JPH02131245A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02131245A
JPH02131245A JP28613788A JP28613788A JPH02131245A JP H02131245 A JPH02131245 A JP H02131245A JP 28613788 A JP28613788 A JP 28613788A JP 28613788 A JP28613788 A JP 28613788A JP H02131245 A JPH02131245 A JP H02131245A
Authority
JP
Japan
Prior art keywords
layer
photosensitive body
vinylene
sec
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28613788A
Other languages
Japanese (ja)
Inventor
Mutsuaki Murakami
睦明 村上
Soji Tsuchiya
土屋 宗次
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28613788A priority Critical patent/JPH02131245A/en
Publication of JPH02131245A publication Critical patent/JPH02131245A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain the org. photosensitive body which is of a positive charge system and has high sensitivity and excellent durability by providing a charge transfer layer contg. high-polymer materials consisting of a specific molecular structure. CONSTITUTION:The high polymers expressed by the formula I are used as the org. photoconductor material by the positive charge system. In the formula I, R denotes a bivalent cyclic substituent contg. a pi electron conjugation system and n denotes >=2 integer. All these high polymers have the high electron transfer power and the characteristics as the excellent photosensitive body are attained by combining the high polymers as a charge transfer material for positive charge with a suitable CG material (charge generating material). Since the high polymers have the film formability, the CT layer (charge transfer layer) can be formed without requiring a binder resin. Since the photosensitive body operates in the positive charge system in this way, the generation of the ozone to deteriorate the characteristics of the photosensitive body is substantially prevented and since the high polymers have the high thermal stability, the CT layer having the excellent durability is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子写真感光体に関し、更に詳しくは、正帯電
方式に最適な、特定の分子構造からなる高分子材料を含
有する電荷移動層を有する感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor, and more particularly, to an electrophotographic photoreceptor having a charge transfer layer containing a polymeric material having a specific molecular structure and suitable for positive charging. Regarding the body.

従来の技術 有機感光体(OPCと略す)は、無機感光体に比べ分子
設計により色々な波長に高感度な材刺を合成できること
、無公害であること、生産性、経済性に優れ安価である
こと等の特徴を有しており、現在活発な研究開発が行わ
れている。そして、従来、有機感光体の問題点とされて
いた耐久性や感度の面でも著しい改良がなされ、そのい
くつかは実用化に至っており、現在、電子写真用感光体
の主力となりつつある。
Conventional technology Compared to inorganic photoreceptors, organic photoreceptors (abbreviated as OPC) are capable of synthesizing material that is highly sensitive to various wavelengths through molecular design, are non-polluting, have excellent productivity and economy, and are inexpensive. It has the following characteristics and is currently undergoing active research and development. In addition, remarkable improvements have been made in terms of durability and sensitivity, which were conventionally considered problems of organic photoreceptors, and some of these improvements have been put into practical use, and they are now becoming the mainstay of photoreceptors for electrophotography.

OPCは通常、電荷発生層(CGLと略す)と電荷移動
層(CTLと略す)の2重層構造で使用され、その高感
度化が図られている。CGLに使用される材料としては
、ベリレン系化合物、フタロシアニン系化合物、チアピ
リリウム系化合物、アンスアンスロン系化合物、スクア
リリウム系化合物、ピスアゾ系化合物等のいろいろな有
機材料が検討されている。
OPC is usually used with a double layer structure of a charge generation layer (abbreviated as CGL) and a charge transfer layer (abbreviated as CTL), and its sensitivity is improved. Various organic materials such as berylene compounds, phthalocyanine compounds, thiapyrylium compounds, anthanthrone compounds, squarylium compounds, and pisazo compounds have been studied as materials for use in CGLs.

一方、CTLに使用される材料(CTM)としては、各
種ヒドラゾン系化合物、オキサゾール系化合物、トリフ
エニルメタン系化合物、アリールアミン系化合物等が開
発されている。
On the other hand, various hydrazone-based compounds, oxazole-based compounds, triphenylmethane-based compounds, arylamine-based compounds, and the like have been developed as materials (CTM) used for CTL.

更に、近年はレーザープリンター等のデジタル記録用の
感光体として、これらの有機感光体を半導体レーザー光
( 780 − 830nm)に対応した近赤外領域で
使用したいと言う要望が高まり、この領域で高感度な特
性をもつ有機感光体の開発が盛んである。この様な領域
の感光体として有機感光体は無機感光体に比べ感度の点
から有利であり、各種フタ口シアニン顔料、トリスアゾ
顔料、アズレニウム色素等が電荷発生材料(CGM)と
して開発されている。
Furthermore, in recent years there has been an increasing demand for the use of these organic photoreceptors in the near-infrared region, which corresponds to semiconductor laser light (780-830 nm), as photoreceptors for digital recording in laser printers and other devices. Organic photoreceptors with sensitive characteristics are being actively developed. Organic photoreceptors are advantageous in terms of sensitivity than inorganic photoreceptors as photoreceptors in such areas, and various lid cyanine pigments, trisazo pigments, azulenium dyes, and the like have been developed as charge generating materials (CGM).

これらの材料はバインダー高分子とともに塗布と言う比
較的簡単な方法でドラムやベルト等の基板上に形成され
る。一般に、2重層構造では高感度化のためにCG層は
数ミクロンの厚さで塗布され、一方、CT層は数十ミク
ロンの厚さで塗布される。このときその強度、耐刷性、
等の理由からCG層は基板側に、CT層は表面側に形成
されるのが普通である。この様な構成においては、CT
Mが正孔の移動により作動するもののみ実用化されてい
るので、その2重層感光体は負帯電方式となる。
These materials are formed on a substrate such as a drum or belt by a relatively simple method of coating together with a binder polymer. Generally, in a double layer structure, the CG layer is coated to a thickness of several microns in order to increase sensitivity, while the CT layer is coated to a thickness of several tens of microns. At this time, its strength, printing durability,
For these reasons, the CG layer is usually formed on the substrate side, and the CT layer is usually formed on the surface side. In such a configuration, CT
Since only those in which M is activated by the movement of holes have been put into practical use, the double layer photoreceptor is of a negative charging type.

発明が解決しようとする課題 この様な負帯電方式においては、負電荷によってオゾン
の発生が起こる。その様なオゾンは感光体の劣化を促進
するばかりでなく、人体にとって有害でもあり、現在装
置形成上の大きな問題となっている。
Problems to be Solved by the Invention In such a negative charging system, ozone is generated due to negative charges. Such ozone not only accelerates the deterioration of the photoreceptor, but is also harmful to the human body, and is currently a major problem in device formation.

この様な問題を解決するため正帯電方式の検討が活発に
行われている。その方法の第一は上記のCT層とCG層
を逆にし、CT層を基板側に、CG層を表面に配置する
ものである。しかし、この試みはCG層を厚くする事が
困難であるため七の耐刷性を向上させる事が出来ず、成
功していない。
In order to solve these problems, positive charging systems are being actively studied. The first method is to reverse the above-mentioned CT layer and CG layer, placing the CT layer on the substrate side and the CG layer on the surface. However, this attempt was not successful because it was difficult to increase the thickness of the CG layer, making it impossible to improve the printing durability of the paper.

第二の方法は電子の移動により作用するCT材料を開発
する事である。この方法は現在の2層構造の構成のまま
で正帯電方式が実現出来るので最も望ましい方法である
。しかし、現在、優れた性能を有し、電子移動で作用す
るCT材料は開発されていない。
The second method is to develop CT materials that work by transferring electrons. This method is the most desirable method because a positive charging system can be realized with the current two-layer structure. However, at present, no CT material has been developed that has excellent performance and works in electron transfer.

本発明の目的は、新規な電子移動で作用する高性能有機
感光体を提供する事にあり、特に正帯電方式で、しかも
高感度、耐久性に優れる有機感光体を提供する事にある
An object of the present invention is to provide a novel high-performance organic photoreceptor that operates through electron transfer, and in particular, to provide an organic photoreceptor that is positively charged and has high sensitivity and excellent durability.

課題を解決するだめの手段 我々は、上記の問題点を解決するために、現在、OPC
材料の主流となっている低分子OPC材料に代わり、新
規な高分子OPCの開発を行った。
Means to solve the problem In order to solve the above problems, we are currently using OPC.
We developed a new polymer OPC to replace the low-molecular OPC material that is the mainstream material.

その結果、電子移動で作用する正帯電用高性能高分子有
機感光体を見出し、本発明を成すに至った。
As a result, they discovered a high-performance polymeric organic photoreceptor for positive charging that operates through electron transfer, and accomplished the present invention.

従って、この発明にかかる有機光導電体として、次の様
な一般式; +R−CH=CH+ n 〔ここで、Rはπ電子共役系を含む2価の環状置換基、
nは2以上の整数を表す〕で表現される高分子化合物を
用いる。
Therefore, the organic photoconductor according to the present invention has the following general formula: +R-CH=CH+ n [where R is a divalent cyclic substituent containing a π-electron conjugated system,
n represents an integer of 2 or more] is used.

更に、上記高分子としてはポリパラフェニレンビニレン
(PP■と略す)、ボリチェニレンビニレン(PTh■
と略す)、ポリナフタレンビニレン(PNa■と略す)
、ポリメトキ7パラフェニレンビニレン(PMPVと略
す)、ポリジメトキシフエニレンビニレン(PDMPV
と略ス)、カら成る群れから選ばれた少なくとも1種類
であることが好ましい。
Furthermore, the polymers mentioned above include polyparaphenylene vinylene (abbreviated as PP■), polythenylene vinylene (PTh■
(abbreviated as), polynaphthalene vinylene (abbreviated as PNa■)
, polymethoxy7-paraphenylene vinylene (abbreviated as PMPV), polydimethoxyphenylene vinylene (PDMPV)
It is preferable that the mosquito be at least one species selected from the group consisting of mosquitoes.

作用 上記の高分子はいずれも高い電子移動の能力を有してお
り、正帯電用の電荷移動物質として、従来の適当なCG
材料と組み合わせる事により優れた感光体としての特性
を実現できる。まだ、これらの高分子は膜形成能力を有
しているためバインダー樹脂を必要とせずにCT層を形
成する事が出来る。これらの高分子は正帯電方式で作動
するので、感光体特性の劣化を招くオゾンの発生がほと
んどなく、さらに高い熱安定性を有しているので耐久性
に侵れたCT層を形成する事が出来る。
Function All of the above-mentioned polymers have high electron transfer ability, and conventional suitable CG
By combining it with other materials, it is possible to achieve excellent properties as a photoreceptor. However, since these polymers have film-forming ability, it is possible to form a CT layer without requiring a binder resin. Since these polymers operate using a positive charging system, there is almost no ozone generation that can cause deterioration of photoreceptor characteristics, and they also have high thermal stability, making it possible to form a CT layer with excellent durability. I can do it.

実施例 以下に、この発明を詳しく説明する。Example This invention will be explained in detail below.

はじめに、有機光導電層の基板となる導電性支持体とし
ては、特に限定はされず、使用用途等によって適宜選択
することが出来る。具体的には、アルミニウム等の金属
や、ガラス、紙あるいはプラスチック等の表面に金属蒸
着等の方法で導電層を形成したものなどが好ましく用い
られる。また、その形状についても、ドラム状、ベルト
状、シート状などいろいろな形状を取ることが出来る。
First, the conductive support serving as the substrate of the organic photoconductive layer is not particularly limited, and can be appropriately selected depending on the intended use. Specifically, metals such as aluminum, glass, paper, or plastics on which a conductive layer is formed by a method such as metal vapor deposition are preferably used. Moreover, it can take various shapes such as a drum shape, a belt shape, and a sheet shape.

次に、この発明で用いらね5る有機光導電体は、上記の
ように、一般式; {− R − C H = C H鮎 で表され、Rについては、共役π電子を有する2価の環
状置換基であればとくに限定はされない。
Next, the organic photoconductor used in this invention is represented by the general formula; There are no particular limitations as long as it is a cyclic substituent.

この環状共役置換基としては、各種芳香族炭化水素、複
素環化合物があげられる。具体的に−R−としては、 lJ0 0の @ などが例示出来る。むろんこれらの高分子有機光導電体
は単独で用いられる以外に複数種が併用されてもよい。
Examples of the cyclic conjugated substituent include various aromatic hydrocarbons and heterocyclic compounds. Specifically, -R- can be exemplified by @ in lJ00. Of course, these polymeric organic photoconductors may be used alone or in combination.

上記の各種高分子光導電体の中でも、−R一としては順
に(1)〜(5)で示される、PPV,PThV、PN
aV,PMPV,PDMPVの5種を用いる事が好まし
い。これらの5種類の高分子は正帯電方式に対して特に
高感度で、安定性にも優れている。
Among the above-mentioned various polymer photoconductors, -R is represented by (1) to (5) in order, PPV, PThV, PN.
It is preferable to use five types: aV, PMPV, and PDMPV. These five types of polymers have particularly high sensitivity to positive charging methods and are excellent in stability.

これらのアルキルビニレン化合物はその合成方法、およ
び光導電層の形成方法については、特に限定されないが
、一般には次の様な反応によって合成される。
These alkylvinylene compounds are generally synthesized by the following reaction, although there are no particular limitations on the synthesis method and the method for forming the photoconductive layer.

−XR 2S”CH.RCHzS”R’.X−(A) NaOH       加熱 X−S”R″2 (B)             (C)通當は溶媒と
して水が用いられ、時としてメタノール溶媒が用いられ
る場合もある。膜の形成は高分子の前駆体である(B)
をCG層上にキャストし、そのキャストフィルムを熱処
理することによって行う。なお、これらの高分子の具体
的な合成方法については次に示す文献に記載されている
-XR 2S"CH.RCHzS"R'. X-(A) NaOH Heating X-S"R"2 (B) (C) Water is generally used as a solvent, and sometimes a methanol solvent is also used. Film formation is a precursor of polymers (B)
This is done by casting on the CG layer and heat-treating the cast film. Note that specific methods for synthesizing these polymers are described in the following documents.

(′D 米国特許第3,  401,  152号明細
書1■ 米国特許第3,  706,  677号明細
書■ アイ ムラセ( I . Murase )他、
ポリマー コミュニケイシ−1 7 ( Polyme
r communication)25,  327 
(1984) ■ エス アントウーン(S. Antoun)他、ポ
リマブレティン(Polymer Bulletin)
 15, 181■ エス,アント,> − ン(S.
Antoun)他、ジャーナル オブ ボリマー サイ
エンス シーポリマーレターズ(J. Polymer
 Sciennce, C,Polymer Lett
ers)  24,  503 ( 1986 )■ 
ケイーワイ ジエン(K−Y.Jan)  シンセティ
ノク メタルズ(Synthetic Metals)
 22,■ ケイーワイ、ジェン(K− Y. Jen
),  ジャーナル オプ ケミカル ソサイティー 
ケミカルコミュニケーシ−s ン(J. Chem. 
SocChem.Commun.)  1987 . 
 309このようにして形成されるこの発明の高分子光
導電層は正帯電方式として使用されるが、その場合、従
来用いられているCG材料と組み合わせる事が必要であ
る。この場合CG層を基板側に設置し、その上に本発明
になる高分子層を設けた2重層構造とすることも出来る
し、CG材料を高分子光導電体に添加して複合体とし、
単層構造とする事も出来る。
('D U.S. Patent No. 3,401,152 Specification 1■ U.S. Patent No. 3,706,677 ■ I. Murase et al.
Polymer Communication 1 7
r communication) 25, 327
(1984) ■ S. Antoun et al., Polymer Bulletin
15, 181 ■ S, Ant, > - N (S.
Antoun et al., Journal of Polymer Science Sea Polymer Letters (J. Polymer
Science, C, Polymer Lett
ers) 24, 503 (1986)■
K-Y.Jan Synthetic Metals
22, ■ K- Y. Jen
), Journal Op Chemical Society
Chemical communications (J. Chem.
SocChem. Commun. ) 1987.
309 The polymeric photoconductive layer of the present invention thus formed is used for positive charging, but in that case it is necessary to combine it with a conventionally used CG material. In this case, it is possible to have a double-layer structure in which the CG layer is placed on the substrate side and the polymer layer according to the present invention is provided thereon, or a CG material is added to the polymer photoconductor to form a composite.
It can also have a single layer structure.

この様な目的に使用されるCGL材料としては以下の化
合物Q3 16が例示出来る。中でもQ3α荀に示した
各種のフタ口シアニン類は本発明の目的には好ましく用
いられ、特にX型、τ型のフタロシアニンは最適である
The following compound Q316 can be exemplified as a CGL material used for such a purpose. Among them, the various phthalocyanines shown in Q3α are preferably used for the purpose of the present invention, and X-type and τ-type phthalocyanines are particularly suitable.

α句 0Q Q3 a4 CH3 Y=H,OH,CH. Qp 翰 本発明になる高分子有機光導電体は正帯電方式で優れた
特性を示すので、種々のヒドラゾン系化合物、オキサゾ
ール系化合物、トリフェニルメタン系化合物等の通常負
帯電方式に使用されるCT材料を添加することはしばし
ば正帯電特性の低下を示す。従って、本発明の高分子有
機感光体を負帯電用CT材との複合体として用いる事は
出来ない。但し、本発明になる高分子有機感光体とCT
材との複合体を負帯電方式で用いる事は無論可能である
α phrase 0Q Q3 a4 CH3 Y=H, OH, CH. Since the polymeric organic photoconductor of the present invention exhibits excellent properties in a positive charging system, it can be used with various hydrazone-based compounds, oxazole-based compounds, triphenylmethane-based compounds, etc., which are commonly used in negative charging systems. Adding materials often exhibits a decrease in positive charging properties. Therefore, the polymer organic photoreceptor of the present invention cannot be used as a composite with a negatively charged CT material. However, the polymer organic photoreceptor of the present invention and CT
Of course, it is possible to use a composite with a material in a negatively charged manner.

また、本発明になる高分子有機光導電体は単独で優れた
皮膜を形成するが、その強度やCG層との接着性の向上
のために種々のバインダー高分子と複合することが出来
る。
Furthermore, although the polymeric organic photoconductor of the present invention forms an excellent film by itself, it can be combined with various binder polymers to improve its strength and adhesion to the CG layer.

以上述べてきたこの発明にかかる電子写真用感光体は、
例えば、複写機、プリンター、ファクシミリ等の種々の
記録方式に用いる事が出来、その用途は何等限定されな
い。なお、この発明にかかる電子写真用感光体は、上記
例に限定される事なく例えば必要に応じて有機感光体層
上にさらに絶縁性樹脂による表面保護層を形成したり、
CG層と基板の間にプロノキング層を設けたりすること
も出来る。
The electrophotographic photoreceptor according to the present invention described above is
For example, it can be used in various recording systems such as copying machines, printers, and facsimile machines, and its uses are not limited in any way. Note that the electrophotographic photoreceptor according to the present invention is not limited to the above examples, but may further include, for example, forming a surface protection layer of an insulating resin on the organic photoreceptor layer as necessary.
It is also possible to provide a pronoking layer between the CG layer and the substrate.

次に、この発明をさらに詳しく実施例と比較例とを併せ
て説明する。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 ジオキサン溶媒に分散したX型無金属フタロシアニン〔
犬日本インキ化学工業■製、ファストゲンプル− (F
astogen Blue) 8120B )を7 /
l/ミドラム上に塗布してCG層(厚さ2〜4μm)を
形成した。
Example 1 X-type metal-free phthalocyanine dispersed in dioxane solvent [
Manufactured by Inu Nippon Ink Chemical Industry ■, Fast Genple (F
astogen Blue) 8120B)7/
A CG layer (thickness: 2 to 4 μm) was formed by coating on the L/Midram.

次に、上記文献■に記載の方法により合成したPPV前
駆体のメタノール溶液をディソプ法によりCG層上に塗
布し、15〜20μmの厚さの塗膜を形成した。塗膜を
真空中、200℃で1時間熱処理してPPVに転換し、
2層構造の感光体を得た。
Next, a methanol solution of a PPV precursor synthesized by the method described in the above-mentioned document (2) was applied onto the CG layer by the dispersion method to form a coating film with a thickness of 15 to 20 μm. The coating film was heat treated in vacuum at 200°C for 1 hour to convert it to PPV,
A photoreceptor with a two-layer structure was obtained.

こうして得られた感光体の感光特性を川口電機■製EP
A− 8100型ペーパーアナライザーを用い、タング
ステンによる白色光を照射して正帯電による光感度(半
減露光量)を測定した。その感度は0. 5 lux 
− secであった。更に、1000回の繰り返し試験
後の光感度も同終に測定した。その感度は0.6lux
 − secであり特性に変化はほとんど観察されなか
った。
The photosensitive characteristics of the photoreceptor obtained in this way were evaluated using EP manufactured by Kawaguchi Electric.
Using a paper analyzer model A-8100, white light from tungsten was irradiated to measure the photosensitivity (half exposure amount) due to positive charging. Its sensitivity is 0. 5 lux
- sec. Furthermore, the photosensitivity after 1000 repeated tests was also measured at the same end. Its sensitivity is 0.6lux
- sec, and almost no change in characteristics was observed.

実施例2 実施例1と同じ方法でPPVO代わりにPTh■、PN
aV,PMPV、PDMPV塗膜をCG層上に作成し、
その正帯電による感光特性を測定した。なお、PThV
の合成は文献の、PNaVの合成は文献■、PMPV、
PDMPVの合成は文献■、■、■、■の方法を参考に
行った。白色光による光感度(半減露光量)ぱp’rh
v:o.slux−sec, PN a V : Q,
81ux−sec1PDMPV:1, 3 lux −
 Sec、であった。また、1000回繰り返し試験後
の特性はp’rhv : 0.91ux−sec, p
NaV: o,slux−secSPMPV : 1.
21ux−sec,PDMP V : 1. 4 1u
x− sec、であり優レタ安定性ヲ示Lた。
Example 2 PTh■, PN instead of PPVO in the same manner as Example 1
Create aV, PMPV, PDMPV coatings on the CG layer,
The photosensitive characteristics due to positive charging were measured. In addition, PThV
The synthesis of PNaV is in the literature, and the synthesis of PNaV is in the literature ■, PMPV,
The synthesis of PDMPV was carried out with reference to the methods in the literature ①, ②, ②, ②. Photosensitivity due to white light (half exposure amount) p'rh
v:o. slux-sec, PN a V: Q,
81ux-sec1PDMPV: 1, 3 lux -
Sec. In addition, the characteristics after 1000 times repeated test are p'rhv: 0.91ux-sec, p
NaV: o,slux-secSPMPV: 1.
21ux-sec, PDMP V: 1. 4 1u
x-sec, indicating excellent letter stability.

実施例3 実施例1と同様の方法でCG材料としてr型無金属フタ
口シアニン〔東洋インキ製造■製、リオ7 オ} 7 
( Liophoton) TPH 278 )、ε型
銅フタロンアニン〔東洋インキ製造■製、リオフォトン
(Liophoton) ERPC )、ペリレン化合
物aQSQη〔市販品〕、AICI−フタ口シアニン、
InCI− フタロンアニン、T10−フタ口シアニン
、Mg−フタ口ンアニン、チアピリリウム化合物α騰、
ジアゾ化合物(ハ)、スクアリリウム化合物α1、(ハ
)、トリアゾ化合物(1)、アズレニウム化合物(イ)
〔それぞれ文献の方法により合成〕を用いてCG層を作
成し、PPVとの2重層構造の感光体を作成した。それ
ぞれの正帯電による感光特性(半減露光量)は次の通り
であった。
Example 3 R-type metal-free cap cyanine [manufactured by Toyo Ink Mfg. ■, Rio 7 O] 7 was used as a CG material in the same manner as in Example 1.
(Liophoton) TPH 278), ε-type copper phthalonanine (manufactured by Toyo Ink Mfg. ■, Liophoton ERPC), perylene compound aQSQη [commercially available], AICI-Futakuchi cyanine,
InCI-phthalonanine, T10-phthalonocyanine, Mg-phthalonanine, thiapyrylium compound α-teng,
Diazo compound (c), squarylium compound α1, (c), triazo compound (1), azulenium compound (a)
[Each was synthesized according to the method described in the literature] to create a CG layer, and a photoreceptor having a double layer structure with PPV was created. The photosensitive characteristics (half exposure amount) due to positive charging of each were as follows.

τ型フタロシアニン:0。7 lux − sec, 
 ε型フタロシ7= 7 : 0, 7 1ux− s
ec,ペリL/7化合物αd:l,Qlux − se
c,ペリL/7化合物θカ+ 1, 5 lux − 
secSAICI7夕077=ン: 1.11ux−s
ec, InCI− ;y20ン’7= 7 : 1,
 1 !11X− sec1TiO− 7タロシア=7
:0.9lux−sec, Mg− 7夕o シ7=ン
: 1.21ux−sec,ジアゾ化合物(ト):1、
4 lux − sec、スクアリリウム化合物Ql 
: 1, 2 lux − sec、スクアリリウム化
合物21) : 1.4 lux − sec、トリス
アゾ化合物ep : 1, 2 lux − sec、
アズレニウム化合物122) : Q8lux − s
ec0また、1000回の繰り返し帯電試験後の特性は
それぞれ次の通りであり、すぐれた安定性を示した。
τ-type phthalocyanine: 0.7 lux − sec,
ε type phthalocyanine 7 = 7: 0, 7 1ux-s
ec, peri-L/7 compound αd:l, Qlux-se
c, Peri L/7 compound θ + 1, 5 lux −
secSAICI7月077=n: 1.11ux-s
ec, InCI-;y20'7=7:1,
1! 11X- sec1TiO- 7 Talosia = 7
: 0.9 lux-sec, Mg-7: 1.21 ux-sec, diazo compound (t): 1,
4 lux - sec, squarylium compound Ql
: 1, 2 lux-sec, squarylium compound 21) : 1.4 lux-sec, trisazo compound ep: 1, 2 lux-sec,
Azulenium compound 122): Q8lux-s
ec0 Also, the characteristics after 1000 repeated charging tests were as follows, showing excellent stability.

τ型フタ口シアニン: Q, 8lux − sec,
 ε型フタロシ7=ン: Q.81ux− sec、ペ
リレン化合物ae:i.olux−sec, ヘリL/
ン化合物α7) : l. 7 lux − seeS
AICI−フタo シ7=7 : 1.21ux−se
c, InCI− フタo シ7= ン: 1. 2 
lux − sec, TiO− 7タロシア−ン:0
.9Iux− sec, Mg− 7タロシア= 7 
: 1. 3 lux − sec,ジアゾ化合物(1
8): 1, 6 lux − sec、スクアリリウ
ム化合物Ql : 1.5 lux − sec、スク
アリリウム化合物Q]):1, 5 lux − se
c,  トリスアゾ化合物@J : 1, 4 lux
 − see,アズレニウム化合物@ : 1, 1 
lux 1sec0以上、実施例1,  2.  3に
おいて示しだ様に実施例の感光体はいずれも非常に高感
度であって、繰り返し試験によってもその特性がほとん
ど変化しないことから、安定性にも優れている事が判明
した。
τ type lid cyanine: Q, 8lux - sec,
ε-type Phthalosi 7=N: Q. 81 ux-sec, perylene compound ae: i. olux-sec, helicopter L/
Compound α7): l. 7 lux-seeS
AICI-lid 7=7: 1.21ux-se
c, InCI- Lid 7= N: 1. 2
lux-sec, TiO-7 talocyan: 0
.. 9 Iux- sec, Mg- 7 talosia = 7
: 1. 3 lux - sec, diazo compound (1
8): 1,6 lux-sec, squarylium compound Ql: 1.5 lux-sec, squarylium compound Q]): 1,5 lux-se
c, trisazo compound @J: 1, 4 lux
- see, azulenium compound @: 1, 1
lux 1sec0 or more, Examples 1 and 2. As shown in No. 3, all of the photoreceptors of Examples had very high sensitivity, and their characteristics hardly changed even after repeated tests, indicating that they were also excellent in stability.

発明の効果 以上述べてきたように、この発明にかかる電子写真用感
光体は、電子移動に基づく高分子光導電体を用いている
ため、従来の感光体に比べ正電荷による帯電方式が可能
で、高感度で、かつ安定性にも優れたものとなっており
、一段と性能が向上した正帯電用電子写真感光体として
、いろ(・ろな記録機器等への応用が期待される。
Effects of the Invention As described above, since the electrophotographic photoreceptor according to the present invention uses a polymer photoconductor based on electron transfer, it can be charged using a positive charge compared to conventional photoreceptors. It has high sensitivity and excellent stability, and is expected to be applied to various recording devices as a positive charging electrophotographic photoreceptor with further improved performance.

Claims (3)

【特許請求の範囲】[Claims] (1)正帯電方式による有機光導電体材料として、下記
一般式; ▲数式、化学式、表等があります▼ 〔式中、Rはπ電子共役系を含む2価の環状置換基、n
は2以上の整数を表す〕で示される高分子が用いられて
いる電子写真用感光体。
(1) As an organic photoconductor material using a positive charging method, the following general formula; ▲ There are mathematical formulas, chemical formulas, tables, etc.
represents an integer of 2 or more].
(2)請求項1記載の有機感光体用高分子層が導電性基
板上に設けられた電荷発生層の上に形成された事を特徴
とする電子写真用感光体。
(2) A photoreceptor for electrophotography, characterized in that the polymer layer for an organic photoreceptor according to claim 1 is formed on a charge generation layer provided on a conductive substrate.
(3)有機光導電体用高分子が、ポリパラフェニレンビ
ニレン、ポリチエニレンビニレン、ポリナフタレンビニ
レン、ポリメトキシパラフェニレンビニレン、およびポ
リ−2,5−ジメトキシパラフェニレンビニレンからな
る群の中から選ばれた少なくとも1種である請求項1記
載の電子写真用感光体。
(3) The polymer for organic photoconductor is selected from the group consisting of polyparaphenylene vinylene, polythienylene vinylene, polynaphthalene vinylene, polymethoxyparaphenylene vinylene, and poly-2,5-dimethoxyparaphenylene vinylene. The electrophotographic photoreceptor according to claim 1, wherein the electrophotographic photoreceptor comprises at least one type of:
JP28613788A 1988-11-11 1988-11-11 Electrophotographic sensitive body Pending JPH02131245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28613788A JPH02131245A (en) 1988-11-11 1988-11-11 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28613788A JPH02131245A (en) 1988-11-11 1988-11-11 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH02131245A true JPH02131245A (en) 1990-05-21

Family

ID=17700413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28613788A Pending JPH02131245A (en) 1988-11-11 1988-11-11 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH02131245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736811A2 (en) * 1995-04-03 1996-10-09 Xerox Corporation Electrophotographic imaging member and process including a charge transport layer with high charge carrier mobility
WO2008140087A1 (en) * 2007-05-14 2008-11-20 Nippon Shokubai Co., Ltd. Composition for electroconductive resin, electroconductive resin film, and method for forming electroconductive resin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736811A2 (en) * 1995-04-03 1996-10-09 Xerox Corporation Electrophotographic imaging member and process including a charge transport layer with high charge carrier mobility
EP0736811A3 (en) * 1995-04-03 1996-11-27 Xerox Corp Electrophotographic imaging member and process including a charge transport layer with high charge carrier mobility
WO2008140087A1 (en) * 2007-05-14 2008-11-20 Nippon Shokubai Co., Ltd. Composition for electroconductive resin, electroconductive resin film, and method for forming electroconductive resin film
JPWO2008140087A1 (en) * 2007-05-14 2010-08-05 株式会社日本触媒 Conductive resin composition, conductive resin film, and method for forming conductive resin film

Similar Documents

Publication Publication Date Title
EP0757293B1 (en) Electrophotographic photosensitive member
JPH01134457A (en) Electrophotographic sensitive body
US4106934A (en) Photoconductive compositions and elements with charge transfer complexes
JPS62116943A (en) Electrophotographic sensitive body
KR20120042772A (en) Indole derivative
JPH05107784A (en) Electrophotographic sensitive body
US5134049A (en) Photoconductor for electrophotography
US5888685A (en) Electrophotographic photoconductor
JPH02131245A (en) Electrophotographic sensitive body
US6022656A (en) Bipolar electrophotographic elements
US5424158A (en) Photosensitive material for electrophotography comprising metal free phthalocyanine molecularly dispersed in the binder polymer
JPS58162955A (en) Organic photoconductor
JP2001066805A (en) Electrophotographic photoreceptor
JPH02282262A (en) Electrophotographic sensitive body
JPH02131244A (en) Electrophotographic sensitive body
JPH05134435A (en) Electrophotographic sensitive body
JPH04321649A (en) Bisstyryl compound, phosphorous acid compound and electrophotographic sensitized material
JPH05158260A (en) Electrophotographic sensitive body
JPH02150852A (en) Electrophotographic sensitive body
JPH02168262A (en) Electrophotographic sensitive body
EP0548953B1 (en) Photoconductor for electrophotography
JPH0486669A (en) Electrophotographic sensitive body
JPH06332205A (en) Bisenamine compound and electrophotographic sensitive body including the same
JPH07175239A (en) Electrophotographic photoreceptor
JPH04297476A (en) New coronene derivative and production thereof