JPH0212977B2 - - Google Patents

Info

Publication number
JPH0212977B2
JPH0212977B2 JP29395285A JP29395285A JPH0212977B2 JP H0212977 B2 JPH0212977 B2 JP H0212977B2 JP 29395285 A JP29395285 A JP 29395285A JP 29395285 A JP29395285 A JP 29395285A JP H0212977 B2 JPH0212977 B2 JP H0212977B2
Authority
JP
Japan
Prior art keywords
rubber
polymer
parts
graft
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29395285A
Other languages
Japanese (ja)
Other versions
JPS62151445A (en
Inventor
Teruhiko Sugimori
Takayuki Tajiri
Jutaro Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP29395285A priority Critical patent/JPS62151445A/en
Priority to DE3689258T priority patent/DE3689258T2/en
Priority to EP86117933A priority patent/EP0227098B1/en
Priority to CA000526195A priority patent/CA1291283C/en
Priority to AU66948/86A priority patent/AU600459B2/en
Priority to US06/946,058 priority patent/US4880877A/en
Publication of JPS62151445A publication Critical patent/JPS62151445A/en
Priority to US07/394,720 priority patent/US4992510A/en
Publication of JPH0212977B2 publication Critical patent/JPH0212977B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はゴム変性熱可塑性樹脂の製造方法に関
するものであり、さらに詳しく説明すると、本発
明はビニル系単量体をグラフト重合して成るグラ
フトゴム重合体及び熱可塑性重合体を混合してゴ
ム変性熱可塑性樹脂を製造するに際して、グラフ
トゴム重合体のラテツクス、熱可塑性重合体、有
機薬剤及び凝固性能を有する水溶性薬剤を混合し
た後、水及び有機薬剤の一部の揮発成分を混合物
より分離し、除去し、次いで得られた溶融重合体
混合物にさらに熱可塑性重合体を溶融混合した後
残部の揮発成分を溶融重合体混合物より分離、除
去することを特徴とするゴム変性熱可塑性樹脂の
製造方法に関するものである。 〔従来の技術〕 一般にABS樹脂に代表されるゴム変性熱可塑
性樹脂の殆んどはゴムラテツクスに対してビニル
系単量体をグラフト重合して得られる重合体と他
の熱可塑性樹脂を混合、混練した樹脂である。そ
の製造工程は、乳化グラフト重合体工程、凝固工
程、脱水乾燥工程、ブレンド工程及び溶融押出工
程より構成されるのが普通である。乳化グラフト
重合工程はジエン系ゴムラテツクス、ビニル系ゴ
ムラテツクス、天然ゴムラテツクス、シリコン系
ゴムラテツクス等に、アクリル系単量体、ビニル
シアン系単量体、ビニル芳香族系単量体等を乳化
グラフト重合せしめてグラフト重合体ラテツクス
を製造する工程である。凝固工程はグラフト重合
体ラテツクスに多価塩、酸等の凝固剤を加えて乳
化状態を破壊し、重合体を凝析せしめて粉体とす
る工程である。脱水、乾燥工程は粉体となつた重
合体と水の混合物より、遠心脱水法等の手段によ
り水相を分離し、さらに流動乾燥法等の手段によ
り粉体を乾燥して乾粉を得る工程である。ブレン
ド工程は前記乾粉と他の熱可塑性樹脂及び安定
性、滑剤、可塑剤等の添加剤をブレンドする工程
であり、溶融押出工程はブレンドされた原料をス
クリユー押出機等の装置により溶融、混練してス
トランド状に押出し、ペレツト状に賦形する工程
である。 以上の各工程で構成されるゴム変性熱可塑性樹
脂製造工程がもたらす製造上、品質上の問題は、
第一に使用熱量が多大であることである。これは
乾燥工程において大量の熱風を使用することに起
因する。第二の問題は、凝固工程においてグラフ
トゴム粒子を完全に固着させめることに起因し
て、ブレンド後の溶融、混練操作で固着したグラ
フトゴム粒子を完全に熱可塑性樹脂中へ分散せし
めるに多大な動力を必要とすることである。さら
に最悪の場合にはグラフトゴム粒子を熱可塑性樹
脂中へ一様に分散せしめることが工業的に不可能
となる。 以上のような、ゴム変性熱可塑性樹脂を製造す
る際の、工業的競争力の低下につながる問題を包
含する旧来の製造法の改良するため、幾つかの提
案がなされており、そのうちの一部は工業的に実
施されている。その一つは乾燥工程における熱使
用量の削減を狙つたもので、一般に脱水押出機と
呼称される脱水機能を有するスクリユー式押出機
を利用したものである。提案されているこの型式
の手法は、凝固、脱水後のグラフトゴム湿粉と他
の熱可塑性樹脂及び添加剤をブレンドした後、あ
るいはグラフトゴム湿粉を単独で前記脱水押出機
に供給する型式、及びグラフトゴムラテツクスと
凝固剤を場合によつては他の熱可塑性樹脂や添加
剤と共に前記脱水押出機に供給する型式に大別さ
れる。 この型式の手法では大量の熱風を使用する乾燥
工程が無いため、使用熱量の削減という意味では
効果を期待できるが、熱可塑性樹脂中へグラフト
ゴム粒子を一様に分散せしめる操作においては旧
来の技術と同じレベルにある。なぜなら、大別し
た手法の前者ではグラフトゴム粒子が完全に固着
した状態で処理を行なうため、粒子の分散の観点
から旧来技術と同等である。また後者では処理装
置内において、まずラテツクスと凝固剤が混合さ
れた後、100℃程度あるいはそれ以下の温度範囲
で脱水が行なわれ、通常この時点でグラフトゴム
粒子は互いに固着した状態になる。然る後に温度
の上昇に伴い、熱可塑性樹脂と互いに溶融し合
い、混練操作を受けるため、前者の手法とは供給
される原料の状態が異なるだけで、粒子の分散の
観点からは前者同様、旧来技術の域を出るもので
はない。 他の方法にグラフトゴム重合体のラテツクス、
凝固剤、単量体を混合せしめて、有機相と水相で
構成される2相混合物とした後、水相を分離し、
有機相に含まれる単量体を重合せしめる方法及び
前記2相混合物のまま水相を分離することなく単
量体を重合せしめた後、水相を分離し、重合体を
乾燥せしめる方法が提案されている。これらの方
法はグラフトゴム粒子が完全に固着しあう過程を
有しないので前述の脱水押出機を用いる手法に対
して粒子の分散という意味で非常に特徴的であ
る。しかしながら、前者の方法では餅状となつた
グラフトゴム重合体及び単量体から成る高粘性混
合物を暴走反応を起させることなく重合せしめる
必要があり、装置面、操作面で困難を有し必ずし
も優れた手とは言い難い。しかもゴム変性熱可塑
性樹脂においては、ゴム成分の含有量が樹脂の基
本的物性に多大の影響を及ぼす理由から、通常の
塊状重合法で行なわれるように重合率変動の大き
い低重合率で重合を終了し、残存する単量体を脱
揮する手法は使えず、操作上重合率の変動が小さ
くなる高重合率に至るまで反応を進行せしめる必
要から、反応物は一般の塊状重合系と比較しても
高粘性且つ高温となつて、その取扱いは非常に難
かしいものとなる。また後者の方法は、懸濁重合
法によつて単量体を重合せしめる手法であつて、
系の粘度が小さく反応熱の除去も容易である反
面、脱水、乾燥工程を必要とするため、前者同様
最良の手法とは言い難いものである。 〔本発明が解決しようとする問題点〕 ゴム変性熱可塑性樹脂の製造方法については前
述の通り多くの提案がなされているが、該樹脂の
基本的物性の発現に不可欠であるグラフトゴム粒
子の一様な分散及び使用熱量の削減を同時に解決
し、高品質で且つ競争力ある前記樹脂の製造方法
を提供するまでには至つていないのが現状であ
る。本発明者らはかかる現状に鑑み鋭意検討の結
果上記問題点のないゴム変性熱可塑性樹脂の製造
方法、即ちより容易にグラフトゴム重合体粒子を
熱可塑性重合体中へ均質に分散せしめることが可
能で、しかもより一層省エネルギーであるゴム変
性熱可塑性樹脂の製造法を提供し得ることを見出
した。 〔問題点を解決するための手段〕 本発明は、ゴムラテツクスにビニル系単量体を
グラフト重合せしめて成るグラフトゴム重合体(1)
のラテツクス、熱可塑性重合体(2)、前記グラフト
ゴム重合体(1)及び前記熱可塑性重合体(2)の合計量
に対し重量基準で0.1倍以上、6倍以下の前記熱
可塑性重合体(2)を溶解し得る能力を有し、且つ水
に対する溶解度が25℃において5重量%以下であ
る有機薬剤(3)及び前記グラフトゴム重合体に対し
10重量%以下の前記グラフトゴム重合体(1)のラテ
ツクスを凝固し得る水溶性薬剤(4)を混合せしめて
成る2相混合物より水相を分離し、次いで残つた
有機相より第1段階目として熱的手段により前記
有機薬剤(3)及び残存する水分の一部分を分離し、
除去した後、得られる溶融重合体混合物にさらに
熱可塑性重合体(5)を溶融混合し、さらに第2段階
目として残存する前記有機薬剤(3)を分離、除去す
ることを特徴とするゴム変性熱可塑性樹脂の製造
法である。 本発明で使用可能なゴムラテツクスには、従来
よりゴム変性熱可塑性樹脂の原料として用いられ
て来たものが全て含まれ、それにはポリブタジエ
ン、ポリイソプレン、SBR等のジエン系ゴムの
ラテツクス、エチレン―プロピレンゴム、エチレ
ン―酢酸ビニルゴム等のオレフイン系ゴムのラテ
ツクス、ポリエチルアクリレート、ポリブチルア
クリレート等のアクリル系ゴムのラテツクス、ポ
リジメチルシロキサン等のシリコン系ゴムのラテ
ツクス等が挙げられる。これらのゴムラテツクス
は単独で使用することもできるし、または2種以
上を併用することもできる。さらに本発明はゴム
の種類を何ら規制するものではなく、製造しよう
とするゴム変性熱可塑性樹脂の使用温度範囲にお
いてゴム弾性を有する重合体のラテツクスであれ
ば、前記以外のラテツクスであつても使用可能で
あることは言うまでもない。以上のようなゴムラ
テツクスに含まれるゴム粒子を、従来の方法で、
熱可塑性樹脂へ一様に分散せしめるのは極めて困
難であり、また仮にそれが可能となつてもゴムと
熱可塑性樹脂の相溶性が悪い等の原因で満足な物
性を発現するには至らない。そこで相溶性を向上
し、ゴム粒子の分散を可能にせしめ、優れた物性
を発現せしめる手段としてグラフト重合が行なわ
れる。このグラフト重合において使用される単量
体は、重合方式が乳化、ラジカル重合である点か
らビニル系単量体が使用され、ブレンドされる熱
可塑性樹脂との相溶性、接着性等の観点から最適
のものが選ばれるのが一般的である。本発明にお
いてもこの事情は変らない。従つて本発明におい
て使用可能な、ゴムにグラフト重合せしめるビニ
ル系単量体は、従来より用いられてきたアクリロ
ニトリル、メタクリロニトリル等のビニルシアン
系単量体、スチレン、アルフアメチルスチレン等
のビニル芳香族系単量体、メチルメタクリレー
ト、フエニルメタクリレート等のメタクリレー
ト、メチルクロロアクリレート、2―クロロエチ
ルメタクリレート等のハロゲン化ビニル系単量体
及び他のラジカル重合可能な単量体である。 乳化グラフト重合によつて得られたグラフトゴ
ム重合体(1)のラテツクスに対して、本発明では熱
可塑性重合体(2)、有機薬剤(3)、凝固性能を有する
水溶性薬剤(4)を混合する必要がある。この操作は
本発明固有の操作であり、使用可能な熱可塑性重
合体(2)としては、後述の有機薬剤に可溶なものが
全て掲げられる。アクリロニトリル―スチレン共
重合体、アクリロニトリル―アルフアメチルスチ
レン共重合体、アクリロニトリル―アルフアメチ
ルスチレン―N―フエニルマレイミド共重合体、
ポリスチレン、ポリメチルメタクリレート、ポリ
塩化ビニル、ポリカーボネート、ポリサルホン、
ポリエチレンテレフタレート等がその代表的例で
ある。 また、本発明で使用可能な有機薬剤(3)は25℃の
水に対する溶解度が5重量%以下、好ましくは2
重量%以下、つまり25℃の水溶液100グラム中に
5g以上、好ましくは2g以上まれない有機薬剤
であり、且つ前記熱可塑性重合体(2)を溶解可能な
有機薬剤である。この有機薬剤(3)は、前記グラフ
トゴム重合体(1)及び前記熱可塑性重合体(2)の合計
量に対して、重量基準で0.1〜6倍量、好ましく
は0.2〜2倍量の範囲で使用できる。この場合有
機薬剤(3)の水への溶解度が25℃において5重量%
を超えるものであれば、2相分離する混合物のう
ち水相が白濁する現象が生じる。一方、有機薬剤
(3)の使用量が前記グラフトゴム重合体(1)及び前記
熱可塑性重合体(2)の合計量に対し重量基準で0.1
倍未満であれば本発明の目的とする効果が発現せ
ず、逆に有機薬剤(3)を上記両重合体(1)及び(2)の合
計量に対し重量基準で6倍を超える量で使用すれ
ば、該有機薬剤(3)の分離に多くの熱量を必要とす
ることになり、いずれも工業的見地から好ましく
ない。 本発明で使用可能な有機薬剤(3)の例としては、
石油エーテル、ベンゼン、トルエン、キシレン、
エチルベンゼン、ジエチルベンゼン、P―シメ
ン、テトラリン、塩化メチレン、クロロホルム、
四塩化炭素、トリクレン、クロルベンゼン、エピ
クロルヒドリン、メチル―n―プロピルケトン、
アセトフエノン、酢酸―n―プロピル、酢酸―n
―ブチル、1―ニトロプロパン等の非重合性有機
薬剤及びスチレン、メタクリル酸メチル、アルフ
アメチルスチレン等の重合性有機薬剤が挙げられ
るが、何らこれらに制約されるものではなく、前
記条件を満す有機薬剤を単独もしくは2種以上混
合して使用できる。 さらに本発明において使用可能な凝固性能を有
する水溶性薬剤(4)は、使用するグラフトゴム重合
体(1)のラテツクスを凝析する能力を有する水溶性
物質であれば如何なる物質であつても、製造する
樹脂の品質低下を招かない見地から前記グラフト
ゴム重合体(1)に対し10重量%以下、好ましくは3
重量%以下の範囲で使用可能である。なお、水溶
性薬剤(4)は一般に0.2重量%以上使用する。この
ような物質としては、例えば硫酸アルミニウム、
押化アルミニウム、硝酸アルミニウム、硫酸マグ
ネシユム、塩化カルシウム、硝酸カルシウム等の
多価塩類、硫酸、塩酸、硝酸等の無機酸類、酢
酸、プロピオン酸等の有機酸類が挙げられる。 本発明においては、前述の如きグラフトゴム重
合体(1)のラテツクス、熱可塑性重合体(2)、有機薬
剤(3)及び凝固性能を有する水溶性薬剤(4)を混合せ
しめると混合物はグラフトゴム重合体(1)、熱可塑
性重合体(2)、有機薬剤(3)及び微少量の該有機薬剤
に可溶な重合助剤等で構成される有機相と上記水
溶性薬剤(4)、水及び微少量の水溶性重合助剤等か
ら構成される水相に分離する。この2相混合物よ
り水相と有機相をデカンテーシヨン、遠心脱水、
圧搾脱水等の通常の手段で分離する。さらに、主
としてグラフトゴム重合体(1)、熱可塑性重合体(2)
及び有機薬剤(3)より構成される有機相を加熱する
ことにより、これに含まれる有機薬剤(3)及び残存
する微量の水を通常の脱揮手法により一部分脱揮
する。その結果少量の有機薬剤(3)を含む溶融重合
体混合物が得られるが、該溶融重合体混合物の一
部は前記有機薬剤(3)に溶解した状態にあり該溶融
重合体混合物の粘度は有機薬剤(3)に含まない状態
に較べ低粘度である。さらに本発明では得られた
溶融重合体混合物にさらに熱可塑性重合体(5)を溶
融混合する。使用できる熱可塑性重合体(5)は有機
薬剤(3)の存在下に使用した前述の熱可塑性重合体
(2)と同一種のものであつても、異種のものであつ
も何ら制約されるものでなく、加熱溶融するもの
であれば全て使用可能であり、その代表例として
は前述の熱可塑性重合体(2)の具体例と同じものを
挙げることができる。 なお本発明の実施に際しては熱可塑性重合体(2)
と(5)は同一のものである場合は種々の面から好ま
しい。 一般に、グラフトゴム重合体を含む熱可塑性樹
脂はグラフトゴム重合体粒子が非流動性であるた
め溶融粘度は混合する熱可塑性重合体の溶融粘度
と大巾に異る。このように溶融粘度が大巾に異る
両重合体の溶融混合には多大の動力を必要とす
る。一方、重合体を溶解する薬剤の存在下におい
ては重合体は溶液的性質を有するため溶融粘度の
大巾に異る重合体間であつてもそれらの混合は非
常に容易である。また混合される熱可塑性重合体
自身にも水分、揮発性重合助剤、残存単量体等の
微量揮発成分が含まれており、製品の品質の観点
からこれらの成分は最大限に除去されるべきであ
る。 しかるに乳化重合による重合体に異る溶融粘度
を有する熱可塑性重合体を混合し、物性低下を招
来する不要な揮発成分を除去する手法として本発
明は極めて有用である。本発明の最大の有用性は
乳化重合体ラテツクスより低コストで合理的なゴ
ム変性熱可塑性樹脂の製造方法を提供するところ
にある。つまりグラフトゴム重合体粒子を目的と
する製品樹脂中へ一様に分散せしめる観点より最
少限量の熱可塑性重合体を有機薬剤の存在下にグ
ラフトゴム重合体と溶融混合し、脱揮過程におい
て粘度バランスがとれた時点で新たな熱可塑性重
合体を混合すれば、使用する有機薬剤を最少限に
することが可能であることより使用熱量の最少化
が計れ有機薬剤の存在下に第2の熱可塑性重合体
を混合することにより混練動力の最少化が計れ
る。 さらに本発明の方法は、最終製品に対する有機
薬剤の使用量を大巾に軽減することが可能である
点及び最終製品中の残存揮発成分を大巾に減少で
きるなど優れた特徴を有する。本発明の第1の特
徴である有機薬剤の使用量を軽減できる理由は有
機薬剤等を脱揮した後大量の熱可塑性重合体(5)を
加える操作を考えれば容易に理解できる。また第
2の特徴である製品中の残存揮発成分を減少でき
る理由は2つ有り第1の理由については今後解明
されるべきであるが、それは重合体混合物中に含
まれるグラフトゴム重合体の割合が大きい程揮発
成分の揮散が容易に進行するという現象に由来す
る。第2の理由は脱揮後の微量の残存揮発成分を
有する溶融重合体を揮発成分を有しない熱可塑性
重合体(5)と混合することによる希釈効果である。
従つて本発明の方法によれば従来の方法に比較し
て熱可塑性重合体中へのグラフトゴム重合体粒子
の均一な分散を可能にし、さらにより一層の省エ
ネルギーで且つ残存揮発分の少いゴム変性熱可塑
性樹脂の製造が可能となつたものである。 また本発明においては、従来、大量の熱損失を
生じていた乾燥機を使用する必要がなく、ベント
式押出機、薄膜式蒸発機等通常の脱揮機能を有す
る装置によつて製造が可能となるため、ゴム変性
熱可塑性樹脂工業に対してコスト面での多大な寄
与がもたらされることは言うまでもない。 以下に本発明の方法及びそれによつてもたらさ
れる効果を実施例及び参考例によつて具体的に説
明する。なお、実施例及び参考例中の部数は全て
重量規準である。 〔実施例〕 実施例1 0.36μmの平均粒子径を有するポリブタジエン
ラテツクスにアクリロニトリル及びスチレンを第
1表に従つてグラフト重合せしめてグラフトゴム
重合体のラテツクスを得た。 第 1 表 ポリブタジエンラテツクス 114.3部 (ポリブタジエン 40部) アクリロニトリル 15部 スチレン 45部 ラウリン酸ナトリウム 0.5部 水酸化ナトリウム 0.01部 ロンガリツト 0.2部 硫酸第一鉄 0.002部 EDTA―2ナトリウム塩 0.1部 ターシヤリーブチルハイドロパーオキサイド
0.3部 ラウリルメルカプタン 0.3部 脱イオン水 125部 重合温度 70℃ 重合時間 240分 一方、第2表に従つて熱可塑性重合体であるア
クリロニトリル―スチレン共重合体を製造した。 第 2 表 アクリロニトリル 25部 スチレン 75部 アソビスイソブチロニトリル 0.3部 ラウリルメルカプタン 0.5部 ポバール(重合度900) 0.07部 硫酸ナトリウム 0.3部 水 250部 重合温度 75℃ 重合時間 240分 重合終了後、得られたアクリロニトリル―スチ
レン共重合体の懸濁液を遠心脱水し、80℃で乾燥
して該共重合体の粉体を得た。 次いで、前記グラフトゴム重合体のラテツクス
300部、前記共重合体の粉体40部、トルエン200
部、0.1重量%の希硫酸水溶液1000部及び0.25部
のイルガノツクス1076(チバガイギー社製)(老化
防止剤)と1.25部のアーマイドHT(ライオンアー
マー社製)(成形助剤)を混合したところ、混合
液は水相と餅状の有機相に分離した。そこで有機
相を取り出し、2本のプレスロール間を通すこと
によつて余分の水相を分離し、特別の混練機構を
有せず樹脂の供給口2ケ所とベント口2ケ所を有
する押出機の第1供給口に供給した。重合体に含
まれるトルエンの一部を第1ベント口より脱揮
し、その直後に設けられた第2樹脂供給口より前
記共重合体の粉末110部を加え、さらに下流に設
けられた第2ベント口より残部のトルエンを脱揮
して重合体をペレツト状に賦形した。このときト
ルエンを脱揮する割合は第1ベント対第2ベント
において概ね3対2の割合であつた。得られたペ
レツトの表面は滑らかで、ブツと呼ばれる不均一
部分の存在は認められなかつた。これを射出成形
して各種のテストピースを作成し、各種物性値を
測定したところ第3表に示す如き結果が得られ
た。これらの値は本実施例で製造したゴム変性熱
可塑性樹脂が優れたものであることを示してい
る。
[Industrial Application Field] The present invention relates to a method for producing a rubber-modified thermoplastic resin. More specifically, the present invention relates to a graft rubber polymer obtained by graft polymerizing a vinyl monomer and a thermoplastic polymer. When producing a rubber-modified thermoplastic resin by mixing the polymer, after mixing the latex of the grafted rubber polymer, the thermoplastic polymer, an organic agent, and a water-soluble agent with coagulation performance, water and a part of the organic agent are mixed. A rubber characterized in that volatile components are separated and removed from the mixture, then a thermoplastic polymer is further melt-mixed into the obtained molten polymer mixture, and the remaining volatile components are separated and removed from the molten polymer mixture. The present invention relates to a method for producing a modified thermoplastic resin. [Prior art] Most rubber-modified thermoplastic resins, typically ABS resins, are produced by graft polymerizing vinyl monomers onto rubber latex and mixing and kneading other thermoplastic resins. It is a resin that has been The manufacturing process usually consists of an emulsion graft polymerization process, a coagulation process, a dehydration/drying process, a blending process, and a melt extrusion process. The emulsion graft polymerization process involves emulsion graft polymerization of acrylic monomers, vinyl cyanide monomers, vinyl aromatic monomers, etc. onto diene rubber latex, vinyl rubber latex, natural rubber latex, silicone rubber latex, etc. This is a process for producing polymer latex. The coagulation step is a step in which a coagulant such as a polyvalent salt or acid is added to the graft polymer latex to break the emulsified state and coagulate the polymer to form a powder. The dehydration and drying process is a process in which the aqueous phase is separated from a mixture of powdered polymer and water by means such as centrifugal dehydration, and then the powder is dried by means such as fluidized drying to obtain dry powder. be. The blending process is a process of blending the dry powder with other thermoplastic resins and additives such as stability agents, lubricants, and plasticizers, and the melt extrusion process involves melting and kneading the blended raw materials using a device such as a screw extruder. This process involves extruding it into strands and shaping it into pellets. The manufacturing and quality problems caused by the rubber-modified thermoplastic resin manufacturing process, which consists of each of the above steps, are as follows:
Firstly, a large amount of heat is used. This is due to the large amount of hot air used in the drying process. The second problem is that the graft rubber particles are completely fixed during the coagulation process, and it takes a lot of effort to completely disperse the fixed graft rubber particles into the thermoplastic resin during the melting and kneading operations after blending. It requires power. Furthermore, in the worst case, it becomes industrially impossible to uniformly disperse the graft rubber particles in the thermoplastic resin. Several proposals have been made to improve the conventional manufacturing method, which includes problems that lead to a decline in industrial competitiveness when manufacturing rubber-modified thermoplastic resins, as described above. is practiced industrially. One of them is aimed at reducing the amount of heat used in the drying process, and uses a screw type extruder with a dehydration function, which is generally called a dehydration extruder. This type of proposed method involves blending the coagulated and dehydrated grafted rubber wet powder with other thermoplastic resins and additives, or feeding the grafted rubber wet powder alone to the dehydrating extruder; and a type in which the graft rubber latex and coagulant are fed to the dewatering extruder together with other thermoplastic resins and additives as the case may be. This type of method does not require a drying process that uses large amounts of hot air, so it can be expected to be effective in terms of reducing the amount of heat used. is on the same level. This is because, in the former method, the graft rubber particles are processed in a completely fixed state, and therefore are equivalent to conventional techniques from the viewpoint of particle dispersion. In the latter case, the latex and coagulant are first mixed in a processing device and then dehydrated at a temperature range of about 100° C. or lower, at which point the grafted rubber particles are usually in a state of being fixed to each other. Thereafter, as the temperature rises, the thermoplastic resin and the thermoplastic resin are melted together and subjected to a kneading operation, so the former method differs only in the state of the supplied raw material, but from the perspective of particle dispersion, it is similar to the former method. It does not leave the realm of old technology. Grafting rubber polymer latex into other methods,
After mixing a coagulant and a monomer to form a two-phase mixture consisting of an organic phase and an aqueous phase, the aqueous phase is separated,
A method of polymerizing the monomers contained in the organic phase and a method of polymerizing the monomers in the two-phase mixture without separating the aqueous phase, then separating the aqueous phase and drying the polymer have been proposed. ing. Since these methods do not involve a process in which the grafted rubber particles completely adhere to each other, they are very unique in terms of dispersion of the particles compared to the above-mentioned method using a dehydrating extruder. However, in the former method, it is necessary to polymerize a highly viscous mixture consisting of a cake-like graft rubber polymer and a monomer without causing a runaway reaction, which is difficult in terms of equipment and operation, and is not necessarily superior. It's hard to say it was a good move. Moreover, in rubber-modified thermoplastic resins, because the content of the rubber component has a great effect on the basic physical properties of the resin, polymerization is not carried out at a low polymerization rate with large polymerization rate fluctuations, as is done in ordinary bulk polymerization methods. It is not possible to use a method of devolatilizing the remaining monomer after completion of the polymerization process, and it is necessary to allow the reaction to proceed until a high polymerization rate is reached, which reduces fluctuations in the polymerization rate. However, it becomes highly viscous and hot, making it extremely difficult to handle. The latter method is a method in which monomers are polymerized by suspension polymerization, and
Although the viscosity of the system is low and the heat of reaction can be easily removed, this method requires dehydration and drying steps, so like the former method, it cannot be said to be the best method. [Problems to be solved by the present invention] As mentioned above, many proposals have been made regarding the production method of rubber-modified thermoplastic resins, but one of the grafted rubber particles, which is essential for the expression of the basic physical properties of the resin, has been proposed. At present, it has not yet been possible to provide a high-quality and competitive method for producing the resin, which solves the problems of dispersion and reduction of the amount of heat used at the same time. In view of the current situation, the present inventors have conducted intensive studies and found a method for producing a rubber-modified thermoplastic resin that does not have the above-mentioned problems, that is, it is possible to more easily disperse grafted rubber polymer particles homogeneously in a thermoplastic polymer. It has been discovered that it is possible to provide a method for producing a rubber-modified thermoplastic resin that is even more energy-saving. [Means for solving the problems] The present invention provides a graft rubber polymer (1) obtained by graft polymerizing a vinyl monomer onto a rubber latex.
0.1 times or more and 6 times or less of the thermoplastic polymer (on a weight basis) based on the total amount of the latex, the thermoplastic polymer (2), the graft rubber polymer (1), and the thermoplastic polymer (2). 2), and has a solubility in water of 5% by weight or less at 25°C (3) and the graft rubber polymer.
The aqueous phase is separated from a two-phase mixture formed by mixing not more than 10% by weight of the latex of the graft rubber polymer (1) with a water-soluble agent (4) capable of coagulating, and then the remaining organic phase is used for the first step. separating the organic agent (3) and a portion of the remaining moisture by thermal means,
After removal, a thermoplastic polymer (5) is further melt-mixed into the resulting molten polymer mixture, and as a second step, the remaining organic agent (3) is separated and removed. This is a method for producing thermoplastic resin. Rubber latexes that can be used in the present invention include all those that have been conventionally used as raw materials for rubber-modified thermoplastic resins, including diene rubber latexes such as polybutadiene, polyisoprene, and SBR, and ethylene-propylene rubber latexes. Examples include latex of rubber, olefin rubber such as ethylene-vinyl acetate rubber, latex of acrylic rubber such as polyethyl acrylate and polybutyl acrylate, and latex of silicone rubber such as polydimethylsiloxane. These rubber latexes can be used alone or in combination of two or more. Furthermore, the present invention does not restrict the type of rubber in any way; latexes other than those listed above may be used as long as they are polymer latexes that have rubber elasticity within the operating temperature range of the rubber-modified thermoplastic resin to be manufactured. It goes without saying that it is possible. The rubber particles contained in the rubber latex as described above are processed using the conventional method.
It is extremely difficult to uniformly disperse the rubber into a thermoplastic resin, and even if it were possible, satisfactory physical properties would not be achieved due to poor compatibility between the rubber and the thermoplastic resin. Therefore, graft polymerization is carried out as a means to improve compatibility, enable dispersion of rubber particles, and exhibit excellent physical properties. The monomer used in this graft polymerization is a vinyl monomer because the polymerization method is emulsion or radical polymerization, and it is optimal from the viewpoint of compatibility with the thermoplastic resin to be blended, adhesiveness, etc. Generally, one is selected. This situation does not change in the present invention. Therefore, the vinyl monomers graft polymerized to rubber that can be used in the present invention include conventionally used vinyl cyan monomers such as acrylonitrile and methacrylonitrile, and vinyl aromatic monomers such as styrene and alphamethylstyrene. These include group monomers, methacrylates such as methyl methacrylate and phenyl methacrylate, halogenated vinyl monomers such as methyl chloroacrylate and 2-chloroethyl methacrylate, and other radically polymerizable monomers. In the present invention, a thermoplastic polymer (2), an organic drug (3), and a water-soluble drug having coagulation properties (4) are added to the latex of the graft rubber polymer (1) obtained by emulsion graft polymerization. Need to mix. This operation is unique to the present invention, and usable thermoplastic polymers (2) include all those that are soluble in the organic drug described below. Acrylonitrile-styrene copolymer, acrylonitrile-alphamethylstyrene copolymer, acrylonitrile-alphamethylstyrene-N-phenylmaleimide copolymer,
polystyrene, polymethyl methacrylate, polyvinyl chloride, polycarbonate, polysulfone,
A typical example is polyethylene terephthalate. Furthermore, the organic drug (3) that can be used in the present invention has a solubility in water at 25°C of 5% by weight or less, preferably 2% by weight or less.
It is an organic drug that is present in an amount of not more than 5 g, preferably not more than 2 g, in 100 grams of an aqueous solution at 25° C., and is capable of dissolving the thermoplastic polymer (2). This organic agent (3) is used in an amount of 0.1 to 6 times, preferably 0.2 to 2 times, on a weight basis, relative to the total amount of the graft rubber polymer (1) and the thermoplastic polymer (2). Can be used in In this case, the solubility of organic drug (3) in water is 5% by weight at 25°C.
If it exceeds this amount, a phenomenon will occur in which the aqueous phase of the mixture that separates into two phases becomes cloudy. On the other hand, organic drugs
The amount of (3) used is 0.1 on a weight basis with respect to the total amount of the graft rubber polymer (1) and the thermoplastic polymer (2).
If the amount is less than 6 times, the desired effect of the present invention will not be achieved, and conversely, if the amount of organic drug (3) is more than 6 times the total amount of both polymers (1) and (2), on a weight basis. If used, a large amount of heat would be required to separate the organic drug (3), which is unfavorable from an industrial standpoint. Examples of organic drugs (3) that can be used in the present invention include:
petroleum ether, benzene, toluene, xylene,
Ethylbenzene, diethylbenzene, P-cymene, tetralin, methylene chloride, chloroform,
Carbon tetrachloride, tricrene, chlorobenzene, epichlorohydrin, methyl-n-propyl ketone,
Acetophenone, n-propyl acetate, n-acetate
Examples include non-polymerizable organic agents such as -butyl and 1-nitropropane, and polymerizable organic agents such as styrene, methyl methacrylate and alpha-methylstyrene, but are not limited to these in any way and satisfy the above conditions. Organic chemicals can be used alone or in combination of two or more. Furthermore, the water-soluble agent (4) having coagulation ability that can be used in the present invention may be any water-soluble substance that has the ability to coagulate the latex of the graft rubber polymer (1) used. 10% by weight or less, preferably 3% by weight based on the graft rubber polymer (1) from the viewpoint of not causing a decrease in the quality of the resin to be produced.
It can be used within a range of % by weight or less. Note that the water-soluble drug (4) is generally used in an amount of 0.2% by weight or more. Examples of such substances include aluminum sulfate,
Examples include polyvalent salts such as pressed aluminum, aluminum nitrate, magnesium sulfate, calcium chloride, and calcium nitrate, inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as acetic acid and propionic acid. In the present invention, when the latex of the graft rubber polymer (1) as described above, the thermoplastic polymer (2), the organic agent (3), and the water-soluble agent (4) having coagulation ability are mixed, the mixture becomes a graft rubber polymer. An organic phase consisting of a polymer (1), a thermoplastic polymer (2), an organic drug (3), and a small amount of a polymerization aid soluble in the organic drug, the water-soluble drug (4), and water. It separates into an aqueous phase consisting of a small amount of water-soluble polymerization aid, etc. From this two-phase mixture, the aqueous phase and organic phase are decanted, centrifuged and dehydrated.
Separate by conventional means such as press dehydration. Furthermore, mainly graft rubber polymers (1) and thermoplastic polymers (2)
By heating the organic phase composed of the organic agent (3) and the organic agent (3), the organic agent (3) contained therein and the remaining trace amount of water are partially devolatilized by a normal devolatilization method. As a result, a molten polymer mixture containing a small amount of the organic drug (3) is obtained, but a part of the molten polymer mixture is dissolved in the organic drug (3), and the viscosity of the molten polymer mixture is The viscosity is lower than that without drug (3). Furthermore, in the present invention, a thermoplastic polymer (5) is further melt-mixed into the obtained molten polymer mixture. Thermoplastic polymers (5) that can be used are the aforementioned thermoplastic polymers used in the presence of an organic agent (3).
There are no restrictions on whether it is the same type as (2) or a different type, and any type of material that can be heated and melted can be used.A typical example is the thermoplastic polymer mentioned above. The same specific examples as union (2) can be mentioned. In addition, when carrying out the present invention, thermoplastic polymer (2)
It is preferable from various aspects if and (5) are the same. Generally, the melt viscosity of a thermoplastic resin containing a grafted rubber polymer differs widely from the melt viscosity of the thermoplastic polymer with which it is mixed, since the grafted rubber polymer particles are non-flowable. A large amount of power is required to melt and mix these two polymers, which have widely different melt viscosities. On the other hand, in the presence of a drug that dissolves the polymer, since the polymer has solution-like properties, even if the polymers have widely different melt viscosities, it is very easy to mix them. In addition, the thermoplastic polymer itself that is mixed contains trace amounts of volatile components such as moisture, volatile polymerization aids, and residual monomers, and these components must be removed as much as possible from the perspective of product quality. Should. However, the present invention is extremely useful as a method of mixing thermoplastic polymers having different melt viscosities with emulsion polymerized polymers and removing unnecessary volatile components that cause deterioration of physical properties. The greatest utility of the present invention is that it provides a method for producing a rubber-modified thermoplastic resin that is lower in cost and more rational than emulsion polymer latex. In other words, from the viewpoint of uniformly dispersing the graft rubber polymer particles into the target product resin, a minimum amount of thermoplastic polymer is melt-mixed with the graft rubber polymer in the presence of an organic agent, and the viscosity is balanced during the devolatilization process. By mixing a new thermoplastic polymer when the organic agent is removed, it is possible to minimize the amount of organic agent used, which in turn minimizes the amount of heat used. By mixing the polymers, the kneading power can be minimized. Furthermore, the method of the present invention has excellent features such as being able to greatly reduce the amount of organic chemicals used in the final product and greatly reducing the amount of residual volatile components in the final product. The reason why the amount of organic chemicals used, which is the first feature of the present invention, can be reduced can be easily understood by considering the operation of adding a large amount of thermoplastic polymer (5) after devolatilizing the organic chemicals. In addition, there are two reasons why the remaining volatile components in the product, which is the second feature, can be reduced. This is due to the phenomenon that the larger the value, the easier the volatilization of volatile components. The second reason is the dilution effect caused by mixing the molten polymer having a small amount of volatile components remaining after devolatilization with the thermoplastic polymer (5) having no volatile components.
Therefore, the method of the present invention makes it possible to uniformly disperse graft rubber polymer particles in a thermoplastic polymer compared to conventional methods, and can produce rubber that is even more energy-saving and has less residual volatile content. This makes it possible to produce modified thermoplastic resins. Furthermore, in the present invention, there is no need to use a dryer that conventionally causes a large amount of heat loss, and production can be performed using equipment with a normal devolatilization function such as a vent type extruder or a thin film type evaporator. Needless to say, this makes a significant contribution to the rubber-modified thermoplastic resin industry in terms of cost. The method of the present invention and the effects brought about by it will be specifically explained below using Examples and Reference Examples. Note that all parts in Examples and Reference Examples are based on weight. [Examples] Example 1 Acrylonitrile and styrene were graft-polymerized to a polybutadiene latex having an average particle diameter of 0.36 μm according to Table 1 to obtain a graft rubber polymer latex. Table 1 Polybutadiene latex 114.3 parts (Polybutadiene 40 parts) Acrylonitrile 15 parts Styrene 45 parts Sodium laurate 0.5 parts Sodium hydroxide 0.01 parts Rongarit 0.2 parts Ferrous sulfate 0.002 parts EDTA-disodium salt 0.1 parts Tertiary butyl hydroper oxide
0.3 parts Lauryl mercaptan 0.3 parts Deionized water 125 parts Polymerization temperature 70°C Polymerization time 240 minutes Meanwhile, a thermoplastic polymer, an acrylonitrile-styrene copolymer, was produced according to Table 2. Table 2 Acrylonitrile 25 parts Styrene 75 parts Asobisisobutyronitrile 0.3 parts Lauryl mercaptan 0.5 parts Poval (degree of polymerization 900) 0.07 parts Sodium sulfate 0.3 parts Water 250 parts Polymerization temperature 75°C Polymerization time 240 minutes After completion of polymerization, obtained The acrylonitrile-styrene copolymer suspension was centrifugally dehydrated and dried at 80°C to obtain a powder of the copolymer. Next, the latex of the grafted rubber polymer
300 parts, 40 parts of the above copolymer powder, 200 parts of toluene
When 1000 parts of a 0.1% by weight dilute aqueous sulfuric acid solution, 0.25 parts of Irganox 1076 (manufactured by Ciba Geigy) (antiaging agent) and 1.25 parts of Armide HT (manufactured by Lion Armor) (molding aid) were mixed, the mixture was mixed. The liquid was separated into an aqueous phase and a cake-like organic phase. Then, the organic phase is taken out and passed between two press rolls to separate the excess aqueous phase. It was supplied to the first supply port. Part of the toluene contained in the polymer is devolatilized from the first vent port, 110 parts of the copolymer powder is added from the second resin supply port provided immediately after that, and The remaining toluene was devolatilized through the vent port, and the polymer was shaped into pellets. At this time, the ratio of toluene devolatilization was approximately 3:2 between the first vent and the second vent. The surface of the obtained pellets was smooth, and no uneven portions called bumps were observed. When various test pieces were made by injection molding and various physical property values were measured, the results shown in Table 3 were obtained. These values indicate that the rubber-modified thermoplastic resin produced in this example is excellent.

【表】 ※ 実施例2、4及び参考例でも同じ
実施例 2 実施例1と同一の薬剤を用いて第4表の処方に
従つてグラフトゴム重合体のラテツクスを製造し
た。 第 4 表 ポリブタジエンラテツクス 228.6部 (ポリブタジエン 80部) アクリロニトリル 5部 スチレン 15部 ラウリン酸ナトリウム 0.4部 水酸化ナトリウム 0.01部 ロンガリツト 0.15部 硫酸第一鉄 0.001部 EDTA―2ナトリウム塩 0.05部 ターシヤリーブチルパーオキサイド 0.2部 ラウリルメルカプタン 0.15部 脱イオン水 50部 重合温度 70℃ 重合時間 280分 該グラフトゴムラテツクス60部、実施例1で使
用したアクリロニトリル―スチレン共重合体30
部、エチルベンゼン40部及び1重量%の硫酸マグ
ネシウム40部を連続式混練装置で混合したところ
混合液は実施例1と同様2相に分離したので、こ
れを第1供給口、脱水部、第1脱揮部、第2供給
口及び第2脱揮部を順次有する押出機に連続的に
供給し脱水、第1脱揮操作を行つた後第2供給口
より実施例1で使用したアクリロニトリル―スチ
レン共重合体71部を加え第2揮発操作を行つてペ
レツト状に賦形した。このときエチルベンゼンの
脱揮割合は第1脱揮対第2脱揮において概ね1:
1であり得られたペレツトの表面は滑らかで、ブ
ツの存在は認められなかつた。このペレツトを射
出成形して各種テストピースを作成し、実施例1
と同一の手順で各種物性を測定したところ、第5
表に示す如き結果が得られた。これらの値は本実
施例で製造したゴム変性熱可塑性樹脂が優れたも
のであることを示している。
[Table] *Same for Examples 2, 4, and Reference Examples Example 2 A latex of a grafted rubber polymer was produced using the same chemicals as in Example 1 and according to the formulation in Table 4. Table 4 Polybutadiene latex 228.6 parts (Polybutadiene 80 parts) Acrylonitrile 5 parts Styrene 15 parts Sodium laurate 0.4 parts Sodium hydroxide 0.01 parts Rongarit 0.15 parts Ferrous sulfate 0.001 parts EDTA-disodium salt 0.05 parts Tertiary butyl peroxide 0.2 parts Lauryl mercaptan 0.15 parts Deionized water 50 parts Polymerization temperature 70°C Polymerization time 280 minutes 60 parts of the grafted rubber latex, 30 parts of the acrylonitrile-styrene copolymer used in Example 1
When 40 parts of ethylbenzene and 40 parts of 1% by weight magnesium sulfate were mixed in a continuous kneading device, the mixed liquid separated into two phases as in Example 1. The acrylonitrile-styrene used in Example 1 is continuously supplied to an extruder having a devolatilization section, a second supply port, and a second devolatilization section in order, and after dehydration and a first devolatilization operation, the acrylonitrile-styrene used in Example 1 is supplied from the second supply port. 71 parts of the copolymer was added and a second volatilization operation was performed to form pellets. At this time, the devolatilization ratio of ethylbenzene is approximately 1:1 for the first devolatilization to the second devolatilization.
The surface of the pellets obtained in Example 1 was smooth and no lumps were observed. This pellet was injection molded to create various test pieces, and Example 1
When various physical properties were measured using the same procedure as in
The results shown in the table were obtained. These values indicate that the rubber-modified thermoplastic resin produced in this example is excellent.

【表】 実施例 3 0.15μmの平均粒子径を有するSBRゴムラテツ
クスにメタクリル酸メチル及びアクリル酸メチル
を第6表に従つてグラフト重合せしめてグラフト
ゴム重合体のラテツクスを得た。 第 6 表 SBRゴムラテツクス 100部 (SBRゴム 50部) メタクリル酸メチル 45部 アクリル酸メチル 5部 ロジン酸カリウム 1部 ロンガリツト 0.2部 硫酸第一鉄 0.003部 EDTA―2ナトリウム 0.1部 キユメンハイドロパーオキサイド 0.4部 オクチルメルカプタン 0.2部 脱イオン水 150部 重合温度 65℃ 重合時間 240分 一方、第7表に従つて熱可塑性重合体であるポ
リメタクリル酸メチルを製造した。 第 7 表 メタクリル酸メチル 100部 アゾビスイソブチロニトリル 0.3部 ラウリルメルカプタン 0.5部 ポボール(重合度900) 0.07部 硫酸ナトリウム 0.25部 水 200部 重合温度 80℃ 重合時間 180分 重合終了後、得られたポリメタクリル酸メチル
の懸濁液を遠心脱水し、80℃で乾燥して該重合体
の粉体を得た。 次いで前記グラフトゴム重合体のラテツクス90
部、ポリメタクリル酸メチル粉体10部、クロロホ
ルム20部及び0.2重量%の希硫酸マグネシウム水
溶液300部を連続的に混合したところ混合液は水
相と餅状の有機相に分離した。そこで実施例2で
使用した装置を用い、該装置内で水相分離及びク
ロロホルムの第1脱揮操作を行つた後、引き続き
該装置に設けられた樹脂供給口より前記ポリメタ
クリル酸メチルの粉体60部を連続的に加えて溶融
混練しさらに第2脱揮操作を行つた後重合体混合
物をペレツト状に賦形した。 このとき得られたペレツトの表面は滑らかで、
ブツの存在は認められなかつた。さらにこのペレ
ツトを射出成形して各種テストピースを作成し、
各種物性値を測定したところ第8表に示す如き結
果が得られた。これらの結果は本実施例で製造し
たゴム変性熱可塑性樹脂が優れたものであること
を示している。
[Table] Example 3 Methyl methacrylate and methyl acrylate were graft-polymerized to SBR rubber latex having an average particle diameter of 0.15 μm according to Table 6 to obtain a latex of a grafted rubber polymer. Table 6 SBR rubber latex 100 parts (SBR rubber 50 parts) Methyl methacrylate 45 parts Methyl acrylate 5 parts Potassium rosinate 1 part Rongalite 0.2 parts Ferrous sulfate 0.003 parts Disodium EDTA 0.1 parts Kyumene hydroperoxide 0.4 parts Octyl mercaptan 0.2 parts Deionized water 150 parts Polymerization temperature 65°C Polymerization time 240 minutes Meanwhile, polymethyl methacrylate, which is a thermoplastic polymer, was produced according to Table 7. Table 7 Methyl methacrylate 100 parts Azobisisobutyronitrile 0.3 parts Lauryl mercaptan 0.5 parts Pobol (degree of polymerization 900) 0.07 parts Sodium sulfate 0.25 parts Water 200 parts Polymerization temperature 80°C Polymerization time 180 minutes Obtained after polymerization A suspension of polymethyl methacrylate was centrifugally dehydrated and dried at 80°C to obtain a powder of the polymer. Next, the graft rubber polymer latex 90
When 10 parts of polymethyl methacrylate powder, 20 parts of chloroform, and 300 parts of a 0.2% by weight dilute aqueous magnesium sulfate solution were continuously mixed, the mixture was separated into an aqueous phase and a rice cake-like organic phase. Therefore, using the apparatus used in Example 2, after performing aqueous phase separation and the first devolatilization operation of chloroform in the apparatus, the polymethyl methacrylate powder was subsequently fed from the resin supply port provided in the apparatus. After continuously adding 60 parts and melt-kneading and performing a second devolatilization operation, the polymer mixture was shaped into pellets. The surface of the pellets obtained at this time was smooth,
The existence of the thing was not recognized. The pellets were then injection molded to create various test pieces.
When various physical property values were measured, the results shown in Table 8 were obtained. These results show that the rubber-modified thermoplastic resin produced in this example is excellent.

【表】 実施例 4 実施例2で得たグラフトゴム重合体のラテツク
ス37.5部、1重量%の硫酸水溶液7部を第1供給
口、第2供給口、脱水部、第1脱揮部、第3供給
口及び第2脱揮部を有する2軸混練押出機の第1
供給口より連続的に供給した。この混合物は第2
供給口に至るまでにクリーム状に転化しており第
2供給口よりジクロロメタン10部及び実施例1で
使用したアクリロニトリル―スチレン共重合体
12.5部を連続的に加えたところ混合物は水相と餅
状の有機相に分離した。 次いで水相を脱水部より排出しジクロロメタン
の一部を第1部脱揮部より揮散せしめた後、第3
供給口よりポリカーボネート樹脂(ノバレツクス
7022、三菱化成工業株式会社製)75部を連続的に
加えグラフトゴム共重合体及びアクリロニトリル
―スチレン共重合体の混合物と溶融混合し、さら
に残部のジクロロメタンを第2脱揮部より揮散せ
しめた。このとき第1及び第2脱揮部より揮散せ
しめたジクロロメタンの割合は概ね1対4であつ
た。また得られた混合物をノズルより押出して賦
形した。このペレツトにはポリブタジエンが10.0
重量%含まれておりブツは認められなかつた。該
ペレツトを射出成形して得た標準試験片のテスト
結果を第9表に示す。
[Table] Example 4 37.5 parts of the latex of the grafted rubber polymer obtained in Example 2 and 7 parts of a 1% by weight sulfuric acid aqueous solution were added to the first supply port, the second supply port, the dehydration section, the first devolatilization section, and the The first part of the twin-screw kneading extruder has three supply ports and a second devolatilizing section.
It was continuously supplied from the supply port. This mixture is the second
By the time it reaches the supply port, it has been converted into a creamy state, and from the second supply port, 10 parts of dichloromethane and the acrylonitrile-styrene copolymer used in Example 1 are added.
When 12.5 parts were added continuously, the mixture was separated into an aqueous phase and a cake-like organic phase. Next, the aqueous phase is discharged from the dehydration section, a part of dichloromethane is volatilized from the first devolatilization section, and then the third
Polycarbonate resin (Novarex) from the supply port
7022 (manufactured by Mitsubishi Chemical Industries, Ltd.) was continuously added and melt-mixed with the mixture of the graft rubber copolymer and the acrylonitrile-styrene copolymer, and the remaining dichloromethane was volatilized from the second devolatilizing section. At this time, the ratio of dichloromethane volatilized from the first and second devolatilizing sections was approximately 1:4. Further, the obtained mixture was extruded through a nozzle and shaped. This pellet contains 10.0% polybutadiene.
% by weight, and no lumps were observed. Table 9 shows the test results of standard specimens obtained by injection molding the pellets.

【表】 参考例 1 実施例1で製造したグラフトゴム重合体のラテ
ツクスを常法により硫酸凝固し、得られた重合体
湿粉を洗浄、脱水、乾燥してグラフトゴム重合体
乾燥粉を得た。このグラフトゴム重合体、実施例
1で製造したアクリロニトリル―スチレン共重合
体及び微量の実施例1で使用した添加剤を混合
し、スクリユー式押出機を用いてペレツト状に加
工した。このとき得られたペレツトの組成は実施
例1で得られたペレツトと同一であつたがその表
面にはブツが多数存在しており、商品価値が認め
られないものであつつた。さらに、得られたペレ
ツトを射出成形し、実施例1と同一のテストを行
なつて第10表の如き結果を得た。
[Table] Reference Example 1 The latex of the grafted rubber polymer produced in Example 1 was coagulated with sulfuric acid by a conventional method, and the obtained wet polymer powder was washed, dehydrated, and dried to obtain a dry grafted rubber polymer powder. . This graft rubber polymer, the acrylonitrile-styrene copolymer produced in Example 1, and a small amount of the additive used in Example 1 were mixed and processed into pellets using a screw extruder. The composition of the pellets obtained at this time was the same as that of the pellets obtained in Example 1, but there were many lumps on the surface, and the pellets had no commercial value. Furthermore, the obtained pellets were injection molded and the same tests as in Example 1 were conducted, and the results shown in Table 10 were obtained.

【表】 〔発明の効果〕 本発明の方法によればラテツクスを凝固して湿
粉とした後脱水して乾燥する操作が不要となり、
殊に乾燥器における熱損失を回避できる点でコス
ト競争力のあるゴム変性熱可塑性樹脂の製造が可
能である。また本発明では有機薬剤により水を分
離するので水の排出が容易で旧来の脱水押出機が
有する押出機外套部に設けられた狭隙が目詰りす
るような問題がなく、しかも餅状の重合体を取扱
うため装置の摩耗に対する配慮が不要である。さ
らに本発明では有機薬剤の存在下にグラフトゴム
重合体粒子を熱可塑性重合体中へ分散させるため
該グラフトゴム重合体粒子が相互に固着すること
がなく均質なグラフトゴム重合体粒子の分散が可
能となる他、使用する有機薬剤が少量で良く、製
品中の揮発成分を僅少にできる。加うるに溶融粘
度の大巾に異る重合体同士の混合が有機薬剤の使
用によつて容易となり、該薬剤の蒸発潜熱が水に
対して一般に極めて小さいため使用熱量の究極的
削減が可能となる。このことは表面外観及び種々
物性に優れ市場価値の高いゴム変性熱可塑性樹脂
を低コストで製造できることを意味する。
[Table] [Effects of the Invention] According to the method of the present invention, there is no need to coagulate latex into wet powder, dehydrate it, and dry it.
It is possible to produce cost-competitive rubber-modified thermoplastic resins, especially in that heat losses in dryers can be avoided. In addition, since the present invention separates water using an organic agent, it is easy to drain the water, and there is no problem of clogging of the narrow gap provided in the extruder outer part of the conventional dehydration extruder. Since coalescence is handled, there is no need to consider equipment wear. Furthermore, in the present invention, since the graft rubber polymer particles are dispersed into the thermoplastic polymer in the presence of an organic agent, the graft rubber polymer particles do not stick to each other, making it possible to homogeneously disperse the graft rubber polymer particles. In addition, only a small amount of organic chemicals can be used, and the volatile components in the product can be minimized. In addition, the use of organic chemicals makes it easier to mix polymers with widely different melt viscosities, and the latent heat of vaporization of the chemicals is generally extremely small compared to water, making it possible to ultimately reduce the amount of heat used. Become. This means that a rubber-modified thermoplastic resin with excellent surface appearance and various physical properties and high market value can be produced at low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 ゴムラテツクスにビニル系単量体をグラフト
重合せしめて成るグラフトゴム重合体(1)のラテツ
クス、熱可塑性重合体(2)、前記グラフトゴム重合
体(1)及び前記熱可塑性重合体(2)の合計量に対し重
量基準で0.1倍以上、6倍以下の前記熱可塑性重
合体(2)を溶解し得る能力を有し、且つ水に対する
溶解度が25℃において5重量%以下である有機薬
剤(3)及び前記グラフトゴム重合体に対し10重量%
以下の前記グラフトゴム重合体(1)のゴムラテツク
スを凝固し得る水溶性薬剤(4)を混合せしめて成る
2相混合物より水相を分離し、次いで残つた有機
相より第1段階目として熱的手段により前記有機
薬剤(3)及び残存する水分の一部を分離、除去した
後得られる溶融重合体混合物にさらに熱可塑性重
合体(5)を溶融混合し、さらに第2段階目として残
存する前記有機薬剤(3)を分離、除去することを特
徴とするゴム変性熱可塑性樹脂の製造法。
1 Latex of the graft rubber polymer (1) obtained by graft polymerizing a vinyl monomer onto a rubber latex, a thermoplastic polymer (2), the graft rubber polymer (1), and the thermoplastic polymer (2). An organic agent (3) that has the ability to dissolve the thermoplastic polymer (2) in an amount of 0.1 to 6 times the total amount on a weight basis, and has a solubility in water of 5% by weight or less at 25°C. ) and 10% by weight based on the graft rubber polymer.
The aqueous phase is separated from a two-phase mixture formed by mixing the rubber latex of the graft rubber polymer (1) with a water-soluble agent (4) capable of coagulating, and then the remaining organic phase is heated as a first step. A thermoplastic polymer (5) is further melt-mixed into the molten polymer mixture obtained after separating and removing the organic agent (3) and a portion of the remaining water by means of a second step. A method for producing a rubber-modified thermoplastic resin, characterized by separating and removing an organic agent (3).
JP29395285A 1985-12-25 1985-12-26 Production of rubber-modified thermoplastic resin Granted JPS62151445A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP29395285A JPS62151445A (en) 1985-12-26 1985-12-26 Production of rubber-modified thermoplastic resin
DE3689258T DE3689258T2 (en) 1985-12-25 1986-12-23 Process for the production of rubber modified thermoplastic resins.
EP86117933A EP0227098B1 (en) 1985-12-25 1986-12-23 Method for producing rubber modified thermoplastic resins
CA000526195A CA1291283C (en) 1985-12-25 1986-12-23 Method for producing rubber modified thermoplastic resins
AU66948/86A AU600459B2 (en) 1985-12-25 1986-12-23 Method for producing rubber modified thermoplastic resins
US06/946,058 US4880877A (en) 1985-12-25 1986-12-24 Method for producing rubber modified thermoplastic resins
US07/394,720 US4992510A (en) 1985-12-25 1989-08-16 Method for producing rubber modified thermoplastic resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29395285A JPS62151445A (en) 1985-12-26 1985-12-26 Production of rubber-modified thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS62151445A JPS62151445A (en) 1987-07-06
JPH0212977B2 true JPH0212977B2 (en) 1990-04-03

Family

ID=17801301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29395285A Granted JPS62151445A (en) 1985-12-25 1985-12-26 Production of rubber-modified thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS62151445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023449B2 (en) * 2005-08-08 2012-09-12 日油株式会社 Thermoplastic elastomer composition

Also Published As

Publication number Publication date
JPS62151445A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
EP0203511B1 (en) Method for producing rubber modified thermoplastic resins
TW202030215A (en) Method of preparing vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound graft copolymer, and thermoplastic resin composition including graft copolymer
EP0233371B1 (en) Method for producing thermoplastic resins
EP0227098B1 (en) Method for producing rubber modified thermoplastic resins
JPH01123853A (en) Production of rubber-modified thermoplastic resin
JPH0212977B2 (en)
EP0208112B1 (en) Method for producing rubber modified thermoplastic resins
JPS62151466A (en) Production of thermoplastic resin
JPH0212496B2 (en)
JP2004131714A5 (en)
JPH04211430A (en) Production of rubber-modified thermoplastic resin
JPH0262150B2 (en)
TWI231301B (en) Coagulation of particles from emulsions by the insitu formation of a coagulating agent
JPH0262151B2 (en)
JPS5927776B2 (en) Molding resin composition
JPH023816B2 (en)
JPH0212497B2 (en)
US5686139A (en) Preparation of free-flowing crumb rubber composition
JPH0422938B2 (en)
JPH046741B2 (en)
JPH048754A (en) Production of thermoplastic resin and apparatus therefor
JP2888937B2 (en) Method for producing a powdery mixture of thermoplastic polymers
JPH01123852A (en) Production of rubber-modified thermoplastic resin
JPH0212498B2 (en)
JPS5937021B2 (en) ABS resin manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term