JPH02131610A - Energy confinement type multiple mode filter - Google Patents

Energy confinement type multiple mode filter

Info

Publication number
JPH02131610A
JPH02131610A JP28610388A JP28610388A JPH02131610A JP H02131610 A JPH02131610 A JP H02131610A JP 28610388 A JP28610388 A JP 28610388A JP 28610388 A JP28610388 A JP 28610388A JP H02131610 A JPH02131610 A JP H02131610A
Authority
JP
Japan
Prior art keywords
mode
electrode
synthetic resin
filter
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28610388A
Other languages
Japanese (ja)
Inventor
Jiro Inoue
二郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP28610388A priority Critical patent/JPH02131610A/en
Publication of JPH02131610A publication Critical patent/JPH02131610A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To widen a region so that the mode arrangement is controlled with comparatively simple structure by forming a synthetic resin layer between electrodes on the upper face of the electrode and/or on the piezoelectric substrate. CONSTITUTION:A film 5 made of a synthetic resin is printed and coated onto the upper face of input and output electrodes 2, 3 and the upper face of a common electrode 4. The gap between the input electrode and output electrode 2, 3 acts like a coupler and the film 5 is formed relatively thin with respect to the thickness of the electrode excited piezoelectrically to weaken the action as the coupler. Through the effect, it is possible to approach each value of fa (anti-resonance frequency) in the S0 mode and of fr (resonance frequency of the A0 mode by a required quantity only. Moreover, it is desired to provide insulation to a synthetic resin used for the film 5 with a high mechanical Q. Thus, inorganic powder such as silica, glass or alumina is mixed in the paint.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、厚み(織又は漬り)振動のエネルギー閉じ込
め形多重モードフィルタに係り、特に、モード配置のコ
ントロールを簡便に行うことのできるエネルギー閉じ込
め形多重モードフィルタに関するものである. 〔従来技術〕 例えば、厚み縦振動のエネルギー閉じ込め形の2重モー
ドフィルタでは、第3図に示す如く、圧電基板lの上面
に、入力電極2と出力電穫3とが所定の間隙を介して設
けられている.上記圧電基板lの裏面倒の上記入力電極
2及び出力電極3と対応する部分には、共通電極4が設
けられている.そして、上記構造の21!モードフィル
タにおける最通なモード配置(第4図参照)は、S0モ
ードのEa  (反共損周波数)と八〇モードのtr 
 (共振周波数》をほぼ一致させ、要求される帯域幅に
応じて上記S.モード及びA0モードにおけるΔr (
Δf−f,−1,)の値をコントロールすることによっ
て得られる. (発明が解決しようとする課題) 上記S.モードと八〇モードの配置は、入力電極2と出
力電極3の平均距離dの値によって決定されるが、上記
dの値を変化させても、実際には、S0モードのf.と
A.モードのf,との差は要求される程大きくは変化せ
ず、S.モード及び^。モードを上記Δfの値の要求さ
れる可変範囲に追従させることができない.従って、実
現されるフィルタの比帯域幅はかなり狭い範囲に限定さ
れる. そこで、本発明の目的とするところは、比較的簡単な構
造で、モード配置をコントロールし得る領域を広げるこ
とができ、且つ、フィルタの比帯域幅のコントロールを
自由に行うことのできるエネルギー閉じ込め形多重モー
ドフィルタを提供することである. 〔課題を解決するための手段〕 上記目的を達成するために、本発明が採用する主たる手
段は、その要旨とするところが、複数の電掘が圧電基板
を挟んで該圧電基板上に設けられたエネルギー閉じ込め
形の多重モードフィルタにおいて、上記電極の上面及び
/若しくは上記圧電基板上の電極間に、合成樹脂層を形
成した点にかかるエネルギー閉じ込め形多重モードフィ
ルタである. 〔作用〕 本発明にかかるエネルギー閉じ込め形多重モードフィル
タは上記したように構成されているため、電極の上面及
び/若しくは圧電基板上の電極間に形成された合成樹脂
層の作用により、電極部で励起される振動間の結合度が
変る.この結合度は、合成樹脂層の形成位置によって変
化させることができ、その結果、モード配置のコントロ
ール領域及びフィルタの比帯域幅を簡便に変化させるこ
とができる. 〔実施例〕 以下添付図面を参照して、本発明を具体化した実JIt
*Iにつき説明し、本発明の理解に供する.尚、以下の
実施例は、本発明を具体化した一例であって、本発明の
技術的範囲を限定する性格のものではない. ここに、第1図は本発明の一実施例にかかるエネルギー
閉じ込め形多重モードフィルタの要部側面図、第2図は
本発明の他の実施例にかかるエネルギー閉じ込め形多重
モードフィルタを示すものであって第1図の相当図であ
る. また、第3図に示した前記従来のエネルギー閉じ込め形
多重モードフィルタと共通する要素には、同一の符号を
使用して説明する. この実施例にかかる、例えば厚み縦振動のエネルギー閉
じ込め形の21[モードフィルタは、第1図に示す如く
、従来の2重モードフィルタ(第3図参照)と基本的構
造をほぼ同様とし、この従来の2重モードフィルタとの
相違点は、入力電極2,出力電極3及び共通電極4の上
面に、例えば樹脂塗料あるいは無機物質を含有する樹脂
塗料からなる被llI5(合成樹脂層)を塗布により形
成したことである. 一般的に、上記入力電pi2と出力電極3の間の平均距
離d (第3図参照)の値を大きくすることにより、S
0モードのr,とA.モードのf,の各値を接近させる
ことができる.しかし、この接近量は、必要とされる値
に比べて極めて小さい.そこで、第1図に示すように、
入力電極2と出力電橋3の上面及び共通電極4の上面に
上記したような合成樹脂からなる被III5を印刷によ
り塗布する. 上記入力電極2と出力電極3との間の間隙は、カプラー
として作用するが、圧電的に励賑される電極部の厚みに
対して上記被膜5を相対的に薄くすることで、上記カプ
ラーとしての作用を弱くする効果がある.この効果によ
り、上記S0モードのf.とA0モードのfrの各値を
必要量だけ接近させることができる. 尚、上記被Jl!5に用いられる合成樹脂塗料は、絶縁
性を有することが望ましく、また、メカニカルQの高い
ものが望ましい.このため、シリヵ,ガラスあるいはア
ルミナなどの無機質粉末を塗料中に混入させると効果的
である. 上記実施例における2重モードフィルタでは、間図に示
すように、共通電極4の上記入力電極2と出力電極3と
の間の間隙に対応する部分を予め−1除すると共に、こ
の部分を電気的に接続させておくと、更に効果的である
. また、上記実施例における2Wiモードフィルタにおい
ては、S0モードのr.とA.モードのfrの各値の変
化させるべき量に対応させて、上記被lglI5の形成
位置は、入力電極2.出力電橿3の各上面若しくは共通
電極4の上面のどちらか一方のみであってもよい. 他方、上記実施例とは逆に、s0モードのf.とA.モ
ードのf,を離間させる場合には、第2図に示すように
、圧電基板l上の入力電極2と出力電極3との間の部分
に被I!5を形成するとよい.この場合、上記f.とf
,を離間させる量に応じて、共通電極4上の上記入力電
極2と出力電極3との間の間隙に対応する部分に被11
1!5を形成するとよい(第2図参@). 尚、第1図と第2図に示す構造の2Nモードフィルタで
は、各電極の上面に被膜5を形成しないで入力電極2と
出力電橿3の平均距離のみでコントロールする場合に比
べて、Sゆモードのr1とA.モードのf,の間隔を約
2倍の範囲でコントロールすることができた. 従って、上記構成による2重モードフィルタにおいては
、各電橿の上面及び/若しくは圧電基板上の電極間に形
成された被Iil5の作用により、S.モードとA0モ
ードの結合度をコントロールすることができる.そして
、上記結合度は、被膜5の形成位置によって変化させる
ことができ、その結果、モード配置及びフィルタの比帯
域幅を簡便に変化させることもできる. 〔発明の効果〕 本発明は、上記したように、複数の電極が圧電基板を挟
んで該圧電基板上に設けられたエネルギー閉じ込め形の
多重モードフィルタにおいて、上記電極の上面及び/若
しくは上記圧電基板上の電極間に、合成樹脂層を形成し
たことを特徴とするエネルギー閉じ込め形の多重モード
フィルタであるから、比較的簡単な構造でモード配置を
コントロールし得る領域を広げることができ、且つ、フ
ィルタの比帯域幅のコントロールを自由に行うことがで
きる.
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an energy trapping type multi-mode filter for thickness (woven or pickled) vibrations, and particularly relates to an energy trapping type multi-mode filter for thickness (woven or pickled) vibrations, and in particular, an energy trapping type filter that can easily control the mode arrangement. It concerns confinement multimode filters. [Prior Art] For example, in a dual mode filter of the energy trapping type for longitudinal thickness vibration, as shown in FIG. It is provided. A common electrode 4 is provided on the back side of the piezoelectric substrate 1 at a portion corresponding to the input electrode 2 and the output electrode 3. And 21 of the above structure! The most common mode arrangement in the mode filter (see Figure 4) is Ea (anti-common loss frequency) of the S0 mode and tr of the 80 mode.
(resonance frequency) are almost the same, and Δr (
It can be obtained by controlling the value of Δf−f,−1,). (Problem to be solved by the invention) Above S. The arrangement of the mode and the 80 mode is determined by the value of the average distance d between the input electrode 2 and the output electrode 3, but even if the value of d is changed, the f. and A. The difference between mode f, does not change as much as required, and S. Mode and ^. It is not possible to make the mode follow the required variable range of the above value of Δf. Therefore, the fractional bandwidth of the realized filter is limited to a fairly narrow range. Therefore, an object of the present invention is to provide an energy confinement type that has a relatively simple structure, can expand the range in which the mode arrangement can be controlled, and can freely control the fractional bandwidth of the filter. The purpose is to provide a multi-mode filter. [Means for Solving the Problems] In order to achieve the above object, the main means adopted by the present invention is that a plurality of electric excavations are provided on the piezoelectric substrate with the piezoelectric substrate sandwiched therebetween. In the energy trapping type multimode filter, a synthetic resin layer is formed on the upper surface of the electrode and/or between the electrodes on the piezoelectric substrate. [Function] Since the energy trapping multimode filter according to the present invention is configured as described above, the effect of the synthetic resin layer formed on the upper surface of the electrodes and/or between the electrodes on the piezoelectric substrate allows the energy trapping type multimode filter according to the present invention to The degree of coupling between excited vibrations changes. This degree of coupling can be changed depending on the formation position of the synthetic resin layer, and as a result, the control region of mode arrangement and the fractional bandwidth of the filter can be easily changed. [Example] With reference to the attached drawings, an actual JIt embodying the present invention will be described below.
*I will be explained for understanding of the present invention. The following example is an example embodying the present invention, and is not intended to limit the technical scope of the present invention. Here, FIG. 1 is a side view of essential parts of an energy trapping multimode filter according to one embodiment of the present invention, and FIG. 2 is a side view of an energy trapping multimode filter according to another embodiment of the invention. This is a diagram equivalent to Figure 1. Further, the same reference numerals will be used to explain the same elements as those of the conventional energy trapping multimode filter shown in FIG. As shown in FIG. 1, the 21 mode filter of the energy trapping type for thickness longitudinal vibration, for example, according to this embodiment has almost the same basic structure as the conventional dual mode filter (see FIG. 3). The difference from conventional dual mode filters is that a coating (synthetic resin layer) made of, for example, resin paint or resin paint containing an inorganic substance is applied to the upper surfaces of input electrode 2, output electrode 3, and common electrode 4. It was formed. Generally, by increasing the value of the average distance d (see Figure 3) between the input voltage pi2 and the output electrode 3, S
0 mode r, and A. It is possible to make each value of f of the mode close to each other. However, this amount of approach is extremely small compared to the required value. Therefore, as shown in Figure 1,
The coating III 5 made of synthetic resin as described above is applied by printing on the upper surfaces of the input electrodes 2 and output bridges 3 and the upper surface of the common electrode 4. The gap between the input electrode 2 and the output electrode 3 acts as a coupler, but by making the coating 5 relatively thin with respect to the thickness of the piezoelectrically excited electrode part, the gap between the input electrode 2 and the output electrode 3 acts as a coupler. It has the effect of weakening the effect of Due to this effect, f. It is possible to make each value of fr in A0 mode and A0 mode close to each other by the required amount. In addition, the above Jl! It is desirable that the synthetic resin paint used in No. 5 has insulating properties, and it is also desirable that it has a high mechanical Q. For this reason, it is effective to mix inorganic powders such as silica, glass, or alumina into the paint. In the dual mode filter in the above embodiment, as shown in the diagram, the portion of the common electrode 4 corresponding to the gap between the input electrode 2 and the output electrode 3 is divided by -1 in advance, and this portion is It will be even more effective if you connect them to each other. In addition, in the 2Wi mode filter in the above embodiment, r. and A. The forming position of the above-mentioned lglI5 is determined according to the amount by which each value of fr of the mode should be changed. Only one of the upper surfaces of the output electrodes 3 or the upper surface of the common electrode 4 may be used. On the other hand, contrary to the above embodiment, f. and A. When the mode f, is separated, as shown in FIG. 2, the I! It is good to form 5. In this case, the above f. and f
, a portion of the common electrode 4 corresponding to the gap between the input electrode 2 and the output electrode 3 is provided with a cover 11.
It is best to form 1!5 (see Figure 2 @). In addition, in the 2N mode filter having the structure shown in FIGS. 1 and 2, the S Yumode's r1 and A. I was able to control the interval between f and mode over a range that was approximately twice as large. Therefore, in the dual mode filter having the above configuration, the S.I. The degree of coupling between the mode and A0 mode can be controlled. The degree of coupling can be changed depending on the position where the coating 5 is formed, and as a result, the mode arrangement and the fractional bandwidth of the filter can be easily changed. [Effects of the Invention] As described above, the present invention provides an energy trapping multimode filter in which a plurality of electrodes are provided on a piezoelectric substrate with a piezoelectric substrate sandwiched therebetween, in which the upper surface of the electrode and/or the piezoelectric substrate Since this is an energy trapping type multi-mode filter characterized by a synthetic resin layer formed between the upper electrodes, the area where the mode arrangement can be controlled can be expanded with a relatively simple structure, and the filter You can freely control the fractional bandwidth of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかるエネルギー閉じ込め
形多重モードフィルタの要部側面図、第2図は本発明の
他の実施例にかかるエネルギー閉じ込め形多重モードフ
ィルタを示すものであって第1図の相当図、第3図は従
来のエネルギ〒閉じ込め形多重モードフィルタの要部側
面図、第4図は2重モードフィルタにおけるインピーダ
ンスと周波数との関係を示すグラフである. 〔符号の説明〕 l・・・圧電基板 2・・・入力電極 3・・・出力電極 4・・・共通電極 5・・・被膜(合成樹脂層).
FIG. 1 is a side view of essential parts of an energy trapping multimode filter according to an embodiment of the present invention, and FIG. 2 is a side view of an energy trapping multimode filter according to another embodiment of the invention. 1, FIG. 3 is a side view of the main part of a conventional energy confinement multimode filter, and FIG. 4 is a graph showing the relationship between impedance and frequency in a dual mode filter. [Explanation of symbols] l...Piezoelectric substrate 2...Input electrode 3...Output electrode 4...Common electrode 5...Coating (synthetic resin layer).

Claims (1)

【特許請求の範囲】[Claims] 1.複数の電極が圧電基板を挟んで該圧電基板上に設け
られたエネルギー閉じ込め形の多重モードフィルタにお
いて、上記電極の上面及び/若しくは上記圧電基板上の
電極間に、合成樹脂層を形成したことを特徴とするエネ
ルギー閉じ込め形の多重モードフィルタ。
1. In an energy trapping multi-mode filter in which a plurality of electrodes are provided on a piezoelectric substrate with a piezoelectric substrate in between, a synthetic resin layer is formed on the upper surface of the electrodes and/or between the electrodes on the piezoelectric substrate. Features an energy-confining multimode filter.
JP28610388A 1988-11-11 1988-11-11 Energy confinement type multiple mode filter Pending JPH02131610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28610388A JPH02131610A (en) 1988-11-11 1988-11-11 Energy confinement type multiple mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28610388A JPH02131610A (en) 1988-11-11 1988-11-11 Energy confinement type multiple mode filter

Publications (1)

Publication Number Publication Date
JPH02131610A true JPH02131610A (en) 1990-05-21

Family

ID=17699975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28610388A Pending JPH02131610A (en) 1988-11-11 1988-11-11 Energy confinement type multiple mode filter

Country Status (1)

Country Link
JP (1) JPH02131610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088099A (en) * 1990-12-20 1992-02-11 At&T Bell Laboratories Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833943U (en) * 1971-09-01 1973-04-24
JPS50150394A (en) * 1974-05-21 1975-12-02
JPS5121634U (en) * 1974-08-02 1976-02-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833943U (en) * 1971-09-01 1973-04-24
JPS50150394A (en) * 1974-05-21 1975-12-02
JPS5121634U (en) * 1974-08-02 1976-02-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088099A (en) * 1990-12-20 1992-02-11 At&T Bell Laboratories Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence

Similar Documents

Publication Publication Date Title
CN111656685B (en) elastic wave device
JP2790177B2 (en) Electrostrictive resonance element
GB2072943A (en) Piezo-electric crystal vibrator
JP2017523645A (en) Microacoustic device with improved temperature compensation
US4431934A (en) Electrically actuated piezoelectric control element
JPH03151705A (en) Piezoelectric vibration element
US5084647A (en) Piezoelectric filter
JPH02131610A (en) Energy confinement type multiple mode filter
JPS616917A (en) Internal reflection type unidirectional surface acoustic wave converter using change in electrode width
US4348609A (en) Piezoelectric vibrator with spurious mode suppression
JP2005020702A (en) Piezoelectric resonator component
JP5101410B2 (en) Resonant frequency variable MEMS vibrator
JPH0779221B2 (en) Chip type piezoelectric element
US4617488A (en) Composite piezoelectric vibrator with trapezoidal cross section
US5274293A (en) Piezoelectric filter
JPH01191508A (en) Electrostrictive resonator
US6515401B1 (en) Piezoelectric resonator
JPH04222108A (en) Thickness-shear vibrator
JP3378163B2 (en) Piezo components
JPH0575376A (en) Piezoelectric tuning fork resonator
JPH0275211A (en) Piezoelectric resonator
JPH04306011A (en) Piezoelectric resonator
JPS62142408A (en) Piezo-electric vibration parts
JP3337086B2 (en) Method of manufacturing energy trapping type piezoelectric vibration component
JP2555355Y2 (en) Thickness shear piezoelectric vibrator