JPH0212975B2 - - Google Patents

Info

Publication number
JPH0212975B2
JPH0212975B2 JP55059921A JP5992180A JPH0212975B2 JP H0212975 B2 JPH0212975 B2 JP H0212975B2 JP 55059921 A JP55059921 A JP 55059921A JP 5992180 A JP5992180 A JP 5992180A JP H0212975 B2 JPH0212975 B2 JP H0212975B2
Authority
JP
Japan
Prior art keywords
resin
polyester resin
acid
fine powder
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55059921A
Other languages
Japanese (ja)
Other versions
JPS56157431A (en
Inventor
Fumio Himematsu
Shinichi Aso
Taiichi Murao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5992180A priority Critical patent/JPS56157431A/en
Publication of JPS56157431A publication Critical patent/JPS56157431A/en
Publication of JPH0212975B2 publication Critical patent/JPH0212975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 本発明は、真球状ポリエステル樹脂微粉体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing true spherical polyester resin fine powder.

ポリエステル系樹脂、特にポリエチレンテレフ
タレートは極めて良好な物理的諸性質を有するの
で衣料用ならびに産業・生活関連用質材として広
く実用に供されている。
Polyester resins, particularly polyethylene terephthalate, have extremely good physical properties and are therefore widely used as materials for clothing and industrial and daily life-related uses.

しかしながらこのポリエステル樹脂を例えば潤
滑剤、滑り材、化粧品への添加剤、多孔性高分子
材料などとして使用する場合、平滑性、なめらか
さ、感触性、充填性などの面より真球状の微粉体
であることが要求され、該ポリエステル樹脂を真
球状に微粉末化することが必要となる。
However, when this polyester resin is used as a lubricant, a sliding material, an additive to cosmetics, a porous polymer material, etc., it is necessary to use a truly spherical fine powder due to its smoothness, smoothness, feel, and filling properties. It is required that the polyester resin be pulverized into a perfect spherical shape.

従来、ポリエステル樹脂の粉末化については種
種の方法が試みられているが、該ポリエステル樹
脂の強靭性のため粉砕・粉末化は極めて困難で、
さらに粉砕時に生ずる過の摩擦熱も樹脂品質に大
きな悪影響を与える。
Conventionally, various methods have been tried to powderize polyester resin, but due to the toughness of the polyester resin, it is extremely difficult to grind and powderize it.
Furthermore, excessive frictional heat generated during pulverization has a significant negative effect on resin quality.

このような粉砕・粉末化での障害を解消する方
法として、超低温液体、例えば−147℃以下の液
体窒素中に樹脂を浸せきした後、、粉砕機で粉末
化する方法、各種の溶媒、例えばポリエチレンテ
レフタレートの場合塩素化炭化水素に樹脂を溶解
させた後、該溶媒を除去して粉末を得る方法など
が知られており、更には低重合度ポリエステル樹
脂を溶融状態において細孔から不活性ガス中に噴
射せしめ粒状固体としたのち固相重合する方法
(特公昭46−3192号公報、特公昭46−3193号公
報)、溶融時の粘度が200〜3000ポイズのポリエス
テル樹脂を高速加熱気体により噴射し微細固体と
したのち固相重合する方法(特公昭48−37596号
公報)、延伸糸又は未延伸糸を融点285℃をこえる
まで熱処理した後、粉砕する方法(特公昭55−
35241号公報)なども提案されている。
As a method to eliminate such obstacles in crushing and powdering, there are two methods: immersing the resin in an ultra-low temperature liquid, such as liquid nitrogen at -147°C or lower, and then pulverizing it in a crusher; or using various solvents, such as polyethylene. In the case of terephthalate, methods such as dissolving the resin in a chlorinated hydrocarbon and then removing the solvent to obtain a powder are known. A method in which a polyester resin having a viscosity of 200 to 3000 poise when melted is injected with a high-speed heated gas is injected into a granular solid and then solid-phase polymerized (Japanese Patent Publication No. 46-3192, Japanese Patent Publication No. 46-3193). A method of solid-phase polymerization after forming a fine solid (Japanese Patent Publication No. 37596/1983), a method of heat-treating drawn or undrawn yarn until its melting point exceeds 285°C and then pulverizing it (Japanese Patent Publication No. 1983-37596)
35241) have also been proposed.

しかし上記のいずれの方法においても真球状で
かつ、微粉体とすることは難しく前記用途に対す
る要求を満足するまでに至つていない。
However, in any of the above-mentioned methods, it is difficult to form a powder that is perfectly spherical and fine, and the requirements for the above-mentioned uses have not yet been met.

本発明者らはかゝる現状に鑑み、真球状樹脂微
粉体及びその製造方法について鋭意研究を重ねた
結果本発明を完成するに至つた。
In view of the current situation, the present inventors have completed the present invention as a result of extensive research into true spherical resin fine powder and a method for producing the same.

本発明の目的は、平滑性、なめらかさ、感触
性、充填性、更には強靭性、硬さ、耐摩耗性、耐
候性などの諸物性に優れた真球状で、かつ微粉体
のポリエステル樹脂を工業的に有利に提供するも
のである。
The purpose of the present invention is to produce a true spherical polyester resin in the form of a fine powder, which has excellent physical properties such as smoothness, smoothness, feel, fillability, as well as toughness, hardness, abrasion resistance, and weather resistance. This provides industrial advantages.

本発明は上記目的を達成するために次の如き構
成を有するものである。すなわち、本発明の要旨
とするところは、平均重合度30未満、又は還元粘
度0.25未満のポリエステル樹脂を加熱溶融し、該
溶融原料樹脂を高速加圧気体の進行方向に対して
30゜以上の入射接触角θで該気体に衝突・合流さ
せ、ノズルから噴射せしめ、得られた最大粒径が
100ミクロンを超えない真球状微粉体を減圧下、
又は加熱不活性雰囲気下において固相重合させる
ことを特徴とする真球状ポリエステル樹脂微粉体
の製造方法にある。
In order to achieve the above object, the present invention has the following configuration. That is, the gist of the present invention is to heat and melt a polyester resin having an average degree of polymerization of less than 30 or a reduced viscosity of less than 0.25, and to direct the molten raw material resin in the direction of movement of high-speed pressurized gas.
The gas is collided and merged with the incident contact angle θ of 30° or more, and is injected from the nozzle, and the maximum particle size obtained is
True spherical fine powder not exceeding 100 microns is produced under reduced pressure.
Alternatively, there is provided a method for producing a truly spherical polyester resin fine powder, which is characterized by carrying out solid phase polymerization in a heated inert atmosphere.

本発明でいう真球状微粉体とは、第1図に示す
ように光学的拡大顕微鏡による観察において、な
めらかな円形表面を有する球状体が実質的にその
個数割合の90%以上を占めるものをいい、球状体
とは一粒子の投影像に外接する最大円の直径(φ
mm)を、該粒子の投影像に外接する最小円の直径
(φmin)で除した値が次式(1)で示される関係にあ
るものをいう。
The term "true spherical fine powder" as used in the present invention refers to one in which spherical bodies having a smooth circular surface substantially account for 90% or more of the number of particles when observed using an optical magnifying microscope, as shown in Figure 1. , a spherical body is the diameter of the maximum circle circumscribing the projected image of one particle (φ
mm) divided by the diameter (φmin) of the smallest circle circumscribing the projected image of the particle, which satisfies the relationship expressed by the following equation (1).

φmm/φmin≦1.5 (1) 球状体粒子は以上の外観形状を有するものであ
るが、その内部に例えば空気、窒素、二酸化炭素
などの気体を気泡として一個以上含有したいわゆ
る中空球体であつてもよく、又気泡の形状、大き
さに特に限定を設けるものではない。更にこの気
泡中空体の全球状体粒子に対する含有割合も特に
限定されるものではない。
φmm/φmin≦1.5 (1) Spherical particles have the above external shape, but even if they are so-called hollow spheres that contain one or more gas bubbles such as air, nitrogen, or carbon dioxide inside. In addition, there are no particular limitations on the shape and size of the bubbles. Further, the content ratio of the hollow cells to the total spherical particles is not particularly limited.

又、本発明でいう入射接触角とは、例えば第6
図のノズルの構造において、溶融原料樹脂吹出し
孔11の中心線と高速加圧気体吹込み通路8の中
心線とがノズル中心部10に於て角度θで互いに
交わるような二流体の接触角をいう。
Furthermore, the incident contact angle in the present invention is, for example, the sixth contact angle.
In the structure of the nozzle shown in the figure, the contact angle between the two fluids is such that the center line of the molten raw resin blowing hole 11 and the center line of the high-speed pressurized gas blowing passage 8 intersect with each other at an angle θ at the nozzle center 10. say.

又、本発明でいう還元粘度とは、フエノール60
重量部とテトラクロルエタン40重量部の混合溶媒
100ml中に試料1gを溶解して35℃で測定した値
を、オルソクロルフエノールでの測定値に換算し
たものである。
In addition, the reduced viscosity in the present invention refers to phenol 60
Mixed solvent of 40 parts by weight and 40 parts by weight of tetrachloroethane
The value measured by dissolving 1 g of sample in 100 ml at 35°C is converted into the value measured with orthochlorophenol.

本発明の製造方法においては先ず、ノズルによ
る噴射性の良好な所定の重合度を有する原料ポリ
エステル樹脂を得る必要があるが、本発明者らの
研究によればこの条件を満足する重合度範囲は繰
返し単位による平均重合度が30未満、前記定義に
よる還元粘度が0.25未満であることを確認した。
In the production method of the present invention, it is first necessary to obtain a raw material polyester resin having a predetermined degree of polymerization that can be jetted easily by a nozzle, but according to research by the present inventors, the range of degree of polymerization that satisfies this condition is It was confirmed that the average degree of polymerization due to repeating units was less than 30 and the reduced viscosity as defined above was less than 0.25.

原料ポリエステル樹脂の平均重合度が30以上、
環元認度が0.25以上では溶融粘度が50〜100ポイ
ズ以上と比較的大きくなるのでノズルより噴射さ
れた該ポリエステル樹脂が第2図に示すように微
細な繊維形状となり本発明の目的・効果を達成す
ることができない。
The average degree of polymerization of the raw material polyester resin is 30 or more,
When the ring identity is 0.25 or more, the melt viscosity becomes relatively high, 50 to 100 poise or more, so that the polyester resin sprayed from the nozzle becomes fine fibers as shown in Figure 2, and the objects and effects of the present invention are achieved. cannot be achieved.

次いで上記のような条件のもとに得られた原料
ポリエステル樹脂を加熱溶融し、高速加圧気体と
共にノズルから噴射せしめる。
Next, the raw polyester resin obtained under the above conditions is heated and melted, and is injected from a nozzle together with high-speed pressurized gas.

ここでノズルからの噴射に際しては、該溶融原
料樹脂と該高速加圧気体とをこのうちの一流体の
進行方向に対して30゜以上の入射接触角θで衝
突・合流させることが必要で、この条件で噴射さ
せることにより第1図に示すような最大粒径が
100ミクロンを越えない真球状微粉体を、原料に
対し80重量%以上の割合で得ることができる。
Here, when injecting from the nozzle, it is necessary that the molten raw material resin and the high-speed pressurized gas collide and merge at an incident contact angle θ of 30° or more with respect to the traveling direction of one of the fluids, By injecting under these conditions, the maximum particle size as shown in Figure 1 can be achieved.
True spherical fine powder of no more than 100 microns can be obtained at a ratio of 80% or more by weight based on the raw material.

又入射接触角θが90゜以上の場合でも、真球状
微粉末化が後述するように溶融原料と高速加圧気
体との衝突による衝撃エネルギーに起因するとい
う意味では当然成立する。
Furthermore, even when the incident contact angle θ is 90° or more, it naturally holds true in the sense that the formation of a truly spherical powder is caused by the impact energy caused by the collision between the molten raw material and the high-speed pressurized gas, as described later.

しかし入射接触角θが30゜以下の場合には、溶
融原料と高速加圧気体との衝突による衝撃エネル
ギーが不足し第3図に示すような太さの不均一な
繊維状又は不均一形態の粒子状となり目的とする
真球状微粉体を得ることはできない。
However, when the incident contact angle θ is less than 30°, the impact energy due to the collision between the molten raw material and the high-speed pressurized gas is insufficient, resulting in the formation of fibers with non-uniform thickness or non-uniform morphology as shown in Figure 3. The resulting powder becomes particulate, making it impossible to obtain the desired true spherical fine powder.

本発明方法は、原料ポリエステル樹脂を高速加
圧気体と共に上記条件でノズルから噴射せしめ、
第1図に示すような真球状ポリエステル樹脂微粉
体を容易に得るところに特徴がある。
The method of the present invention involves injecting raw material polyester resin from a nozzle together with high-speed pressurized gas under the above conditions,
The feature is that it is easy to obtain true spherical polyester resin fine powder as shown in FIG.

本発明において、真球状微粉体を製造する装置
は例えば第5図に示すようなものである。
In the present invention, an apparatus for producing true spherical fine powder is shown in FIG. 5, for example.

平均重合度30未満、還元粘度0.25未満の原料ポ
リエステル樹脂は、第5図に示される加熱貯槽1
に連続的に、又は間欠的に投入され、該原料樹脂
の融点よりも10〜110℃高い温度範囲で窒素ガス
などの不活性気体の存在下に加熱され溶融保持さ
れる。この溶融原料樹脂は、加熱保温された導管
2を通り、加熱保温された計量ギヤポンプ3によ
り定量的にスプレイノズル5に送り込まれる。
Raw material polyester resin with an average degree of polymerization of less than 30 and a reduced viscosity of less than 0.25 is stored in heating storage tank 1 shown in Figure 5.
continuously or intermittently, and heated in the presence of an inert gas such as nitrogen gas at a temperature range of 10 to 110° C. higher than the melting point of the raw material resin to maintain its melting state. This molten raw material resin passes through a conduit 2 that is heated and kept warm, and is quantitatively fed into a spray nozzle 5 by a metering gear pump 3 that is heated and kept warm.

ここで該原料ポリエステル樹脂の溶融温度がそ
の融点以上10℃以下の場合、導管及びノズルの一
部に原料樹脂が固着し詰りを生じる場合があるの
で好ましくない。又、該原料樹脂の融点より110
℃以上高い温度で溶融した場合、原料樹脂の分解
が激しくなり製品が著しく着色しているのでこの
温度条件を採用することも適当でない。
If the melting temperature of the raw polyester resin is higher than its melting point and lower than 10°C, it is not preferable because the raw resin may stick to a part of the conduit and nozzle, causing clogging. Also, 110% lower than the melting point of the raw material resin.
If the resin is melted at a temperature higher than 0.degree. C., the raw resin will decompose rapidly and the product will be markedly colored, so it is not appropriate to use this temperature condition.

ギヤポンプ3により定量的に送り出された加熱
溶融原料樹脂は、加熱保温されたスプレーノズル
5内で、ガス吹き込み管4より導かれた高速加圧
気体と衝突し、その衝撃エネルギーによつて変形
が生じ不安定となり該溶融樹脂表面から分裂が始
まり、分裂した溶融樹脂は引き続き気体流との衝
突を繰り返しながら微粒化し、かつ該溶融樹脂自
体の表面張力作用により真球状化しながら中間槽
6に導かれる。
The heated molten raw material resin quantitatively sent out by the gear pump 3 collides with the high-speed pressurized gas guided from the gas blowing pipe 4 in the heated and heat-retained spray nozzle 5, and the impact energy causes deformation. The molten resin becomes unstable and begins to split from the surface of the molten resin, and the split molten resin continues to repeatedly collide with the gas flow to become atomized particles, and is guided to the intermediate tank 6 while becoming spherical due to the action of the surface tension of the molten resin itself.

ここで使用されるスプレーノズルは、例えば第
6図に示すような構造を持つものである。
The spray nozzle used here has a structure as shown in FIG. 6, for example.

本体外殻7の内部中心を、高速加圧気体吹込み
通路8が水平に通り、その円周辺に溶融原料樹脂
通路9が配置されている。高速加圧気体、及び溶
融原料樹脂は、各々の通路を通り本体先端に設け
られたノズル10で合流し、高速加圧気体の運動
エネルギーにより連続的に吹き出される。
A high-speed pressurized gas blowing passage 8 passes horizontally through the interior center of the main body outer shell 7, and a molten raw resin passage 9 is arranged around the circle. The high-speed pressurized gas and the molten raw material resin pass through each passage, merge at a nozzle 10 provided at the tip of the main body, and are continuously blown out by the kinetic energy of the high-speed pressurized gas.

このノズルの構造において、溶融原料樹脂吹出
し孔11の中心線と高速加圧気体吹込み通路8の
中心線とがノズル中心部10に於て交わる角度θ
は溶融原料樹脂を効率的に真球状微粉化するとい
う面から次式(2)の関係にあることが必要である。
又、溶融原料樹脂吹出し孔11の内径をd1、気体
吹込み通路8の内径をd2、ノズル中心部内径を
d3、ノズル出口部内径をd4、ノズル入口テーパー
部長さをl1、ノズル中心直管部長さをl2、ノズル
出口テーパー部長さをl3とした場合d1、d2、d3
d4、及びl1、l2、l3との間には式(3)〜(7)の関係が
成立することが望ましい。
In this nozzle structure, the angle θ where the center line of the molten raw resin blowing hole 11 and the center line of the high-speed pressurized gas blowing passage 8 intersect at the nozzle center 10
In order to efficiently turn the molten raw resin into a truly spherical powder, it is necessary that the relationship expressed by the following formula (2) be satisfied.
In addition, the inner diameter of the molten raw resin blowing hole 11 is d 1 , the inner diameter of the gas blowing passage 8 is d 2 , and the inner diameter of the nozzle center is
d 3 , the inner diameter of the nozzle outlet is d 4 , the length of the nozzle inlet taper is l 1 , the length of the nozzle center straight pipe is l 2 , and the length of the nozzle outlet taper is l 3 d 1 , d 2 , d 3 ,
It is desirable that the relationships of formulas (3) to (7) hold between d 4 and l 1 , l 2 , and l 3 .

(単位mm) θ≧30゜ (2) d3≧1.5d1 (3) 0.5(d4−d3)<l3<8.3(d4−d3) (4) 0.4(d2−d3)<l1<3.3(d2−d3) (5) 0.25d3<l2<3.0d3 (6) 0.5d3<l3<8.3d3 (7) 原料ポリエステル樹脂に衝撃エネルギーを与え
る重要な作用をもつ高速加圧気体には、常温、又
は加熱された空気、窒素、二酸化炭素などを使用
すればよい。ここでノズルに吹き込まれる気体の
圧力は少なくとも0.5Kg/cm2.Gであることが望
ましい。気体圧力が0.5Kg/cm2.G以下の場合、
気体のもつ運動エネルギーが小さくなるので原料
樹脂に与える衝撃エネルギーが不足し、太さの不
均一なランダム繊維状、又は不均一形態の粒子状
構造物が著しく増加し、目的とする形状、粒径の
真球状微粉体を得ることはできない。
(Unit: mm) θ≧30゜ (2) d 3 ≧1.5d 1 (3) 0.5 (d 4 − d 3 ) < l 38.3 (d 4 − d 3 ) ( 4 ) 0.4 (d 2 − d 3 ) < l 1 < 3.3 (d 2 - d 3 ) (5) 0.25d 3 < l 2 < 3.0d 3 (6) 0.5d 3 < l 3 < 8.3d 3 (7) Applying impact energy to the raw polyester resin As the high-speed pressurized gas that has an important effect, room temperature or heated air, nitrogen, carbon dioxide, etc. may be used. The pressure of the gas blown into the nozzle here is at least 0.5Kg/cm 2 . G is desirable. Gas pressure is 0.5Kg/cm 2 . If it is less than G,
As the kinetic energy of the gas decreases, the impact energy given to the raw resin becomes insufficient, and the number of random fibers with uneven thickness or particulate structures with uneven shapes increases significantly. It is not possible to obtain a truly spherical fine powder.

以上のようにして得られたポリエステル樹脂は
平均重合度30未満、又は還元粘度0.25未満であ
り、かつ、その最大粒径が100ミクロンを越えな
い真球状微粉体を使用原料に対して80重量%以上
の割合で含有するものである。20重量%以下の微
細不均一構造物を除去した100ミクロンを越えな
い真球状微粉体は前記した用途、例えば潤滑剤、
滑り材、化粧品への添加剤、多孔性高分子材料な
どとして使用する場合、その平滑性、なめらか
さ、感触性、充填性などの要求を十分に満足する
ものである。しかし前記用途においては強靭性、
かたさ、耐候性、耐摩耗性なども要求されること
は当然である。
The polyester resin obtained as described above has an average degree of polymerization of less than 30, or a reduced viscosity of less than 0.25, and contains 80% by weight of true spherical fine powder with a maximum particle size not exceeding 100 microns based on the raw materials used. It is contained in the above ratio. The true spherical fine powder not exceeding 100 microns from which 20% by weight or less of fine heterogeneous structures have been removed can be used for the above-mentioned purposes, such as lubricants,
When used as a slipping material, an additive to cosmetics, a porous polymer material, etc., it fully satisfies the requirements for smoothness, smoothness, feel, fillability, etc. However, in the above applications, toughness,
Naturally, hardness, weather resistance, abrasion resistance, etc. are also required.

従つて、本発明の真球状樹脂微粉体は要求され
る強靭性、硬さ、耐候性、耐摩耗性などの諸物性
を有するに至るまで、即ち平均重合度4以上、又
は還元粘度0.1以上となるまで固相重合法によつ
て重合される。
Therefore, the true spherical resin fine powder of the present invention has to have various physical properties such as toughness, hardness, weather resistance, abrasion resistance, etc., that is, an average degree of polymerization of 4 or more, or a reduced viscosity of 0.1 or more. It is polymerized by solid phase polymerization until it becomes .

固相重合方法としては通常の公知の方法でよ
く、例えば5mmHg以下の減圧下、又は加熱不活
性気体の雰囲気下、該樹脂の融点よりも5〜100
℃低い範囲の温度で固相重合される。このときの
反応時間には特に限定はなく、要求される粉末最
終製品の物性によつて適当に調整される。又、平
均重合度4〜30、又は還元粘度0.1〜0.25の範囲
を最終製品の物性とする場合は、上記のような固
相重合操作を実施する必要のないことは明らかで
ある。
The solid phase polymerization method may be any conventional known method, for example, under a reduced pressure of 5 mmHg or less, or under a heated inert gas atmosphere, at a temperature of 5 to 100 mm below the melting point of the resin.
Solid state polymerization is carried out at temperatures in the low range of °C. The reaction time at this time is not particularly limited and can be appropriately adjusted depending on the required physical properties of the final powder product. Furthermore, if the physical properties of the final product are to have an average degree of polymerization of 4 to 30 or a reduced viscosity of 0.1 to 0.25, it is clear that it is not necessary to carry out the solid phase polymerization operation as described above.

このようにして得られた最終製品は、平均重合
度4以上、又は還元粘度0.1以上のポリエステル
樹脂から成り、最大粒径が100ミクロンを越えな
い真球状樹脂微粉体であり、平滑性、なめらか
さ、感触性、充填性、更には強靭性、かたさ、耐
候性、耐摩耗性などの諸物性に優れたものであ
る。
The final product obtained in this way is made of polyester resin with an average degree of polymerization of 4 or more or a reduced viscosity of 0.1 or more, and is a true spherical resin fine powder with a maximum particle size not exceeding 100 microns, and has smoothness and smoothness. It has excellent physical properties such as tactility, fillability, toughness, hardness, weather resistance, and abrasion resistance.

本発明におけるポリエステル樹脂とは、二塩基
性酸性成分とグリコール成分より成るポリエステ
ル系重合体全般を意味するが、特に好ましいのは
ポリエチレンテレフタレート樹脂、エチレンテレ
フタレートを主体とする共重合ポリエステル、例
えば繰返し単位の少なくとも60重量%がエチレン
テレフタレート単位から成る共重合ポリエステル
樹脂である。このような共重合ポリエステル樹脂
としては、例えばポリエチレンテレフタレートを
主体とし、これにイソフタル酸、アジピン酸、セ
バシン酸、ナフタリン―2,6―ジカルボン酸、
1,4―シクロヘキサンジカルボン酸、コハク
酸、グルタル酸などのジカルボン酸成分、トリメ
チレングリコール、テトラメチレングリコール、
ジエチレングリコール、シクロヘキサン―1,4
―ジメタノール、ペンタエリスリトール、ポリエ
チレングリコールなどのグリコール成分を共重合
した共重合ポリエチレンテレフタレートなどがあ
る。
The polyester resin in the present invention refers to all polyester polymers consisting of a dibasic acidic component and a glycol component, but particularly preferred are polyethylene terephthalate resins, copolyesters mainly composed of ethylene terephthalate, etc. A copolyester resin comprising at least 60% by weight of ethylene terephthalate units. Such copolymerized polyester resins include, for example, polyethylene terephthalate as a main component, and isophthalic acid, adipic acid, sebacic acid, naphthalene-2,6-dicarboxylic acid,
Dicarboxylic acid components such as 1,4-cyclohexanedicarboxylic acid, succinic acid, and glutaric acid, trimethylene glycol, tetramethylene glycol,
Diethylene glycol, cyclohexane-1,4
- Examples include copolymerized polyethylene terephthalate, which is a copolymerization of glycol components such as dimethanol, pentaerythritol, and polyethylene glycol.

原料ポリエステル樹脂は従来公知のバツチ法又
は連続重合法により製造することができ、慣用さ
れている重縮合触媒、安定剤、酸化チタン、顔料
などをあらかじめ添加された状態で用いられる。
The raw material polyester resin can be produced by a conventionally known batch method or continuous polymerization method, and is used in a state in which commonly used polycondensation catalysts, stabilizers, titanium oxide, pigments, etc. are added in advance.

本発明における溶融原料ポリエステル樹脂の噴
射には、該溶融原料樹脂を高速加圧気体の進行方
向に対して30゜以上の入射接触角θで衝突させそ
の衝撃エネルギーにより分裂・微粒化を起こさし
める構造であればよく前記に例示したスプレーノ
ズルに特に限定するものではない。
In the injection of the molten raw material polyester resin in the present invention, the molten raw material resin is collided with the traveling direction of the high-speed pressurized gas at an incident contact angle θ of 30° or more, and the impact energy causes splitting and atomization. The spray nozzle is not particularly limited to the spray nozzle exemplified above.

又、噴射後の原料樹脂微粒子は同時に噴射され
る気体により徐冷されながら樹脂自体の表面張力
作用により真球状化されるが、冷却の条件として
は特に気体徐冷に限定されるものではなく、例え
ば水などの液体スプレーによつてもよい。
In addition, the raw resin fine particles after being injected are slowly cooled by the gas injected at the same time and are made into true spheres by the surface tension effect of the resin itself, but the cooling conditions are not particularly limited to slow gas cooling. For example, a liquid spray such as water may be used.

このようにして、平均重合度が30未満、又は還
元粘度が0.25未満のポリエステル樹脂を加熱溶融
し、該溶融原料樹脂を高速加圧気体の進行方向に
対して30゜以上の入射接触角θで該気体に衝突・
合流させ、ノズルから噴射せしめ、最大粒径が
100ミクロンを越えない真球状微粉体が得られる
ので、これを減圧下、又は加熱不活性雰囲気下に
於て固相重合することにより得られた真球状ポリ
エステル樹脂微粉体は、平均重合度が4以上、又
は還元粘度が0.1以上であり、その最大粒径が100
ミクロン以下の物性を有するもので、例えば潤滑
剤、滑り材、化粧品への添加剤、多孔性高分子材
料などの産業・生活関連用資材として非常に広範
な用途に適するものである。
In this way, a polyester resin with an average degree of polymerization of less than 30 or a reduced viscosity of less than 0.25 is heated and melted, and the molten raw material resin is heated at an incident contact angle θ of 30° or more with respect to the direction of movement of the high-speed pressurized gas. Collision with the gas
The particles are merged and injected from the nozzle until the maximum particle size is
Since a true spherical fine powder not exceeding 100 microns can be obtained, the true spherical fine polyester resin powder obtained by solid-phase polymerization under reduced pressure or under heating in an inert atmosphere has an average degree of polymerization of 4. or more, or the reduced viscosity is 0.1 or more, and the maximum particle size is 100
It has physical properties on the order of microns or less, and is suitable for a very wide range of uses, such as lubricants, slipping materials, additives for cosmetics, porous polymer materials, and other industrial and lifestyle-related materials.

次に実施例により本発明をさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 ジメチルテレフタル酸100重量部、エチレング
リコール68重量部、酢酸マンガン0.05重量部を窒
素雰囲気下140〜220℃の温度に加熱し、副生する
メタノルを連続的に径外へ留去しながら2.5時間
のエステル交換反応を行なわせたのち、さらにこ
れにトリメチルホスフエート0.03重量部、二酸化
チタン0.5重量部、三酸化アンチモン0.05重量部
を加えた。次にこのエステル交換生成物の温度を
295℃に昇温し過剰のエチレングリコールを留去
したのち、0.5mmHgの減圧下で0.2時間かきまぜな
がら重縮合反応を行なわせた。
Example 1 100 parts by weight of dimethyl terephthalic acid, 68 parts by weight of ethylene glycol, and 0.05 parts by weight of manganese acetate were heated to a temperature of 140 to 220°C under a nitrogen atmosphere, and methanol as a by-product was continuously distilled off to the outside. After carrying out the transesterification reaction for 2.5 hours, 0.03 parts by weight of trimethyl phosphate, 0.5 parts by weight of titanium dioxide, and 0.05 parts by weight of antimony trioxide were further added thereto. Next, the temperature of this transesterification product is
After raising the temperature to 295°C and distilling off excess ethylene glycol, the polycondensation reaction was carried out under reduced pressure of 0.5 mmHg with stirring for 0.2 hours.

得られた重縮合物は、275℃溶融時12ポイズの
溶融粘度を有するもので窒素雰囲気下に取り出し
徐冷したところ、比較的もろい性状を有する固体
塊となり、前記に定義した還元粘度として0.20、
平均重合度として25の値を示した。
The obtained polycondensate had a melt viscosity of 12 poise when melted at 275°C, and when it was taken out and slowly cooled in a nitrogen atmosphere, it became a solid mass with relatively brittle properties, and the reduced viscosity as defined above was 0.20.
The average degree of polymerization was 25.

このポリエチレンテレフタレート樹脂を第5図
に示した加熱貯槽1に投入し、窒素雰囲気下315
℃の温度に加熱溶融した。この溶融ポリエチレン
テレフタレートを300℃に加熱保温された導管2
及びギヤポンプ3を通し、同じく300℃に加熱保
温されたスプレーノズル5に定量的に移送した。
This polyethylene terephthalate resin was put into the heating storage tank 1 shown in Fig. 5, and the
It was melted by heating to a temperature of ℃. Conduit 2 where this molten polyethylene terephthalate is heated and kept at 300℃
The mixture was quantitatively transferred through a gear pump 3 to a spray nozzle 5 which was also heated and kept at 300°C.

スプレーノズルには予め、5Kg/cm2Gにコント
ロールされた加圧窒素をガス吹込み管4より通し
ておき、上記溶融ポリエチレンテレフタレートと
共に噴射し、中間槽6にて排気、徐冷した。
Pressurized nitrogen controlled at 5 kg/cm 2 G was passed through the spray nozzle from the gas blowing pipe 4 in advance, and the mixture was injected together with the molten polyethylene terephthalate, and the mixture was evacuated and slowly cooled in the intermediate tank 6.

ここで用いたノズルは第6図におけるような構
造を有しており、d1=0.6mmφ、d2=4.5mmφ、d3
=1.5mmφ、d4=2.1mmφ、l1=5.0mm、l2=1.5mm、
l3=2.5mm、θ=90゜であつた。
The nozzle used here has a structure as shown in Fig. 6, with d 1 = 0.6 mmφ, d 2 = 4.5 mmφ, d 3
= 1.5mmφ, d 4 = 2.1mmφ, l 1 = 5.0mm, l 2 = 1.5mm,
l 3 = 2.5 mm, θ = 90°.

かくして得られた噴射物から5.0重量%相当の
微細不均一構造物を除去した結果、還元粘度
0.18、平均重合度23であり、かつ第1図に示すよ
うな形状を有する最大粒径100ミクロン以下平均
粒径40ミクロンの真球状微粉体を得た。
As a result of removing fine heterogeneous structures equivalent to 5.0% by weight from the thus obtained propellant, the reduced viscosity
0.18, an average degree of polymerization of 23, and a shape as shown in FIG. 1, a true spherical fine powder with a maximum particle size of 100 microns or less and an average particle size of 40 microns was obtained.

実施例 2 実施例1で得た真球状ポリエチレンテレフタレ
ート樹脂微粉体を反応槽自体が回転する固相重合
装置に移送し、50mmHgの減圧下140℃で1.0時間
の乾燥を行つたのち、温度を240℃に昇温し、1.0
mmHgの減圧下に10時間の固相重合反応を行つた
ところ、還元粘度0.68、平均重合度105、最大粒
径100ミクロン以下平均粒径40ミクロンの色調・
形状とも良好で且つ耐摩耗性、強靭性などの物性
に優れた真球状ポリエチレンテレフタレート樹脂
微粉体となつた。
Example 2 The true spherical polyethylene terephthalate resin fine powder obtained in Example 1 was transferred to a solid phase polymerization apparatus in which the reaction tank itself rotates, and after drying at 140°C for 1.0 hour under a reduced pressure of 50 mmHg, the temperature was lowered to 240°C. ℃, 1.0
When a solid phase polymerization reaction was carried out for 10 hours under reduced pressure of mmHg, the reduced viscosity was 0.68, the average degree of polymerization was 105, the maximum particle size was 100 microns or less, and the average particle size was 40 microns.
The resulting fine spherical polyethylene terephthalate resin powder had a good shape and excellent physical properties such as abrasion resistance and toughness.

実施例 3 テレフタル酸100重量部、エチレングリコール
45重量部、三酸化アンチモン0.05重量部を第一反
応槽に連続的に供給し、常圧下、260℃において
3.0時間のエステル化重縮合反応を行い副生する
水分を留去したのち、第二反応槽に送り、二酸化
チタン0.5重量部、トリフエニルホスフエート
0.03重量部を添加し200mmHg、275℃で1.5時間の
連続的重縮合反応を行つた。この重縮合物を窒素
雰囲気下に取出し、徐冷し、275℃溶融時粘度7
ポイズ、還元粘度0.14、平均重合度のポリエチレ
ンテレフタレートを得た。
Example 3 100 parts by weight of terephthalic acid, ethylene glycol
45 parts by weight and 0.05 parts by weight of antimony trioxide were continuously supplied to the first reaction tank, and the mixture was heated at 260°C under normal pressure.
After carrying out an esterification polycondensation reaction for 3.0 hours and distilling off the by-product water, it is sent to a second reaction tank where 0.5 parts by weight of titanium dioxide and triphenyl phosphate are added.
0.03 parts by weight was added and a continuous polycondensation reaction was carried out at 200 mmHg and 275°C for 1.5 hours. This polycondensate was taken out under a nitrogen atmosphere, slowly cooled, and had a viscosity of 7 when melted at 275°C.
Polyethylene terephthalate with a reduced viscosity of 0.14 and an average degree of polymerization was obtained.

このポリエチレンテレフタレート樹脂を、実施
例1における樹脂溶融温度を290℃、加圧窒素圧
力を2.5Kg/cm2.Gとした以外は全く同じ方法、
装置でノズル噴射した。
This polyethylene terephthalate resin was heated at a resin melting temperature of 290° C. and a pressurized nitrogen pressure of 2.5 Kg/cm 2 in Example 1. Exactly the same method except for G.
The device sprayed it with a nozzle.

このようにして得られた噴射物から7.5重量%
相当の微細不均一構造物を除去したのち、実施例
2と同じ方法で7時間の固相重合反応を行つたと
ころ、還元粘度0.5、平均重合度80、最大粒径100
ミクロン以下平均粒径50ミクロンの第1図に示す
ような形状を有する真球状ポリエチレンテレフタ
レート樹脂微粉体となつた。
7.5% by weight from the propellant thus obtained
After removing a considerable amount of fine heterogeneous structures, a solid phase polymerization reaction was carried out for 7 hours in the same manner as in Example 2. As a result, the reduced viscosity was 0.5, the average degree of polymerization was 80, and the maximum particle size was 100.
A perfectly spherical polyethylene terephthalate resin fine powder having an average particle diameter of 50 microns or less as shown in FIG. 1 was obtained.

以上実施例1,2,及び3で得られた真球状ポ
リエチレンテレフタレート樹脂微粉体は、平滑
性、なめらかさ、感触性、充填性、更には強靭
性、硬さ、耐候性、耐摩耗性などの諸物性に優れ
ており、潤滑性、滑り材、化粧品への添加剤、多
孔性高分子材料などに有利に使用される条件を満
たしている。
The true spherical polyethylene terephthalate resin fine powders obtained in Examples 1, 2, and 3 have excellent properties such as smoothness, smoothness, feel, fillability, as well as toughness, hardness, weather resistance, and abrasion resistance. It has excellent physical properties and satisfies the conditions for advantageous use in lubricating properties, slipping materials, additives for cosmetics, porous polymer materials, etc.

比較例 1 実施例1と全く同じ条件のもとにエステル交換
反応、及び過剰エチレングリコール留去を行つた
のち、0.5mmHgの減圧下に0.5時間の重縮合反応を
行つた。この重縮合物を窒素雰囲気下に取出し、
徐冷し、280℃溶融時粘度200ポイズ、還元粘度
0.34、平均重合度のポリエチレンテレフタレート
樹脂を得た。
Comparative Example 1 After carrying out the transesterification reaction and distilling off excess ethylene glycol under exactly the same conditions as in Example 1, a polycondensation reaction was carried out for 0.5 hours under reduced pressure of 0.5 mmHg. This polycondensate was taken out under a nitrogen atmosphere,
Slow cooling, viscosity when melted at 280°C: 200 poise, reduced viscosity
A polyethylene terephthalate resin with an average degree of polymerization of 0.34 was obtained.

このポリエチレンテレフタレート樹脂を、実施
例1で行つたと全く同じ方法、装置でノズル噴射
したところ第2図に示すような非常に軽い微細繊
維状物しか得ることができなかつた。
When this polyethylene terephthalate resin was injected through a nozzle using exactly the same method and apparatus as in Example 1, only a very light fine fibrous material as shown in FIG. 2 could be obtained.

更に高速加圧窒素圧力を8Kg/cm2.Gにしてノ
ズル噴射を試みたが微細繊維径が小さくなる以外
は上記と同様の結果となつた。
Furthermore, high-speed pressurized nitrogen pressure was applied to 8Kg/cm 2 . G was used for nozzle injection, but the results were the same as above except that the diameter of the fine fibers became smaller.

比較例 2 実施例1に全く同じ条件のもとにエステル交換
反応、及び過剰エチレングリコール留去を行い、
ただちに窒素雰囲気下に取出し、徐冷し、275℃
溶融時粘度0.3ポイズ、還元粘度0.08、平均重合
度3のポリエチレンテレフタレート塊を得た。
Comparative Example 2 A transesterification reaction and distillation of excess ethylene glycol were carried out under exactly the same conditions as in Example 1,
Immediately take it out under a nitrogen atmosphere and slowly cool it to 275℃.
A polyethylene terephthalate lump having a melting viscosity of 0.3 poise, a reduced viscosity of 0.08, and an average degree of polymerization of 3 was obtained.

このポリエチレンテレフタレートを実施例3と
全く同じ方法でノズル噴射したころ、最大粒径
100ミクロン以下平均粒径40ミクロンの真球状微
粉体となつた。
When this polyethylene terephthalate was injected through a nozzle in exactly the same manner as in Example 3, the maximum particle size was
It became a perfectly spherical fine powder with an average particle size of 40 microns or less than 100 microns.

この真球状微粉体は非常にもろく、わずかの外
力により簡単に破壊された。
This true spherical fine powder was very brittle and easily destroyed by a slight external force.

比較例 3 実施例3の連続的重縮合反応によつて得たポリ
エチレンテレフタレート樹脂を、第5図で示した
装置を使用し、第6図におけるような構造を有し
d1=0.6mmφ、d2=4.5mmφ、d3=1.5mmφ、d4=2.1
mmφ、l1=5.0mm、l2=1.5mm、l3=2.5mm、θ=25゜
の寸法であるノズルを用い、樹脂溶融温度290℃、
加圧窒素圧力2.5Kg/cm2.Gの条件下に噴射した。
Comparative Example 3 The polyethylene terephthalate resin obtained by the continuous polycondensation reaction of Example 3 was prepared using the apparatus shown in Fig. 5 and having the structure shown in Fig. 6.
d 1 = 0.6mmφ, d 2 = 4.5mmφ, d 3 = 1.5mmφ, d 4 = 2.1
Using a nozzle with dimensions of mmφ, l 1 = 5.0 mm, l 2 = 1.5 mm, l 3 = 2.5 mm, and θ = 25°, the resin melting temperature was 290°C,
Pressurized nitrogen pressure 2.5Kg/ cm2 . It was injected under G conditions.

得られた構造物は、第3図に示されるように不
均一形態の繊維、及び粒子状となつた。
The resulting structure was in the form of fibers and particles with a non-uniform morphology, as shown in FIG.

比較例 4 実施例3の連続的重縮合反応によつて得たポリ
エチレンテレフタレート樹脂を、加圧窒素圧力を
0.35Kg/cm2.Gとした以外は実施例3と全く同じ
方法、装置でノズル噴射した。
Comparative Example 4 The polyethylene terephthalate resin obtained by the continuous polycondensation reaction of Example 3 was subjected to pressurized nitrogen pressure.
0.35Kg/ cm2 . Nozzle injection was performed using the same method and apparatus as in Example 3, except that G was used.

噴射を始めると同時にノズル先端のテーパー部
に樹脂固形物が付着し、正常な噴射物の流れを阻
害した。このようにして得られた構造物は太さの
不均一なランダム繊維状と不均一形態の粒子状と
の混合物であり真球状微粉体は得られなかつた。
As soon as injection started, resin solids adhered to the tapered part at the tip of the nozzle, obstructing the normal flow of the injection material. The structure thus obtained was a mixture of random fibers with non-uniform thickness and particles with non-uniform morphology, and no truly spherical fine powder could be obtained.

比較例 5 比較例1の重縮合反応によつて得たポリエチレ
ンテレフタレート樹脂を、予め回転力衝撃型の粉
砕機により8メツシユスクリーン通過まで粗粉砕
したのち、さらにボールミルにより乾式状態で微
粉砕し、篩分級により100ミクロン以下のポリエ
チレンテレフタレート樹脂微粉体とした。
Comparative Example 5 The polyethylene terephthalate resin obtained by the polycondensation reaction of Comparative Example 1 was coarsely pulverized in advance by a rotary impact type pulverizer until it passed through an 8 mesh screen, and then finely pulverized in a dry state by a ball mill. A polyethylene terephthalate resin fine powder of 100 microns or less was obtained by sieve classification.

この粉体の粒子構造は、第4図に示すように多
くの角をもつた破砕状であり、実施例1,2,及
び3で得た真球状微粉体に比べ、平滑性、なめら
かさ、感触性などに欠けるものであつた。
As shown in FIG. 4, the particle structure of this powder is crushed with many corners, and compared to the true spherical fine powder obtained in Examples 1, 2, and 3, it has smoothness, smoothness, and smoothness. It lacked tactility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、及び第3図は、ノズル噴射に
よる微粉体の拡大模写図、第4図は、粉砕状微粉
体の拡大模写図、第5図は、真球状微粉体を製造
するための装置の一例を示す。第6図は、真球状
微粉体を製造するためのノズル断面図の一例を示
す。
Fig. 1, Fig. 2, and Fig. 3 are enlarged schematic diagrams of fine powder by nozzle injection, Fig. 4 is an enlarged schematic diagram of pulverized fine powder, and Fig. 5 is the production of true spherical fine powder. An example of a device for this purpose is shown below. FIG. 6 shows an example of a cross-sectional view of a nozzle for producing true spherical fine powder.

Claims (1)

【特許請求の範囲】 1 平均重合度30未満、又は還元粘度0.25未満の
ポリエステル樹脂を加熱溶融し、該溶融原料樹脂
を高速加圧気体の進行方向に対して30゜以上の入
射接触角θで該気体に衝突・合流させ、ノズルか
ら噴射せしめ、得られた最大粒径が100ミクロン
を越えない真球状微粉体を減圧下、又は加熱不活
性雰囲気下において固相重合させることを特徴と
する真球状ポリエステル樹脂微粉体の製造方法。 2 高速加圧気体が、少なくとも0.5Kg/cm2Gの
圧力でノズルに吹き込まれることを特徴とする特
許請求の範囲第1項に記載の製造方法。 3 原料のポリエステル樹脂がポリエチレンテレ
フタレート樹脂、又はエチレンテレフタレート単
位を主体として共重合ポリエステル樹脂である特
許請求の範囲第1項に記載の製造方法。 4 共重合ポリエステル樹脂が、ポリエチレンテ
レフタレートを主体とし、これにイソフタル酸、
アジピン酸、セバシン酸、ナフタリン―2,6―
ジカルボン酸、1,4―シクロヘキサンジカルボ
ン酸、コハク酸及びグルタール酸の中から選ばれ
た少なくとも1種のジカルボン酸成分と、トリメ
チレングリコール、テトラメチレングリコール、
ジエチレングリコール、シクロヘキサン―1,4
―ジメタノール、ペンタエリスリトール及びポリ
エチレングリコールの中から選ばれた少なくとも
1種のグリコール成分を共重合させたものである
特許請求の範囲第3項に記載の製造方法。
[Claims] 1. A polyester resin having an average degree of polymerization of less than 30 or a reduced viscosity of less than 0.25 is heated and melted, and the molten raw material resin is heated and melted at an incident contact angle θ of 30° or more with respect to the direction of movement of high-speed pressurized gas. A true spherical fine powder having a maximum particle size not exceeding 100 microns is solid-phase polymerized under reduced pressure or under heating in an inert atmosphere. A method for producing spherical polyester resin fine powder. 2. The manufacturing method according to claim 1, wherein the high-speed pressurized gas is blown into the nozzle at a pressure of at least 0.5 Kg/cm 2 G. 3. The manufacturing method according to claim 1, wherein the raw material polyester resin is a polyethylene terephthalate resin or a copolyester resin mainly composed of ethylene terephthalate units. 4 The copolymerized polyester resin is mainly composed of polyethylene terephthalate, and isophthalic acid,
Adipic acid, sebacic acid, naphthalene-2,6-
at least one dicarboxylic acid component selected from dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, succinic acid, and glutaric acid, trimethylene glycol, tetramethylene glycol,
Diethylene glycol, cyclohexane-1,4
- The manufacturing method according to claim 3, wherein at least one glycol component selected from dimethanol, pentaerythritol, and polyethylene glycol is copolymerized.
JP5992180A 1980-05-08 1980-05-08 Fine resin powder and preparation thereof Granted JPS56157431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5992180A JPS56157431A (en) 1980-05-08 1980-05-08 Fine resin powder and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5992180A JPS56157431A (en) 1980-05-08 1980-05-08 Fine resin powder and preparation thereof

Publications (2)

Publication Number Publication Date
JPS56157431A JPS56157431A (en) 1981-12-04
JPH0212975B2 true JPH0212975B2 (en) 1990-04-03

Family

ID=13127075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5992180A Granted JPS56157431A (en) 1980-05-08 1980-05-08 Fine resin powder and preparation thereof

Country Status (1)

Country Link
JP (1) JPS56157431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720927U (en) * 1993-09-28 1995-04-18 ロフテー株式会社 Combination pillow
WO2012128136A1 (en) 2011-03-18 2012-09-27 東レ株式会社 Laminate film and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012579A1 (en) * 2004-03-12 2005-09-29 Bühler AG Process for the preparation of a partially crystalline polycondensate
JP5779902B2 (en) * 2011-02-22 2015-09-16 株式会社リコー Method for producing crystalline polyester resin particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495453A (en) * 1972-05-09 1974-01-18
JPS5182354A (en) * 1975-01-17 1976-07-19 Kuraray Co HORIESUTERUKYUJOFUNTAINOSEIZOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495453A (en) * 1972-05-09 1974-01-18
JPS5182354A (en) * 1975-01-17 1976-07-19 Kuraray Co HORIESUTERUKYUJOFUNTAINOSEIZOHO

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720927U (en) * 1993-09-28 1995-04-18 ロフテー株式会社 Combination pillow
WO2012128136A1 (en) 2011-03-18 2012-09-27 東レ株式会社 Laminate film and method for manufacturing same

Also Published As

Publication number Publication date
JPS56157431A (en) 1981-12-04

Similar Documents

Publication Publication Date Title
US5523382A (en) Branched copolyesters especially suitable for extrusion blow molding
US4132707A (en) Preparation of branched poly(alkylene terephthalates)
CN101448633B (en) Co-polyester packaging resins prepared without solid-state polymerization, a method for processing the co-polyester resins with reduced viscosity change, and containers and other articles prepared by
US4915729A (en) Method of manufacturing metal powders
TWI313276B (en) Spheroidal polyester polymer particles
CA2173988C (en) Solid state polymerisation of polyesters with low diffusion resistance prepolymer pellets
US3544523A (en) Polycondensation of solid polyesters with anticaking agents
US3591659A (en) Polyester-acrylic acid ester polymer thermoplastic moulding compositions
JP2008519883A5 (en)
JPS63289019A (en) Solid phase polymerization of polyester prepolymer
US3629366A (en) Shaped article from a mixture of polyethylene terephthalates of different reduced viscosities
US10450409B2 (en) Polymer powder and method for preparing same
MX2013008402A (en) Fine powder of biosourced aliphatic polyester and production method thereof.
Weidner et al. Manufacture of Powder Coatings by Spraying of Gas‐Enriched Melts
JPH0212975B2 (en)
US6706396B1 (en) Processes for producing very low IV polyester resin
US4849497A (en) Solid state polymerization of porous pills made by compacting polyester prepolymers
JPH06172503A (en) Preparation of polybutylene terephthalate polymer excellent in hydrolytic stability
CN1118170A (en) Resin composition capable of exhibiting high melt viscoelasticity, aromatic polyester resin foam produced therefrom, and process for producing the foam
JP5160063B2 (en) Polyester manufacturing method
JP3617324B2 (en) Polyester and stretch blow molded article comprising the same
JPH08209440A (en) Synthetic resin fibrid and its preparation
US3817929A (en) Polycondensation in droplet and compact liquid phases
JP2005325270A (en) Method for producing polyester
Mys Processing and characterization of Polysulfone to spherical powders for SLS purposes