JPH02130362A - Defrosting control method for air-cooled heat pump type hot water feeder - Google Patents

Defrosting control method for air-cooled heat pump type hot water feeder

Info

Publication number
JPH02130362A
JPH02130362A JP28361688A JP28361688A JPH02130362A JP H02130362 A JPH02130362 A JP H02130362A JP 28361688 A JP28361688 A JP 28361688A JP 28361688 A JP28361688 A JP 28361688A JP H02130362 A JPH02130362 A JP H02130362A
Authority
JP
Japan
Prior art keywords
defrosting
heat exchanger
air
hot water
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28361688A
Other languages
Japanese (ja)
Inventor
Haruyoshi Ishizuki
石月 治義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP28361688A priority Critical patent/JPH02130362A/en
Publication of JPH02130362A publication Critical patent/JPH02130362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To prevent wasteful defrosting operation by completing the defrosting operation on condition that temperature on the surface of a pipe of an air side heat exchanger has rise up to the level of a predetermined temperature, without waiting for the increase of a high-pressure side pressure and the lapse of a predetermined period, in the case where the high-pressure side pressure does not increase even if frost formed on the air side heat exchanger is thawed. CONSTITUTION:When a contact 15a2 is closed, a coil 13 of a timer for counting a defrosting operation time is excited, and the timer counts the defrosting operation time. During the period of this operation time, if a temperature on the surface of a pipe for an air side heat exchanger rises to close the contact point 11 of a thermostat or if a high-pressure side pressure increases to close the contact 12 of a high-pressure switch, a coil 18 of an auxiliary relay for defrosting completion is excited to open its contact 18b, and then a defrosting instruction is cancelled. Further, even if a temperature on the surface of the pipe and a high-pressure side pressure do not increase, a contact 13a is closed when the defrosting operation time reaches a predetermined period of time set to the timer 13, whereby the defrosting instruction is cancelled in a similar manner to return to a hot water feed operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は、空冷ヒートポンプ式給湯機における、除霜制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a defrosting control method in an air-cooled heat pump water heater.

〔従来の技術〕[Conventional technology]

従来の除霜制御方法は、日立を冷ヒートポンプ式f9−
ユニット丈−ビスマニアル、鬼“CAM−8102”P
Z5.P26の除箱制御に記載の様に、除霜の開始は、
最短除霜間隔時間が経過後、空気gIIl熱交換器のパ
イプ表面温度が低下した場合に除霜指令を出し、除箱終
了は、最長除霜時間が経過したか、又は高圧側圧力が所
定の圧力以上に上昇した場合に除霜終了指令を出す様に
なっていた。
The conventional defrosting control method is Hitachi's cold heat pump type F9-
Unit length - Bismanial, Oni “CAM-8102”P
Z5. As described in P.26, Box removal control, the start of defrosting is as follows:
After the shortest defrost interval time has elapsed, a defrost command is issued when the pipe surface temperature of the air gIIl heat exchanger has decreased. It was designed to issue a command to end defrosting if the pressure rises above that level.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、除霜終了指令を、最長除霜時間経過
後、又は、高圧圧力が所定の圧力に上昇した時としてい
るが、第4図に示す様に、除霜により、パイプ表面温度
が上昇してくると、それに伴ない高圧側圧力も同様に上
昇する従来の冷凍サイクルでは問題ないが、第5図に示
す様に、パイプ表面温度が上昇しても、即ち、霜が解け
ても高圧が上昇しない空冷ヒートポンプ式給湯機の様な
冷凍サイクルでは、実際には除1が終了しているにもか
かわらず、高圧圧力が所定の圧力に上昇しない為、最長
除1冨運転時間まで除霜運転なdけるという問題があっ
た。この理由として、空冷ヒートポンプ式給湯機は、#
腸運転と除霜運転では、給rk器側の冷媒側容積が大巾
に異なる為(給湯用熱交換器より空気側熱交換器の方が
大きい為ン、空気側熱交換器を凝縮器側として使用する
除霜運転の方が、給湯運転時に比べて、冷媒を多く必要
とする。この為、本来は、除霜運転にあわせて、冷媒封
入し、給湯運転における余剰冷媒は、リキッドタンク等
により調姫する必要があるが、給湯機は、給湯運転がメ
インであり、除霜のみの為に冷媒を多くシ、す争ツドタ
ンク等を設ける事は不経済である。
In the above conventional technology, the defrosting end command is issued after the longest defrosting time has elapsed or when the high pressure rises to a predetermined pressure, but as shown in Figure 4, the pipe surface temperature increases due to defrosting. As the pressure rises, the pressure on the high pressure side also rises, so there is no problem with conventional refrigeration cycles, but as shown in Figure 5, even if the pipe surface temperature rises, that is, even if the frost thaws, In a refrigeration cycle such as an air-cooled heat pump type water heater where high pressure does not rise, the high pressure does not rise to the specified pressure even though the division has actually finished, so the division continues until the maximum operation time. There was a problem with frost operation. The reason for this is that air-cooled heat pump water heaters are #
Because the volume of the refrigerant on the rk supply side differs greatly between the cooling operation and the defrosting operation (the air side heat exchanger is larger than the hot water supply heat exchanger), the air side heat exchanger is placed on the condenser side. Defrosting operation, which is used as a water heater, requires more refrigerant than hot water supply operation.For this reason, originally, the refrigerant was sealed in conjunction with defrosting operation, and the surplus refrigerant during hot water supply operation was stored in a liquid tank, etc. However, water heaters are mainly used to supply hot water, and it is uneconomical to install a tank or the like that drains a large amount of refrigerant just for defrosting.

従がって、冷媒封入iVi、給湯運転で問題なく、かつ
除霜が確実にできる必要敢小限の範囲で決定される。つ
まり、除霜運転では、冷媒不足の状態で行われる事にな
り、高圧側圧力が十分に上昇しない事になる。
Therefore, the temperature is determined within the necessary range that does not cause any problems in refrigerant-filled iVi and hot water supply operation, and that defrosts can be reliably performed. In other words, the defrosting operation is performed in a state where there is a shortage of refrigerant, and the pressure on the high pressure side does not rise sufficiently.

この様な冷凍サイクルにおいて、従来技術の様に、除4
の終了を、除+i時間と高圧側圧力の上昇のみで行うと
、除矛冨が終了したにもかかわらず、高圧側圧力が上昇
しない為に、結果的に除霜最長時間が経過するまでムダ
な除!6運転を続ける事になる。
In such a refrigeration cycle, as in the conventional technology,
If the defrosting is completed by only removing + i time and increasing the high pressure side pressure, the high pressure side pressure will not increase even though the defrosting is completed, resulting in wasteful defrosting until the maximum defrosting time elapses. No exception! 6 I will continue driving.

本発明の目的は、上記不具合を無くし、無駄な除霜運転
を防止する事を目的とする。
An object of the present invention is to eliminate the above-mentioned problems and prevent unnecessary defrosting operations.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達するために、空気側熱交換器の着1が解け
ても高圧圧力が上昇しない場合には、高圧圧力の上昇お
よび所定時間の経過をまたずに、空気側熱交換器のパイ
プ表面温度が所定の温度に上昇したことを条件に除霜を
終了させる様にしたものである。
In order to achieve the above purpose, if the high pressure does not rise even if the coating 1 of the air side heat exchanger is dissolved, the pipe surface of the air side heat exchanger is Defrosting is terminated on the condition that the temperature rises to a predetermined temperature.

〔作用〕[Effect]

除霜が進み、霜が解けるに伴なって、空気側熱交換器出
口側のパイプ表面温度が上昇してくる。
As defrosting progresses and the frost melts, the surface temperature of the pipe on the air side heat exchanger outlet side increases.

従がうて、除霜運転中に、このパイプ表面温度が所定の
温度に達した時に、除霜終了信号を出す様にする。
Therefore, when the pipe surface temperature reaches a predetermined temperature during the defrosting operation, a defrosting end signal is issued.

それによって、例え、高圧側圧力が上昇しなくても、箱
が解けた事を検知し、除霜を終了する事ができるので、
ムダなll&−:1m運転をする事がなくなる。
As a result, even if the high pressure side pressure does not rise, it is possible to detect that the box has thawed and finish defrosting.
Wasteful ll&-: No need to drive 1m.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図、第2図、第8図により
説明する**2図、第8図は、除霜制御方法を示したも
ので、横軸に運転時間、縦軸には、高圧側圧力開閉器の
作動圧力、空気側熱交換器のパイプ表面温度を示す。又
、本実施例では、除霜終了用高圧圧力開閉器の作動値を
21 kg/am G、同パイプ弐面温度を80℃、除
霜開始用パイプ表面温度を一2℃、最短除霜間隔時間を
60分、最長除罐時間を6分に設定している。以下、制
御方法を説明する。第2図の1のポイントでは、除霜開
始後60分経過したがパイプ表面温度が一2″C以上な
ので加熱運転を続行する。20ポイントでは、加熱運転
が60分経過し、さらにパイプ表面温度が、−2℃以下
なので除霜を開始する。除霜開始し、高圧側圧力が21
1g/cs Gに達したので、80ポイントで除霜終了
とする。このケースは、相対湿度が低く、実際にri層
霜していないのに、パイプ表面温度のみ一2’C以下と
なり、除霜運転に入った場合、いわゆるカラ除重運転し
た場合に生じる。即ち、排熱側の熱交換容量が少ない為
、高圧圧力が急激に上昇に、パイプ表面温度検知では遅
れが生じる為、高圧側圧力により、除霜終了信号を出す
事になる。第8図の4のポイントでは、除霜終了後、6
0分経過し、パイプ表面温度が一2’Cの為、除霜を開
始する。除霜開始後、数分でパイプ表面温度が30″G
K達したので、50ポイントで除霜を終了する。60分
後、再び60ポイントで除霜を始めるが、今度は、高圧
側圧力が21 kg/as G以下、パイプ表面温度も
80°C以下であったが、最長除霜時間6分が経過した
ので、70ポイントで除霜を終了させる。さらに60分
後、再びパイプ光面が一2’Cであれば、8のポイント
で除霜開始となり、以F1上記の運転パターンを続ける
事になる。
Hereinafter, embodiments of the present invention will be explained with reference to Fig. 1, Fig. 2, and Fig. 8. ** Fig. 2 and Fig. 8 show the defrosting control method, and the horizontal axis represents the operating time, and the vertical axis represents the defrosting control method. shows the operating pressure of the high pressure side pressure switch and the pipe surface temperature of the air side heat exchanger. In addition, in this embodiment, the operating value of the high pressure switch for ending defrosting is 21 kg/am G, the temperature on the upper side of the pipe is 80°C, the surface temperature of the pipe for starting defrosting is -2°C, and the shortest defrosting interval time. is set to 60 minutes, and the maximum removal time is set to 6 minutes. The control method will be explained below. At point 1 in Figure 2, 60 minutes have passed since the start of defrosting, but the pipe surface temperature is over 12"C, so heating operation continues. At point 20, 60 minutes have passed since the heating operation started, and the pipe surface temperature continues to rise. is below -2℃, so defrosting is started.Defrosting is started and the high pressure side pressure is 21℃.
Since it reached 1 g/cs G, defrosting is finished at 80 points. This case occurs when the relative humidity is low and there is no actual RI layer frost, but only the pipe surface temperature becomes -2'C or less and the defrosting operation is started, so-called empty load removal operation. That is, since the heat exchange capacity on the exhaust heat side is small, the high pressure increases rapidly and there is a delay in pipe surface temperature detection, so the defrost end signal is issued based on the high pressure side pressure. At point 4 in Figure 8, after defrosting, 6
After 0 minutes, the pipe surface temperature is 12'C, so defrosting is started. The pipe surface temperature reached 30″G within a few minutes after defrosting started.
Since K has been reached, defrosting ends with 50 points. After 60 minutes, defrosting was started again at the 60 point, but this time, the high pressure side pressure was below 21 kg/as G and the pipe surface temperature was below 80°C, but the maximum defrosting time of 6 minutes had passed. Therefore, defrosting ends at 70 points. After another 60 minutes, if the pipe light surface is 12'C again, defrosting will start at point 8, and the above operation pattern of F1 will continue.

第1図μ、本発明の除霜制御回路の一例を示したもので
ある。9は給湯運転時間をカウントするタイマの接点で
あり、給湯運転が一定時間続くと左側に倒れ、しばらく
すると再び右側に倒れる機能を持っている。10V′i
空気側熱′5F、換器パイプ表面温度を検知するサーモ
スタットの接点であり、温度が低下すると閉となる。1
1も空気側熱交換器パイプ表面温度を検知するサーモス
タットの接点であるが、これは、温度が上昇すると閉と
なる。18は除霜運転時間をカウントするタイマのコイ
ル、■4はその接点である。■2は高圧側圧力開閉器の
接点で、高圧が上昇すると閉となる。15は除霜開始指
令用補助リレーのコイル、15al+15azt’;t
その接点である。18d除霜終了指令用補助りV−のコ
イルであり、18bはその接点である。zOは除1回路
を示す。次に動作について説明する。
FIG. 1 μ shows an example of the defrosting control circuit of the present invention. 9 is a contact point of a timer that counts the hot water supply operation time, and has the function of tilting to the left side when hot water supply operation continues for a certain period of time, and tilting back to the right side after a while. 10V'i
This is the contact point of the thermostat that detects the air side heat '5F and the exchanger pipe surface temperature, and closes when the temperature drops. 1
1 is also a contact point of a thermostat that detects the surface temperature of the air side heat exchanger pipe, which closes when the temperature rises. 18 is a timer coil that counts the defrosting operation time, and 4 is its contact point. ■2 is the contact point of the high pressure side pressure switch, which closes when the high pressure rises. 15 is the coil of the auxiliary relay for defrosting start command, 15al+15azt';t
This is the point of contact. 18d is an auxiliary V- coil for commanding the end of defrosting, and 18b is its contact point. zO indicates a division-by-one circuit. Next, the operation will be explained.

給湯運転を一定時間続けると、給湯運転タイマーの接点
9が左側に倒れる。この時、空気側熱交換器パイプ表面
温度が、所定の温度よ妙も低い場合は、サーモスタット
の接点10が閉となる。(温度が高ければ開のままであ
り、タイマ接点9は、再び右側に倒れる)、すると、除
霜指令用補助リレーのコイル15が励磁され、その接点
158皿及び15a2が閉となり、コイル15は接点1
5alにより自己保持とれ、同時に除霜回路zOが励磁
され、除霜運転に入る。一方、接点15a2が閉になる
事により、除霜運転時間カウント用タイマのコイ#13
が励磁され、除霜運転時間をカウントする。この運転時
間中に、空気側熱交換器のパイプ表面温度が上昇し、サ
ーモスタットの接点11が閉となるか、又は、高圧側圧
力が上昇し、高圧圧力開閉器の接点12が閉となると、
除霜終了用補助リレーのコイル18が励磁され、その接
点18bが開となり、除霜指令が解除される。又、パイ
プ表面温度及び高圧圧力が上昇しなくても、除霜運転時
間がタイマ13c)所定時間に達すると、接点13aが
閉となり、同様に除霜指令を解除し、給湯運転に戻る事
になる。以下、上記の運転パターンを続ける事になる。
When the hot water supply operation continues for a certain period of time, the contact 9 of the hot water supply operation timer falls to the left. At this time, if the surface temperature of the air side heat exchanger pipe is lower than a predetermined temperature, the contact 10 of the thermostat is closed. (If the temperature is high, it remains open, and the timer contact 9 falls to the right again.) Then, the coil 15 of the defrosting command auxiliary relay is energized, its contacts 158 and 15a2 are closed, and the coil 15 is Contact 1
Self-holding is achieved by 5al, and at the same time, the defrosting circuit zO is excited and begins defrosting operation. On the other hand, by closing the contact 15a2, the timer for counting the defrosting operation time #13
is energized and counts the defrosting operation time. During this operating time, if the pipe surface temperature of the air side heat exchanger increases and the thermostat contact 11 closes, or if the high pressure side pressure increases and the high pressure switch contact 12 closes,
The coil 18 of the auxiliary defrosting relay is energized, its contact 18b is opened, and the defrosting command is canceled. Furthermore, even if the pipe surface temperature and high pressure do not rise, when the defrosting operation time reaches the predetermined time (timer 13c), the contact 13a closes, and the defrosting command is canceled in the same way, returning to hot water supply operation. Become. From now on, the above driving pattern will continue.

以上、本芙施例によれば、除霜終了を高圧側圧力、空気
側熱交換器のパイプ表面温度、除霜最長時間の3つで制
御する為、除霜終了をより確実に感知すると同時に、給
湯機の様に、除重運転時に高圧側圧力が上昇しない冷凍
サイクルにおいても、除霜終了を速やかに感知できる為
、ムダな除霜運転をする事がなくなる。
As described above, according to this embodiment, the end of defrosting is controlled by the high pressure side pressure, the pipe surface temperature of the air side heat exchanger, and the maximum defrosting time, so the end of defrosting can be detected more reliably and at the same time. Even in a refrigeration cycle where the high-pressure side pressure does not rise during load-removal operation, such as in a water heater, the end of defrosting can be quickly detected, eliminating unnecessary defrosting operations.

〔発明の効果〕 本発明によれば、除霜終了を、高圧側圧力、パイプ表面
温度、最長除霜運転時間のいづれかが満足した場合とし
ているので、力2除霜時の除霜終了、冷媒不足等による
除霜終了、除霜運転時間による除霜終了が適確に行われ
る為、ムダな除霜運転の防止ができる。
[Effects of the Invention] According to the present invention, the end of defrosting is determined when any of the high pressure side pressure, pipe surface temperature, and longest defrosting operation time are satisfied. Since defrosting is properly completed due to insufficient defrosting and defrosting is completed due to defrosting operation time, wasteful defrosting operation can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の制御回路図、第2図及び第
8図は、本発明による除霜制御実施例の制御説明図、第
4図は、従来の除霜運転時間と高圧圧力、パイプ表面温
にの関係図、第5図は、今回の制御対象となる除霜運転
運転時間と高圧圧力バイブ表面温度の関係図である。 1・・・最短除4間隔OO分経過しているが、パイプ表
面温度−2’(j以上  B −4+ 6−8・・・除
霜開始  8,5.7・・・除幸嘗終了、の谷ポイント
を示す。 9・・・給湯運転時間カウント用タイマの接
点  10・i・11・・・空気1jlII熱交換器パ
イプ表面温度dt矧用サーモスタットの接点  12・
・・高圧圧力IA開閉器接点  18・・・除霜運転時
間カウント用タイマのコイル  13a・・・タイマ1
8のmA15・・・除霜指令用補助リレーのコイル  
15a1.15a2・・・補助リレー15の接点  1
8・・・除霜終了用補助リン−のコイル  18b・・
・補助第1図 114t−箋771.斗のヰ胡緩 131fIK中飄■タイマーコイル p爺噌i団柚゛助響ルーのコイ( P木ン1鋳ゴ用汗串頗すし−のコイJしtZ 7ktr
kqpr期r蔦t+nJi−I3久 タイマーI3のキ
撃、し 15a 1. tfo z  才t〜fレブリt−1r
th#@If3b  @’J力I)L−tF3a#妾R
案2UfU
FIG. 1 is a control circuit diagram of an embodiment of the present invention, FIGS. 2 and 8 are control explanatory diagrams of a defrosting control embodiment of the present invention, and FIG. 4 is a diagram showing conventional defrosting operation time and high pressure. FIG. 5 is a diagram showing the relationship between the defrosting operation time and the surface temperature of the high-pressure pressure vibrator, which is the object of current control. 1... The shortest divided by 4 intervals OO minutes have passed, but the pipe surface temperature is -2' (j or more) B -4+ 6-8... Defrosting begins 8, 5.7... Defrosting ends, 9...Contact point of timer for counting hot water supply operation time 10.i.11...Contact point of thermostat for air 1jlII heat exchanger pipe surface temperature dt 12.
...High pressure IA switch contact 18...Timer coil for counting defrosting operation time 13a...Timer 1
8 mA15...Auxiliary relay coil for defrosting command
15a1.15a2... Contact of auxiliary relay 15 1
8...Auxiliary ring coil for defrosting completion 18b...
・Supplementary Figure 1 114t-Note 771. Dou's Iku Yuru 131f IK Nakarei ■ Timer Coil p Old Man I Dan Yusuke Hibiki Lu's Carp (P Wood 1 Casting Sukiyaki Sushi - Carp J ShitZ 7ktr
kqpr period r tsuta t+nJi-I3kyu Timer I3's kick attack, 15a 1. tfo z sai t~f revli t-1r
th#@If3b @'Jforce I) L-tF3a#Concubine R
Plan 2UfU

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機、給湯用熱交換器、四方弁、空気側熱交換器
、減圧装置、液電磁弁、吸込圧力調整弁、および複数個
の逆止弁を有し、給湯運転時には空気側熱交換器から採
熱して給湯用熱交換器へ排熱するとともに、外気の低下
に伴ない、空気側熱交換器に着霜が生じたら、四方弁を
切換え、給湯用熱交換器から採熱し、空気側熱交換器へ
排熱することにより除霜を行う冷凍サイクルを備えた空
冷ヒートポンプ式給湯機において、上記の除霜運転の除
霜開始の信号は、空気側熱交換器入口のパイプ表面温度
が所定の温度に低下すると共に、一定の時間給湯運転を
行った後に除霜を開始し、除霜終了は高圧圧力が所定の
値に上昇した時、または、除霜開始からある一定時間経
過した時、あるいは、上記空気側熱交換器出口(除霜時
)のパイプ表面温度が所定の温度に上昇した時の、いず
れか一つが満足した時に除霜を終了させることを特徴と
する、空冷ヒートポンプ式給湯機の除霜制御方法。
1.Equipped with a compressor, hot water supply heat exchanger, four-way valve, air side heat exchanger, pressure reducing device, liquid solenoid valve, suction pressure adjustment valve, and multiple check valves, and air side heat exchange during hot water supply operation. Heat is collected from the water heater and discharged to the hot water heat exchanger, and if frost forms on the air side heat exchanger due to the drop in outside air, the four-way valve is switched, heat is collected from the hot water heat exchanger, and the air In an air-cooled heat pump type water heater equipped with a refrigeration cycle that defrosts by discharging heat to the side heat exchanger, the signal to start defrosting in the defrosting operation described above is determined when the pipe surface temperature at the air side heat exchanger inlet is Defrosting begins after the temperature drops to a predetermined temperature and hot water supply operation continues for a certain period of time, and defrosting ends when the high pressure rises to a predetermined value, or when a certain period of time has elapsed from the start of defrosting. Alternatively, an air-cooled heat pump type characterized in that defrosting is terminated when any one of the pipe surface temperatures at the air side heat exchanger outlet (during defrosting) rises to a predetermined temperature. Defrosting control method for water heater.
JP28361688A 1988-11-11 1988-11-11 Defrosting control method for air-cooled heat pump type hot water feeder Pending JPH02130362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28361688A JPH02130362A (en) 1988-11-11 1988-11-11 Defrosting control method for air-cooled heat pump type hot water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28361688A JPH02130362A (en) 1988-11-11 1988-11-11 Defrosting control method for air-cooled heat pump type hot water feeder

Publications (1)

Publication Number Publication Date
JPH02130362A true JPH02130362A (en) 1990-05-18

Family

ID=17667812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28361688A Pending JPH02130362A (en) 1988-11-11 1988-11-11 Defrosting control method for air-cooled heat pump type hot water feeder

Country Status (1)

Country Link
JP (1) JPH02130362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system
CN101975439A (en) * 2010-11-19 2011-02-16 四川长虹空调有限公司 Defrosting operation control method for air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system
CN101975439A (en) * 2010-11-19 2011-02-16 四川长虹空调有限公司 Defrosting operation control method for air conditioner

Similar Documents

Publication Publication Date Title
US8042344B2 (en) Automatic ice making machine and operation method therefor
US4791792A (en) Ice making machine
US5894734A (en) Water-circulating type ice maker
JPH02130362A (en) Defrosting control method for air-cooled heat pump type hot water feeder
US6988373B2 (en) Method for operating automatic ice-making machine
JP4705790B2 (en) Control method of automatic ice machine
JPH0534049A (en) Defrosting operation control device for freezing device for container
JP2002098453A (en) Method for dealing with abnormality of automatic ice maker
US4736594A (en) Method and apparatus for controlling refrigeration systems
JP3573911B2 (en) Ice machine control device
JP3220248B2 (en) Downstream ice machine
JPH0260950B2 (en)
JP3719161B2 (en) Heat pump water heater
JPS6244285Y2 (en)
JPH0278873A (en) Defrost operation controller for refrigerating device
JPS6015090Y2 (en) automatic ice maker
KR0174210B1 (en) Icing control method for keeping water supplying tower from blocking
JPH06294547A (en) Heat pump water heater
JPH0419424Y2 (en)
JPH0218464Y2 (en)
JPS63231158A (en) Water supply method for ice machine
JPH0332948Y2 (en)
JPH08313068A (en) Refrigerating apparatus
JPH0827037B2 (en) Water level control device for heat storage tank
JPH10339533A (en) Ice-making device