624182B (en) Antistatic material and preparation method and application thereof
JPH07257925A (en) Zirconia minute particle
US3443900A (en) Densification of acetylene black
JP3838867B2 (en) Method for surface modification of solid fine particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees