JPH0213013B2 - - Google Patents
Info
- Publication number
- JPH0213013B2 JPH0213013B2 JP2076482A JP2076482A JPH0213013B2 JP H0213013 B2 JPH0213013 B2 JP H0213013B2 JP 2076482 A JP2076482 A JP 2076482A JP 2076482 A JP2076482 A JP 2076482A JP H0213013 B2 JPH0213013 B2 JP H0213013B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- hot
- steel
- tensile strength
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 description 11
- 229910001562 pearlite Inorganic materials 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は主として自動車用途を対象とし、板厚
1.6〜4.0mm程度で60Kgf/mm2以上の引張強さを有し、
加工性、溶接性の優れた高強度熱延鋼板の製造法
に係る。
従来、引張強さ60Kgf/mm2以上の高強度熱延鋼板
はSi−MnにNb,V,Tiを添加しこれらの炭窒
化物の析出強度によつて強度をもたせる析出強化
系によつて製造されていた。しかしこの方法は高
価なNb,V,Ti等を用いるため経済的に問題が
あり、また析出強化特有の伸びの低さもありその
使用用途が限られていた。
こういう状況を打ち破るものとして期待された
材料がフエライトとマルテンサイトからなるいわ
ゆる複合組織鋼(Dual Phase鋼)である。低降
伏点、高加工硬化、高伸びというような加工性の
点からは実に好ましい性質を有する。この鋼のも
ともとの製造法はα/γ2相域に加熱後急冷する
という方法で連続焼鈍設備がこれに適していた。
しかし一般的には熱延鋼板の連続焼鈍設備はない
ため熱延ままでの製造、すなわち非調質化の開発
研究が行なわれ、いくつかの方法が提案されてい
るが工程条件に過度の負荷が加わつたり、多くの
合金元素を必要とするというような問題が生じ、
経済性、特性上の観点から実用化されるに至つて
いない。
以上のようなことを背景に開発、実用化された
のが本発明である。本発明の要旨とするところは
下記のとおりである。
(1) C:0.15超〜0.25%、Si:1.5%以下、Mn:
0.7〜1.5%、P:0.01%以下、S:0.005%以
下、Al:0.01〜0.10%を含み残部Feおよび不可
避的不純物元素からなる鋼をスラブとした後、
1200℃以下に加熱し、熱間圧延してAr3変態点
〜930℃で仕上圧延を終了し、その後平均冷却
速度15℃/S以上で冷却し350〜560℃で巻取る
ことを特徴とする60Kgf/mm2以上の引張強さを有
し加工性、溶接性の優れた高強度熱延鋼板の製
造法。
(2) C:0.15超〜0.25%、Si:1.5%以下、Mn:
0.7〜1.5%、P:0.01%以下、S:0.005%以
下、Al:0.01〜0.10%、さらにCa:0.0005〜
0.0050%、REM:0.005〜0.015%、Mg:
0.0005〜0.010%のうち1種または2種以上を
含み残部Feおよび不可避的不純物元素からな
る鋼をスラブとした後、1200℃以下に加熱し、
熱間圧延してAr3変態点〜930℃で仕上圧延を
終了し、その後平均冷却速度15℃/S以上で冷
却し350〜560℃で巻取ることを特徴とする60Kg
f/mm2以上の引張強さを有し加工性、溶接性の優
れた高強度熱延鋼板の製造法。
すなわち、C、Si、Mnを中心とする成分規制
と特定熱延条件との組合せにより微細なフエライ
トと緻密なパーライトからなる組織を得て強度と
伸びを確保する。このときの伸びは複合組織鋼に
は劣るものの析出強化鋼よりは良く、自動車メン
バー等の用途には十分成形上耐えられる。自動車
用熱延鋼板における加工性は伸びばかりでなく、
伸びフランジ性も重要な要素となる。そのため硫
化物系介在物を徹底的に減少させ、さらに場合に
よつてはその形状を球状化させるためCa、
REM、Mgの1種以上を添加する。自動車用熱延
鋼板にとつて次に重要な特性として点溶接性があ
げられる。点溶接性としては溶接部を垂直に引き
はがしたときはく離状況から簡便に判断する方法
があるがより厳密には十字引張強度(JIS.Z3137)
との接合面からはく離しないことや、疲労強度が
問題となる。このような点溶接性を向上させるに
は鋼中のC量の限定、P,Sの大幅な低減が有効
であることが判明した。
以上の点より成分および熱延条件を特定し、絶
妙の組合せとすることで加工性、点溶接性、経済
性をバランスさせた高強度熱延鋼板を製造するに
至つた。
次に本願発明の各構成要件の数値を限定した理
由について述べる。
Cはフエライト・パーライト鋼として60Kgf/mm2
以上の強度を確保するために必要であり、そのた
めには最小限0.15%超必要である。しかし0.25%
を越えるとパーライト部分が増えすぎ60Kgf/mm2以
上の引張強さを考慮しても延性の劣化が大きくま
た、点溶接性も劣化する。そのためCは0.15超〜
0.25%とした。
Siはフエライト相に置換型固溶し強度を高める
のに有効である。さらにフエライトの加工硬化程
度を高め靭性を増す作用も有する。しかし1.5%
を越えるとこれらの効果は飽和する方向になり、
またSiスケールにより酸洗性も悪くなりさらにま
た経済性も損なわれるのでSi添加量は1.5%以下
とした。
Mnは緻密なフエライトパーライト組織を作り
出し、鋼の強度とともに延性をも向上させるので
0.7%は必要である。しかしMn添加量が多すぎる
と層状組織を呈し延性を劣化させるとともにコス
ト高となるので上限を1.5%とした。
次にPは点溶接性の観点から徹底的に下げる必
要があり0.01%以下とした。また、Sは点溶接性
および伸びフランジ性の観点によりこれまた徹底
的に下げる必要があり、0.005%以下とした。
伸びフランジ性改善のためには硫化物系介在物
を減らすことが必要で、そのために上述のように
S量を減らす必要があるが、もつと厳しい伸びフ
ランジ用途のためには硫化物系介在物を減らす上
に、これを球状化することが好ましい。そのため
にCa,REM,Mgの1種以上を添加して可塑性
の少ない硫化物とすることが好ましい。それぞれ
0.0005%、0.005%、0.0005%未満では球状化の効
果は少なく、一方それぞれ0.0050%、0.015%、
0.010%超では球状化の効果は飽和する上にかえ
つて酸化物系介在物を増加させ延性を劣化させる
のでCa,REM,Mgの1種以上添加する場合は
それぞれ0.0005〜0.0050%、0.005〜0.015%、
0.0005〜0.010%とする必要がある。
Alは脱酸剤として必要である。0.01%未満では
その効果が少なく0.10%を超えるとアルミナ系介
在物が増し、鋼の延性を劣化させる。
次に熱延条件であるが熱延条件は本発明にあつ
ては成分との組合せにおいて非常に重要な構成要
件である。
まず、加熱温度は1200℃以下とする必要があ
る。本発明鋼にあつては延性の点よりTi,Nb,
Vを添加していない。従つてオーステナイトは熱
延中細粒にはなりにくいし、また未再結晶である
温度域も少ない。そこで圧延前の状態におけるオ
ーステナイト粒を小さくしておかないと微細な最
終組織は得られない。そのため低温加熱する必要
がある。また、このことから省エネルギーという
利点も生ずる。さらに徹底して微細組織を得るに
は加熱温度を1150℃以下とすることが好ましい。
加熱温度の下限値は熱延ができる範囲で低い方が
よいが通常1050℃程度である。
次に仕上圧延終了温度はAr3変態点〜930℃と
する必要がある。930℃を超えると変態前オース
テナイトが粗大化し粗大ベイナイト状組織を呈し
延性を劣化させる。またAr3変態点未満で圧延を
行なうとフエライト変態を起しかつそのフエライ
トが加工を受け延性を劣化させる。
次に仕上圧延終了から巻取までの冷却はこの間
の変態により組織を作り込むという点で重要であ
り、そのためには平均速度で15℃/S以上とする
必要がある。15℃/S未満では粗大なフエライ
ト・パーライト組織となり強度が得られないばか
りか帯状組織となりやすく伸びフランジ性をも劣
化させる。より安定して強度を確保するには25
℃/S以上とすることが好ましい。
巻取温度は成分、加熱温度と関連して本発明特
有の性質を得る上で重要な構成要件である。560
℃を越える巻取温度では微細なフエライト・パー
ライト組織が得られず強度が確保できない。一
方、350℃未満の巻取温度では圧延スピードが限
定され、生産性が落ちることや、形状がくずれる
ため矯正工程が必要となるなどのため経済性が損
なわれる。そのため巻取温度は350〜560℃とし
た。しかしながら400℃以下の巻取温度の場合通
常の巻取温度からすると多少生産性が落ちるため
より経済性をさらに追求するならば巻取温度は
400℃超とするのが好ましい。一方、安定して微
細な組織を得るには480℃以下の巻取温度とする
ことが好ましい。
なお、ここでいう微細なフエライト・パーライ
ト組織とは5〜10μm程度の径をもつポリゴナル
フエライトとその粒界に存在する微細パーライト
からなる組織でパーライトは完全な層状組織は示
していない。また一部島状マルテンサイトやベイ
ナイトが存在する場合もある。
以上で構成要件の数値限定理由につき述べた
が、ここで用いる鋼スラブは分塊−造塊法あるい
は連続鋳造法いずれによつてもよいが経済性を考
えると連続鋳造法によるのが好ましい。また、省
エネルギーのためスラブの加熱炉への温間装入も
好ましい。
次に本発明を実施例にて説明する。
第1表に示す成分を有する鋼を転炉にて溶製
し、連続鋳造にてスラブとしたのち熱延を行なつ
た。
The present invention is mainly aimed at automobile applications, and
It has a tensile strength of 60Kgf/mm2 or more at about 1.6 to 4.0mm,
This invention relates to a method for producing high-strength hot-rolled steel sheets with excellent workability and weldability. Conventionally, high-strength hot-rolled steel sheets with a tensile strength of 60 Kgf/mm 2 or higher have been manufactured using a precipitation strengthening system in which Nb, V, and Ti are added to Si-Mn and strength is provided by the precipitation strength of these carbonitrides. It had been. However, this method is economically problematic because it uses expensive Nb, V, Ti, etc., and its use is limited due to the low elongation characteristic of precipitation strengthening. A material that is expected to overcome this situation is so-called dual phase steel, which is composed of ferrite and martensite. It has truly favorable properties from the viewpoint of workability, such as a low yield point, high work hardening, and high elongation. The original manufacturing method for this steel was to heat it to the α/γ2 phase region and then rapidly cool it, and continuous annealing equipment was suitable for this process.
However, in general, there is no continuous annealing equipment for hot-rolled steel sheets, so development research is being conducted on manufacturing as hot-rolled steel sheets, that is, non-temperature treatment, and although several methods have been proposed, they put too much stress on process conditions. Problems arise such as the addition of alloying elements and the need for many alloying elements.
It has not yet been put into practical use from the viewpoint of economy and characteristics. The present invention was developed and put into practical use against the background of the above. The gist of the present invention is as follows. (1) C: more than 0.15 to 0.25%, Si: 1.5% or less, Mn:
After forming a slab of steel containing 0.7 to 1.5%, P: 0.01% or less, S: 0.005% or less, and Al: 0.01 to 0.10%, with the balance being Fe and unavoidable impurity elements,
It is characterized by heating to 1200℃ or less, hot rolling, finish rolling at Ar 3 transformation point to 930℃, then cooling at an average cooling rate of 15℃/S or more, and winding at 350 to 560℃. A method for manufacturing high-strength hot-rolled steel sheets with a tensile strength of 60Kgf/mm 2 or more and excellent workability and weldability. (2) C: more than 0.15 to 0.25%, Si: 1.5% or less, Mn:
0.7-1.5%, P: 0.01% or less, S: 0.005% or less, Al: 0.01-0.10%, and Ca: 0.0005-
0.0050%, REM: 0.005~0.015%, Mg:
A slab of steel containing one or more of 0.0005 to 0.010% and the remainder Fe and unavoidable impurity elements is then heated to 1200°C or less,
60Kg characterized by hot rolling and finish rolling at Ar 3 transformation point ~ 930℃, then cooling at an average cooling rate of 15℃/S or more and coiling at 350-560℃
A method for producing high-strength hot-rolled steel sheets having a tensile strength of f/mm 2 or more and excellent workability and weldability. In other words, a structure consisting of fine ferrite and dense pearlite is obtained through a combination of component regulation centered on C, Si, and Mn and specific hot rolling conditions to ensure strength and elongation. Although the elongation at this time is inferior to that of composite structure steel, it is better than precipitation-strengthened steel, and it can withstand forming sufficiently for applications such as automobile members. The workability of hot-rolled steel sheets for automobiles is not limited to elongation.
Stretch flangeability is also an important factor. Therefore, in order to thoroughly reduce sulfide-based inclusions and, in some cases, make their shape spheroidal, Ca,
Add one or more of REM and Mg. Spot weldability is the next most important property for hot rolled steel sheets for automobiles. There is a simple way to judge spot weldability based on the peeling condition when the welded part is peeled off vertically, but more precisely it is determined by cross tensile strength (JIS.Z3137).
Problems include not peeling off from the bonded surface and fatigue strength. In order to improve such spot weldability, it has been found that limiting the amount of C in the steel and significantly reducing the P and S contents are effective. Based on the above points, we specified the ingredients and hot rolling conditions, and by creating an exquisite combination, we were able to manufacture a high-strength hot rolled steel sheet that balances workability, spot weldability, and economic efficiency. Next, the reason for limiting the numerical values of each component of the present invention will be described. C is 60Kgf/mm 2 as ferrite/pearlite steel
It is necessary to ensure the above strength, and for that purpose, a minimum content of more than 0.15% is required. But 0.25%
If it exceeds 60Kgf/mm2, the pearlite part increases too much, and even if a tensile strength of 60Kgf/ mm2 or more is taken into account, the ductility deteriorates significantly, and the spot weldability also deteriorates. Therefore, C is over 0.15~
It was set at 0.25%. Si forms a substitutional solid solution in the ferrite phase and is effective in increasing strength. Furthermore, it has the effect of increasing the degree of work hardening of ferrite and increasing its toughness. But 1.5%
When exceeding , these effects tend to be saturated;
In addition, Si scale deteriorates pickling properties and also impairs economic efficiency, so the amount of Si added is set to 1.5% or less. Mn creates a dense ferrite-pearlite structure and improves the strength and ductility of steel.
0.7% is necessary. However, if the amount of Mn added is too large, it will exhibit a layered structure, deteriorating ductility and increasing cost, so the upper limit was set at 1.5%. Next, from the point of view of spot weldability, it was necessary to thoroughly reduce P, and it was set to 0.01% or less. Furthermore, S content must be thoroughly reduced from the viewpoint of spot weldability and stretch flangeability, and is set to 0.005% or less. In order to improve stretch flangeability, it is necessary to reduce sulfide inclusions, and for this purpose it is necessary to reduce the amount of S as mentioned above. In addition to reducing this, it is preferable to make it spherical. For this reason, it is preferable to add one or more of Ca, REM, and Mg to form a sulfide with less plasticity. Each
Below 0.0005%, 0.005%, and 0.0005%, the effect of spheroidization is small, while 0.0050%, 0.015%, and
If it exceeds 0.010%, the effect of spheroidization will not only be saturated, but also increase oxide inclusions and deteriorate ductility, so if one or more of Ca, REM, and Mg are added, 0.0005 to 0.0050% and 0.005 to 0.015% respectively. %,
It needs to be 0.0005-0.010%. Al is necessary as a deoxidizer. If it is less than 0.01%, the effect will be small, and if it exceeds 0.10%, alumina inclusions will increase and the ductility of the steel will deteriorate. Next, regarding hot rolling conditions, hot rolling conditions are a very important component in the combination of ingredients in the present invention. First, the heating temperature needs to be 1200°C or less. In the steel of the present invention, from the viewpoint of ductility, Ti, Nb,
No V added. Therefore, austenite is difficult to become fine grains during hot rolling, and the temperature range in which it is not recrystallized is also small. Therefore, unless the austenite grains in the state before rolling are made small, a fine final structure cannot be obtained. Therefore, it is necessary to heat it at a low temperature. This also results in the advantage of energy saving. In order to obtain a more thorough microstructure, the heating temperature is preferably 1150°C or lower.
The lower limit of the heating temperature is preferably as low as possible for hot rolling, but is usually around 1050°C. Next, the finish rolling finishing temperature needs to be between the Ar 3 transformation point and 930°C. When the temperature exceeds 930°C, the austenite before transformation becomes coarse and exhibits a coarse bainitic structure, which deteriorates ductility. Further, if rolling is performed below the Ar 3 transformation point, ferrite transformation occurs and the ferrite is processed and deteriorates ductility. Next, cooling from the end of finish rolling to coiling is important in that the structure is created by transformation during this period, and for this purpose it is necessary to maintain an average speed of 15°C/S or more. If it is less than 15°C/S, it becomes a coarse ferrite/pearlite structure, which not only does not provide strength, but also tends to form a band-like structure, which also deteriorates stretch flangeability. 25 to ensure more stability and strength
It is preferable to set it as C/S or more. The winding temperature is an important component in obtaining the properties unique to the present invention in relation to the components and the heating temperature. 560
If the coiling temperature exceeds ℃, a fine ferrite/pearlite structure cannot be obtained and strength cannot be ensured. On the other hand, if the coiling temperature is less than 350°C, the rolling speed will be limited, which will reduce productivity, and the shape will be distorted, requiring a straightening process, which will impair economic efficiency. Therefore, the winding temperature was set at 350 to 560°C. However, if the winding temperature is below 400℃, the productivity will drop slightly compared to the normal winding temperature.
Preferably, the temperature is over 400°C. On the other hand, in order to stably obtain a fine structure, the winding temperature is preferably 480°C or lower. The fine ferrite-pearlite structure referred to herein is a structure consisting of polygonal ferrite having a diameter of about 5 to 10 μm and fine pearlite existing at the grain boundaries, and pearlite does not exhibit a complete layered structure. In some cases, island-like martensite or bainite may also be present. The reasons for limiting the numerical values of the constituent elements have been described above, and the steel slab used here may be made by either the blooming-ingot-forming method or the continuous casting method, but in terms of economy, it is preferable to use the continuous casting method. It is also preferable to warmly charge the slab into a heating furnace in order to save energy. Next, the present invention will be explained using examples. Steel having the components shown in Table 1 was melted in a converter, continuously cast into a slab, and then hot rolled.
【表】
符号中○印は本発明に従つた成分であ
る。
熱延条件を第2表に示す。第1表の鋼のうち符
号A〜Dは本発明鋼である。符号E,Fの鋼はC
量が、符号Gの鋼はP量が、符号Hの鋼はS量が
本発明とは異なるものである。また熱延条件では
No.1〜3,8,11,13〜17が本発明に基づく条件
で、No.4は仕上終了温度が、No.5は加熱温度が、
No.6,10は巻取温度が、No.7,9,12は仕上、巻
取間の平均冷却速度が本発明と異なるものであ
る。[Table] The ○ mark in the code is a component according to the present invention.
Hot rolling conditions are shown in Table 2. Among the steels in Table 1, symbols A to D are steels of the present invention. Steels with codes E and F are C
The steel with the symbol G differs from the present invention in the amount of P, and the steel with the symbol H differs in the amount of S. Also, under hot rolling conditions
Nos. 1 to 3, 8, 11, 13 to 17 are the conditions based on the present invention, No. 4 is the finishing temperature, No. 5 is the heating temperature,
Nos. 6 and 10 differ from the present invention in the winding temperature, and Nos. 7, 9, and 12 differ in finishing and average cooling rate between windings.
【表】
○印をつけたNo.の熱延条件は本発明に従つた
方法である。
こうして製造した鋼帯を酸洗後切板ラインで切
板とした。その際1%の調質圧延を施した。その
後材質試験に供した。
引張試験はJIS2201,5号試験片を用いた。点
溶接継手の十字引張はJIS Z3137に従つた。溶接
は単点とし、その条件は電極8.0mmφ、通電時間
28サイクル、保持時間28サイクル、加圧力500Kg
とし電流は十字引張強さ的にみて最適値付近とし
た。板厚2.3mmの場合約1300Aであつた。
また穴拡げ試験は直径20mmの剪断穴を円錐ポン
チで押し広げる方法を用い、クラツクが板厚を貫
通する時点での穴径をもとの穴径(20mm)で割つ
た値でもつて穴拡げ比とした。
材質試験の結果を第3表に示す。なお、第3表
には代表的な複合組織鋼(Dual Phase鋼)と析
出強化鋼の材質試験結果も合わせて示す(いずれ
も板厚2.3mm)。[Table] The hot rolling conditions of No. marked with an ○ are the methods according to the present invention.
The thus produced steel strip was pickled and cut into plates on a cutting line. At that time, 1% temper rolling was performed. After that, it was subjected to a material test. A JIS2201, No. 5 test piece was used for the tensile test. The cross tension of spot welded joints complied with JIS Z3137. Welding is done at a single point, and the conditions are: electrode 8.0mmφ, current application time.
28 cycles, holding time 28 cycles, pressure 500Kg
The current was set near the optimum value in terms of cross tensile strength. In the case of a plate thickness of 2.3mm, it was approximately 1300A. In addition, the hole expansion test uses a method of expanding a sheared hole with a diameter of 20 mm using a conical punch, and the hole expansion ratio is calculated by dividing the hole diameter at the time the crack penetrates the plate thickness by the original hole diameter (20 mm). And so. The results of the material tests are shown in Table 3. Table 3 also shows the material test results for typical dual phase steels and precipitation strengthened steels (both plate thicknesses are 2.3 mm).
【表】【table】
【表】
第3表より本発明に成分、熱延条件ともに従つ
たNo.1〜3,8,11,13の鋼は60Kgf/mm2以上の引
張強さと析出強化鋼より優れた伸びを有する。ま
たこれらのNo.の鋼は点溶接の十字引張強度におい
ても良好な値を示している。ただし低C材である
No.14に比べると若干低いが、強度を増す目的でC
量を0.15%超としていることを考慮すれば良好な
値である。なお破断形態としては若干のナゲツト
内破断を示すものも見られた。また穴拡げ比もい
ずれも1.4以上の良好な値である。
これに対して比較例のNo.4、5の鋼では引張強
さは若干高いものの伸びが極めて悪く、また穴拡
げ比も小さい。No.6、7、9、10、12の条件では
引張強さ60Kgf/mm2級が得られず、またC量の少な
いNo.14の鋼でも引張強さ60Kgf/mm2級が得られな
い。また成分的に本発明と異なるNo.15〜17の鋼で
は十字引張強度が極端に低いとか伸びや穴拡げ比
が低いという欠陥がある。
また、上述のごとく本発明による熱延条件は生
産性阻害要因がなく、形状等の歩留り落ちも少な
いため経済的にも良好である。
最後に本発明による鋼帯はそのまま黒皮にて用
いてもよく、また酸洗して用いてもよい。あるい
は剪断ラインにて切板としてもよい。その際、レ
ベラーまたは調質圧延により形状を整えたり、巻
きぐせを矯正してもよい。[Table] From Table 3, steels No. 1 to 3, 8, 11, and 13, which complied with the composition and hot rolling conditions of the present invention, have a tensile strength of 60 Kgf/mm 2 or more and an elongation superior to precipitation-strengthened steel. . These No. steels also showed good values in spot welding cross tensile strength. However, it is a low C material.
Although it is slightly lower than No. 14, C
This is a good value considering that the amount is over 0.15%. As for the fracture type, there were some that showed some fracture within the nugget. In addition, the hole expansion ratios are both good values of 1.4 or higher. On the other hand, steels Nos. 4 and 5 of Comparative Examples have slightly higher tensile strength but extremely poor elongation and low hole expansion ratio. Tensile strength of 60Kgf/mm Class 2 cannot be obtained under the conditions of No. 6, 7, 9, 10, and 12, and tensile strength of 60Kgf/mm Class 2 cannot be obtained even with No. 14 steel, which has a small amount of C. . Further, steels No. 15 to 17, which are different in composition from the present invention, have defects such as extremely low cross tensile strength, low elongation, and low hole expansion ratio. Further, as described above, the hot rolling conditions according to the present invention are economically favorable since there are no factors inhibiting productivity and there is little yield loss in shape, etc. Finally, the steel strip according to the present invention may be used as it is in the form of a black peel, or may be used after being pickled. Alternatively, the plate may be cut on a shear line. At that time, the shape may be adjusted using a leveler or temper rolling, and curling may be corrected.
Claims (1)
0.7〜1.5%、P:0.01%以下、S:0.005%以下、
Al:0.01〜0.10%を含み残部Feおよび不可避的不
純物元素からなる鋼をスラブとした後、1200℃以
下に加熱し、熱間圧延してAr3変態点〜930℃で
仕上圧延を終了し、その後平均冷却速度15℃/S
以上で冷却し350〜560℃で巻取ることを特徴とす
る60Kgf/mm2以上の引張強さを有し加工性、溶接性
の優れた熱延鋼板の製造法。 2 C:0.15超〜0.25%、Si:1.5%以下、Mn:
0.7〜1.5%、P:0.01%以下、S:0.005%以下、
Al:0.01〜0.10%、さらにCa:0.0005〜0.0050%、
REM:0.005〜0.015%、Mg:0.005〜0.010%の
うち1種または2種以上を含み残部Feおよび不
可避的不純物元素からなる鋼をスラブとした後、
1200℃以下に加熱し、熱間圧延してAr3変態点〜
930℃で仕上圧延を終了し、その後平均冷却速度
15℃/S以上で冷却し350〜560℃で巻取ることを
特徴とする60Kgf/mm2以上の引張強さを有し加工
性、溶接性の優れた熱延鋼板の製造法。[Claims] 1 C: more than 0.15 to 0.25%, Si: 1.5% or less, Mn:
0.7-1.5%, P: 0.01% or less, S: 0.005% or less,
After forming a slab of steel consisting of Al: 0.01-0.10% and the balance Fe and unavoidable impurity elements, it is heated to 1200℃ or less, hot rolled and finish rolling is completed at the Ar 3 transformation point ~930℃, After that, the average cooling rate is 15℃/S
A method for producing a hot-rolled steel sheet having a tensile strength of 60 Kgf/mm 2 or more and excellent workability and weldability, which comprises cooling at a temperature of 350 to 560°C and winding. 2 C: more than 0.15 to 0.25%, Si: 1.5% or less, Mn:
0.7-1.5%, P: 0.01% or less, S: 0.005% or less,
Al: 0.01~0.10%, further Ca: 0.0005~0.0050%,
After forming a slab of steel containing one or more of REM: 0.005 to 0.015% and Mg: 0.005 to 0.010%, with the remainder being Fe and unavoidable impurity elements,
Heating to below 1200℃ and hot rolling to Ar 3 transformation point ~
Finish rolling at 930℃, then average cooling rate
A method for producing a hot-rolled steel sheet having a tensile strength of 60 Kgf/mm 2 or more and excellent workability and weldability, characterized by cooling at 15°C/S or more and winding at 350 to 560°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2076482A JPS58141334A (en) | 1982-02-12 | 1982-02-12 | Production of hot rolled steel plate having >=60kgf/mm2 tensile strength and excellent workability and weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2076482A JPS58141334A (en) | 1982-02-12 | 1982-02-12 | Production of hot rolled steel plate having >=60kgf/mm2 tensile strength and excellent workability and weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58141334A JPS58141334A (en) | 1983-08-22 |
JPH0213013B2 true JPH0213013B2 (en) | 1990-04-03 |
Family
ID=12036240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2076482A Granted JPS58141334A (en) | 1982-02-12 | 1982-02-12 | Production of hot rolled steel plate having >=60kgf/mm2 tensile strength and excellent workability and weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58141334A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60181230A (en) * | 1984-02-29 | 1985-09-14 | Nippon Steel Corp | Production of high-tension hot rolled steel plate having excellent workability |
JPH0774375B2 (en) * | 1989-10-18 | 1995-08-09 | 住友金属工業株式会社 | Manufacturing method of thin free-cutting steel |
JPH0774378B2 (en) * | 1989-12-09 | 1995-08-09 | 新日本製鐵株式会社 | Method for producing high strength hot rolled steel sheet with excellent hole expandability |
CN103255337B (en) * | 2013-04-24 | 2014-12-10 | 河北钢铁股份有限公司邯郸分公司 | Production method of low-cost easily-welded steel |
WO2018212327A1 (en) * | 2017-05-18 | 2018-11-22 | 新日鐵住金株式会社 | Wire, steel wire, and method for manufacturing steel wire |
CN110343958A (en) * | 2019-07-25 | 2019-10-18 | 包头钢铁(集团)有限责任公司 | A kind of tensile strength 500MPa grades of automobile axle housing roll bendings and preparation method thereof |
CN111041348A (en) * | 2019-11-22 | 2020-04-21 | 首钢京唐钢铁联合有限责任公司 | Low-manganese hot rolled steel and hot rolling process thereof |
CN111187980B (en) * | 2020-02-12 | 2021-03-09 | 钢铁研究总院 | Rare earth microalloyed high-strength construction steel bar and production method thereof |
-
1982
- 1982-02-12 JP JP2076482A patent/JPS58141334A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58141334A (en) | 1983-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4470701B2 (en) | High-strength thin steel sheet with excellent workability and surface properties and method for producing the same | |
JP2008208454A (en) | High-strength steel excellent in delayed fracture resistance and its production method | |
JPH0127128B2 (en) | ||
JP4071906B2 (en) | Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness | |
JP2004010991A (en) | Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability | |
CN110088331B (en) | Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same | |
JPH0949026A (en) | Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability | |
JP4112733B2 (en) | Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness | |
JPH028349A (en) | High tensile hot rolled steel strip having excellent cold workability and weldability and having >=55kgf/mm2 tensile strength | |
JPH0213013B2 (en) | ||
JP2004018912A (en) | High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same | |
JP2004018911A (en) | High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same | |
JPH0735536B2 (en) | Manufacturing method of high ductility and high strength composite structure steel sheet | |
JPH0488125A (en) | Production of high strength hot rolled steel plate excellent in stretch-flange formability and ductility | |
JP2004269920A (en) | High ductility, high strength cold rolled steel sheet having excellent spot weldability, and production method therefor | |
JPS623214B2 (en) | ||
JP2001064728A (en) | Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging | |
CN111465710B (en) | High yield ratio type high strength steel sheet and method for manufacturing same | |
JPH10204576A (en) | High tensile strength hot rolled steel plate excellent in workability and toughness at low temperature, and its production | |
JPS6119733A (en) | Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property | |
JPH0557332B2 (en) | ||
JP3348365B2 (en) | Hot-rolled high-strength steel sheet for processing having excellent heat-softening property and excellent fatigue properties, and method for producing the same | |
JPH0143005B2 (en) | ||
JPH05331591A (en) | Hot rolled steel plate having low yield ratio and high strength and production thereof | |
JP2002012939A (en) | High tensile steel excellent in hot strength and its production method |