JPH02129409A - Eccentric and deflection angle coupling - Google Patents

Eccentric and deflection angle coupling

Info

Publication number
JPH02129409A
JPH02129409A JP63279480A JP27948088A JPH02129409A JP H02129409 A JPH02129409 A JP H02129409A JP 63279480 A JP63279480 A JP 63279480A JP 27948088 A JP27948088 A JP 27948088A JP H02129409 A JPH02129409 A JP H02129409A
Authority
JP
Japan
Prior art keywords
plate
shaft side
eccentric
shaft
driven shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63279480A
Other languages
Japanese (ja)
Inventor
Sadatomo Kuribayashi
定友 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Seven Co Ltd
Original Assignee
K Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Seven Co Ltd filed Critical K Seven Co Ltd
Priority to JP63279480A priority Critical patent/JPH02129409A/en
Publication of JPH02129409A publication Critical patent/JPH02129409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a coupling with larger eccentricity and deflection angle by positioning oppositely a drive shaft side grooved plate and a driven shaft side grooves plate, crossing the direction of the multiple grooves of these grooved plates with each other, mounting drive force transmitting tops in the grooves, and positioning an intermediate plate, incorporating the transmitting tops, between the grooved plates. CONSTITUTION:When the center of rotation 2' of a drive shaft is aligned with that 4' of a driven shaft, a turning force is transmitted to tops 20a to 20d through an arm 6, a holder plate 10, and a grooved plate 14, and transmitted further to the driven shaft 4 through a grooved plate 16, holder plate 12, and an arm 8. When the driven shaft 4 is shifted upward by a distance of D, an intermediate plate 18 is shifted upward and rightward by a distance of D/2, respectively. Under this condition, when the drive shaft 2 is rotated by 90 deg. in the direction of A, the intermediate plate 18 is shifted leftward by a distance of D; when it is rotated by 90 deg. further in the direction of A, the intermediate plate 18 is returned back to the original position. These steps are repeated and the shafts can be rotated in good condition. Also, when the shafts 2 and 4 are deviated with each other, they can be rotated in good condition by means of a hook type universal coupling.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は偏心偏角軸継手に関し、特に大きな偏心及び大
きな偏角の双方が可能な偏心偏角軸継手に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eccentric eccentric shaft joint, and particularly to an eccentric eccentric shaft joint capable of both large eccentricity and large eccentric angle.

[従来の技術及び発明が解決しようとする課題]各種回
転力伝達機構において2つの軸の端部どうしが継手によ
り接続される。この接続では、双方の軸が回−の回転中
心を有する場合であっても、種々の原因で原動軸側と従
動軸側とで軸偏心即ち回転中心間の平行ずれや軸偏角即
ち回転中心のなす角が生ずることがあり、これに有効に
対処できる継手が用いられる。偏心に対処するためには
オルダム式継手やシュミット式継手等が有効であり、偏
角に対処するためにはフック式継手等が有効である。
[Prior Art and Problems to be Solved by the Invention] In various rotational force transmission mechanisms, the ends of two shafts are connected to each other by a joint. In this connection, even if both axes have a rotation center, due to various reasons, shaft eccentricity, that is, a misalignment between the rotation centers, or shaft eccentricity, that is, a misalignment between the rotation centers, may occur on the driving shaft side and the driven shaft side. Angles may occur, and joints that can effectively deal with these angles are used. Oldham type joints, Schmidt type joints, etc. are effective for dealing with eccentricity, and hook type joints, etc. are effective for dealing with declination.

しかして、用途によっては、偏心及び偏角の双方に対し
対処できる偏心偏角軸継手が要求される場合がある。こ
の様な偏心偏角軸継手として可撓性部材を用いたたわみ
軸継手が利用される。
Therefore, depending on the application, an eccentric eccentric shaft joint that can deal with both eccentricity and eccentric angle may be required. A flexible shaft joint using a flexible member is used as such an eccentric shaft joint.

しかしながら、たわみ軸継手はかなりの偏角まで駆動力
の伝達が可能であるが、大きな偏心延に対応するために
は可撓性部材の柔軟性をかなり増加させる必要があるの
で良好な駆動力伝達が困難になるという難点がある。
However, although flexible shaft joints are capable of transmitting driving force up to a considerable deviation angle, the flexibility of the flexible member must be considerably increased in order to accommodate large eccentric extensions, so good driving force transmission is not possible. The problem is that it becomes difficult.

かくして、突来の駆動力伝達の良好な偏心偏角軸継手は
偏心rio、i〜0.5mm程度且つ偏角4% 1〜3
度程度が限度であった。
Thus, an eccentric eccentric shaft joint with good transmission of driving force has an eccentricity rio, i of about 0.5 mm, and an eccentric angle of 4% 1 to 3.
degree was the limit.

そこで、本発明は、上記従来技術に鑑み、軸偏心及び軸
偏角の双方が大きくても良好な駆動力伝達ができる偏心
偏角軸継手を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide an eccentric eccentric shaft joint that can transmit good driving force even when both the shaft eccentricity and the shaft declination are large.

[課題を解決するための手段] 本発明によれば、上記の如き目的は、 偏角軸継手の原動軸側と従動軸側との接続部分に偏心軸
j1トを介在させてなり、該偏心軸継手において、原動
軸側溝板と従動軸側溝板とを対向配置し、これら溝板の
対向面にはそれぞれ複数の溝が形成されており、ここで
原動軸側溝板の6溝の方向はこれに対応する従動軸側溝
板の溝の方向を横νjる方向であり、上記原動軸側溝板
の6溝とこれに対応する従動軸側溝板の溝との間には駆
動力伝達駒が配置されており、更に上記原動軸側溝板と
従動軸側溝板との間には上記駆動力伝達駒を収容する貫
通孔を有し全駆動力伝達駒の相対的配置を設定保持する
ための中間板が配置されていることを特徴とする、偏心
偏角軸継手、 により達成される。
[Means for Solving the Problems] According to the present invention, the above-mentioned object is achieved by interposing an eccentric shaft in the connecting portion between the driving shaft side and the driven shaft side of the eccentric shaft joint, and In a shaft coupling, a driving shaft side groove plate and a driven shaft side groove plate are arranged facing each other, and a plurality of grooves are formed on the opposing surfaces of these groove plates, respectively, and the directions of the six grooves on the driving shaft side groove plate are as follows. The direction is νj transverse to the direction of the groove of the driven shaft side groove plate corresponding to Further, between the driving shaft side groove plate and the driven shaft side groove plate, an intermediate plate having a through hole for accommodating the driving force transmission piece and for setting and holding the relative arrangement of all the driving force transmission pieces is arranged. This is achieved by an eccentric eccentric shaft joint, characterized in that:

本発明においては、偏角軸継手としてフック式自在軸継
手を用い、その原動軸側アーム及び従動軸側アームに対
し原動軸回転中心方向と直交する方向または従動軸回転
中心方向と直交する方向のまわりに相対的に回動可能に
それぞれ原動軸側溝板及び従動軸側溝板を取付けたもの
とすることができる。
In the present invention, a hook-type universal joint is used as the eccentric shaft joint, and the driving shaft side arm and the driven shaft side arm are rotated in a direction perpendicular to the direction of the rotation center of the driving shaft or in a direction perpendicular to the direction of the rotation center of the driven shaft. A driving shaft side groove plate and a driven shaft side groove plate may be respectively attached so as to be rotatable relative to each other.

また、本発明においては、(12角軸継手としてたわみ
軸継手を用いることができる。
Furthermore, in the present invention, a flexible shaft joint can be used as the dodecagonal shaft joint.

[実施例〕 以下1図面を参照しながら本発明の具体的実施例を説明
する。
[Example] A specific example of the present invention will be described below with reference to one drawing.

第1図は本発明による偏心偏角軸継手の第1の実施例を
示す概略断面図である6 第1図において、2は原動軸であり、2′はその回転中
心である。また、4は従動軸であり、4′はその回転中
心である。これら原動軸2と従動軸4とは互いに一端部
が対向し且つ回転中心2′、4’が合致する様に配置さ
れている。
FIG. 1 is a schematic sectional view showing a first embodiment of an eccentric shaft joint according to the present invention.6 In FIG. 1, 2 is a driving shaft, and 2' is its center of rotation. Further, 4 is a driven shaft, and 4' is its rotation center. The driving shaft 2 and the driven shaft 4 are arranged such that one end thereof faces each other and their rotation centers 2' and 4' coincide with each other.

原動軸2の端部、にはその回転中心2′に関し対称的に
1対のアーム6が固設されており、同様に従動軸4の端
部にはその回転中心4′に関し対称的に1対のアーム8
が固設されている。Hg動軸側のアーム6には[動軸回
転中心2′に対し直交するX方向のまわりに回転自在に
保持板10の両端が取付けられており、同様に従動軸側
のアーム8には従動軸回転中心4′及び上記X方向に対
し直交するY方向のまわりに回転自在に保持板12の両
端が取付けられている。そして、上記原動軸側保持板l
Oには溝板14がネジ止めにより固定されており、同様
に1記従動軸側保持板12には溝板16がネジ止めによ
り固定されており、これら2つの溝板14,1Bの間に
は中間板18が配置されている。上記溝板14,16及
び中間板18はいずれも平行平板でありX−Y面内に配
置されている。
A pair of arms 6 are fixed to the end of the driving shaft 2 symmetrically about the rotation center 2', and similarly, a pair of arms 6 are fixed to the end of the driven shaft 4 symmetrically about the rotation center 4'. Twin arm 8
is permanently installed. Both ends of a holding plate 10 are attached to the arm 6 on the Hg driving shaft side so as to be rotatable around the X direction perpendicular to the driving shaft rotation center 2', and similarly, the arm 8 on the driven shaft side Both ends of the holding plate 12 are attached so as to be rotatable around the shaft rotation center 4' and the Y direction perpendicular to the X direction. And the above-mentioned driving shaft side holding plate l
A groove plate 14 is fixed to O by screws, and similarly, a groove plate 16 is fixed to driven shaft side retaining plate 12 by screws, and between these two groove plates 14 and 1B. An intermediate plate 18 is arranged. The groove plates 14, 16 and the intermediate plate 18 are both parallel flat plates and are arranged in the X-Y plane.

上記保持板10,12.lJ板14.1B、及び中間板
18の中央には貫通孔が設けられており、これらを貫通
して原動軸側と従動軸側とを連結するポルト−ナツト2
2が配置されている。尚、24はスライド板であり、2
6はIl:縮コイル/へネである、これにより、保持板
!、 O、l 2に固定された溝板14,16と中間板
18とは回転中心2′、4′の方向にベネカにより圧接
されている。また、中間板i13の中・I)JT 通孔
径はボルト22の径よりも幾分友さく、従動軸側の保持
板12及び溝板1Gの貢辿孔径はいずれも更に大きい。
The above-mentioned holding plates 10, 12. A through hole is provided in the center of the lJ plate 14.1B and the intermediate plate 18, and a port-nut 2 is inserted through these to connect the driving shaft side and the driven shaft side.
2 is placed. In addition, 24 is a slide plate;
6 is Il: contracted coil/hene, which makes it a retaining plate! , O, l 2 and the intermediate plate 18 are pressed against each other by benders in the direction of the rotation centers 2', 4'. Further, the diameter of the through hole in the intermediate plate i13 is somewhat larger than the diameter of the bolt 22, and the diameter of the through hole in the retaining plate 12 and the groove plate 1G on the driven shaft side are both larger.

従って、これらはボルト22に対しX−Y面内方向に適
宜の範囲内で移動することがで、!る。この際、溝板1
4と中間板i8.該中間板と溝板16、または保持板1
2とスライド板24はそれぞれ摺動することになる。
Therefore, these can be moved within an appropriate range in the X-Y plane direction with respect to the bolt 22! Ru. At this time, groove plate 1
4 and intermediate plate i8. The intermediate plate and the groove plate 16 or the retaining plate 1
2 and the slide plate 24 will each slide.

第2図はL記事1図の偏心偏角軸継手を原動←回転中心
方向に従動軸側から見た概略図であり、第3図はそのm
−ma略部夕)断面図である、第2図において、4分之
れだ’i域のうちの第1の領域(イ)は原動軸側から溝
板14までを示す図であり、第2の領域(ロ)は原動軸
側から中間板18までを示す図であり、第3の領域(/
\)は原動軸側から溝板16末でを示す図であり、第4
の領域(ニ)は原動41j11f11から保持板12ま
でを示す図で1ちる。尚、1−2第1図は第2図のI−
I断面r9−相当する、 第1図及び第2図に示される様に、原動軸側4板14の
中間板側の面にはM動−回転中心2′からY方向に適宜
距HFてられた位置にX方向の2木の溝15 a 、 
5.51yが形成されている、同様に、従動@ # &
111板IGの中間板側の面には従動軸回転中心4′か
らX方向に適宜距#隅てられた位11cY方向の2本の
iA!t15e、15dが形成されrいる。上記溝15
a〜・15dはいずれも断面形状が矩形である。
Figure 2 is a schematic diagram of the eccentric shaft joint in Figure 1 of the L article, viewed from the driven shaft side in the direction of the driving shaft and the center of rotation, and Figure 3 is a
In FIG. 2, which is a cross-sectional view of the 4-minute section, the first region (A) of the 4-minute area is a diagram showing from the driving shaft side to the groove plate 14. The second area (b) is a diagram showing from the driving shaft side to the intermediate plate 18, and the third area (/
\) is a diagram showing the end of the groove plate 16 from the driving shaft side, and the fourth
Area (d) is numbered 1 in the diagram showing the area from the driving force 41j11f11 to the holding plate 12. 1-2 Figure 1 is I- in Figure 2.
As shown in FIGS. 1 and 2, an appropriate distance HF is provided on the surface of the intermediate plate side of the four plates 14 on the drive shaft side in the Y direction from the M drive rotation center 2'. 2 grooves 15a in the X direction at the position shown in FIG.
5.51y is formed, similarly, driven @ # &
On the surface of the intermediate plate side of the 111 plate IG, two iA! t15e and 15d are formed. Said groove 15
All of a to 15d have a rectangular cross-sectional shape.

原vJ忙gR1溝板1/!の溝と従動軸側溝板16の溝
との交差位置には、駆動力伝達駒20a、20b 、2
0e 、20dが双方の溝板の溝内に収容されて配置さ
れている。これら駒は中間板18に直交する方向に回転
対称軸を有する円柱形状であり、それぞれ中間板18に
形成されているW、通孔19&(図示されていない)、
19b、1!3e。
Original vJ busy gR1 groove board 1/! Driving force transmission pieces 20a, 20b, 2 are located at the intersection of the groove of the driven shaft side groove plate 16
0e and 20d are accommodated and arranged in the grooves of both groove plates. These pieces have a cylindrical shape with an axis of rotational symmetry in a direction perpendicular to the intermediate plate 18, and each has a W formed in the intermediate plate 18, a through hole 19 & (not shown),
19b, 1!3e.

19i(を貫通して配置されており、該中間板は全し1
の相対的位置を一定にt持する作用をなす。これにより
、該中間板によるし120a−2ndの相対的位置保持
がない場合には、各駒が原#J軸側溝板14の溝内及び
従動軸fAtIIl板16の溝内でそれぞれ自由に移動
し、そのため原動軸2と従動軸4とが周方向に511 
L相対回転の自由度をもち目、つ該駒が溝から脱落する
おそれもあるが、l二記中間板18により該自由度の発
生を抑v1シ往つ駒脱落を防11−シている。
19i (is disposed through it, and the intermediate plate is entirely 1
The function is to keep the relative position of t constant. As a result, if the intermediate plate does not hold the relative position of the 120a-2nd, each piece can move freely within the groove of the original #J axis side groove plate 14 and the groove of the driven shaft fAtIIl plate 16, respectively. , Therefore, the driving shaft 2 and the driven shaft 4 are 511 in the circumferential direction.
L has a degree of freedom in relative rotation, and there is a risk that the piece may fall off from the groove, but the intermediate plate 18 suppresses the occurrence of this degree of freedom and prevents the piece from falling off. .

次に1本実施例の作用を説IJ1−する、第4図、第5
図及び第6図は本実施例の作用を説明するための溝板1
4と溝&16と中間板1Bとの位置関係を示す模式図で
ある。
Next, the operation of this embodiment will be explained, and Figs. 4 and 5
FIG. 6 shows a groove plate 1 for explaining the operation of this embodiment.
4 is a schematic diagram showing the positional relationship between groove &16 and intermediate plate 1B.

第1図及び第2図の様に原動軸回転中心2′と従動軸回
転中心4′とが合致している場合は、第4図に示される
様に該合致状1hのまま、n動軸2の回転力はアーム6
を介し保持iio及び11*ii4を介して駒20a〜
・20dに伝達され、更に溝板16及び保持板12を介
しアート8を介して従動軸4に伝達される、 第5図はL記事1図及び第2Uf41の状態から従動軸
4を距離りだけl三方へと平行移動させた状態を示す第
4Ff4と同様の模式図である。この状態では、中間板
18は上記第4図の状態に対し上方及び右方へそれぞれ
距1111 (D/2)だけ#勤している。尚、第5図
において、18′は中間板1Bの全貫通孔19a〜・1
9dの配置の対称中心を示す。
When the driving shaft rotation center 2' and the driven shaft rotation center 4' match as shown in FIGS. 1 and 2, the n driving shaft The rotational force of 2 is arm 6
Pieces 20a~ through held iio and 11*ii4
20d, and is further transmitted to the driven shaft 4 through the groove plate 16 and the holding plate 12, and through the art 8. Figure 5 shows the position of the driven shaft 4 by the distance from the state of L article 1 and 2 Uf41. 1 is a schematic diagram similar to the fourth Ff4 showing a state in which it is translated in three directions; FIG. In this state, the intermediate plate 18 has moved upward and to the right by a distance of 1111 (D/2), respectively, compared to the state shown in FIG. 4 above. In addition, in FIG. 5, 18' indicates all the through holes 19a to 1 of the intermediate plate 1B.
9d shows the center of symmetry of the arrangement.

第6図は、第5図の偏心りの状態で原動軸2を矢印A方
向に角度90度回転させた状態を示す図である、この状
態では、中間板18はL記事5図の状態に対し左方へ距
離りだけ移動している。
FIG. 6 is a diagram showing a state in which the driving shaft 2 is rotated by 90 degrees in the direction of arrow A in the eccentric state shown in FIG. 5. In this state, the intermediate plate 18 is in the state shown in FIG. On the other hand, it has moved a distance to the left.

n動軸2を矢印A方向に更に角度90度回転させると、
上記第5図の状態となる。そり、て、以F原動軸2を矢
印A方向に更に回転させると、第5図の状態と第6図の
状態とが繰返し現われ、この様にして原動軸2の回転力
は駒20a〜20dを介して従動84に伝達される。
When the n-moving shaft 2 is further rotated by 90 degrees in the direction of arrow A,
The state shown in FIG. 5 above is reached. When the driving shaft 2 is further rotated in the direction of the arrow A, the state shown in FIG. 5 and the state shown in FIG. The signal is transmitted to the slave 84 via.

J1記の原ijJ軸回転中心2′と従動軸回転中心4′
との距#Dが連続的に変化しても、駒が原動軸側溝板の
溝内及び従動軸側溝板の溝内で移動しつつ回転力伝達は
十分円滑且つ良好に行なわれる。
J1 original ijJ axis rotation center 2' and driven axis rotation center 4'
Even if the distance #D changes continuously, the rotational force is transmitted smoothly and satisfactorily while the pieces move within the grooves of the drive shaft side groove plate and the driven shaft side groove plate.

以上の様に、原動軸2と従動軸4とに偏心が生じた場合
には、該偏心が大きくても保持板14から保持板16ま
での部材により構成される偏心軸継手により良好に対処
できる。
As described above, when eccentricity occurs between the driving shaft 2 and the driven shaft 4, even if the eccentricity is large, it can be effectively dealt with by the eccentric shaft joint made up of the members from the retaining plate 14 to the retaining plate 16. .

次に、原動軸2と従動軸4とに偏角が生じた場合には、
該偏角が大きくても上記偏心軸継手を原動軸側と従動軸
側との接続のための構成部材とするフック式自在軸継手
により良好に対処できる。
Next, if an angle of deviation occurs between the driving shaft 2 and the driven shaft 4,
Even if the deflection angle is large, it can be dealt with favorably by using a hook type universal joint in which the eccentric shaft joint is used as a component for connecting the driving shaft side and the driven shaft side.

更に、原動軸2と従動軸4とに偏心及び偏角の双方が生
じた場合にも良好に対処できる。但し、偏心及び偏角の
双方が生じた場合には結果として原動軸2と従動軸4と
の間隔が変化することになるので1本実施例ではこれに
対処すべく、第1図に示される様に、原動軸2と駆動塚
側の回転軸lとをスプライン3により原動軸回転中心方
向2′に相対的移動可能に接続している。尚、従動軸4
はキー結合により被駆動側の回転軸7に固定されている
。5はキー溝である。
Furthermore, even if both eccentricity and deviation occur between the driving shaft 2 and the driven shaft 4, this can be dealt with favorably. However, if both eccentricity and declination occur, the distance between the driving shaft 2 and the driven shaft 4 will change as a result, so in this embodiment, in order to cope with this, as shown in FIG. Similarly, the driving shaft 2 and the rotating shaft l on the drive mound side are connected by a spline 3 so as to be relatively movable in the driving shaft rotation center direction 2'. In addition, driven shaft 4
is fixed to the rotating shaft 7 on the driven side by key coupling. 5 is a keyway.

第7図は本発明による偏心偏角軸継手の第2の実施例を
示す概略断面図である6本図は上記第1図に対応する部
分を示し、ここで上記第1図におけると同様の部材には
同一の符号が付されている。
FIG. 7 is a schematic cross-sectional view showing a second embodiment of the eccentric shaft joint according to the present invention. The sixth figure shows a portion corresponding to FIG. The members are given the same reference numerals.

本実施例では、原動軸2の端部に板バネ体32が固設さ
れており、同様に従動軸4の端部に板バネ体34が固設
されている。
In this embodiment, a leaf spring body 32 is fixed to the end of the driving shaft 2, and a leaf spring body 34 is similarly fixed to the end of the driven shaft 4.

第8図は板バネ体32の平面形状を示す図である。板バ
ネ体32は原動軸2の端部に固着されるほぼ円形の中央
部32aと該中央部から最初は径方向に次いで円周方向
に延びている4つのアーム部32b、32c、32d、
32eとからなる。
FIG. 8 is a diagram showing the planar shape of the leaf spring body 32. The leaf spring body 32 has a substantially circular center portion 32a fixed to the end of the driving shaft 2, and four arm portions 32b, 32c, 32d extending from the center portion first in the radial direction and then in the circumferential direction.
32e.

これらアーム部は周方向に同一の向きに延びており、同
一の形状及び特性を有し、回転対称に配置されている。
These arms extend in the same direction in the circumferential direction, have the same shape and characteristics, and are arranged rotationally symmetrically.

板バネ体34は上記板バネ体32と同一の形状を有する
The leaf spring body 34 has the same shape as the leaf spring body 32 described above.

原動軸2の端部に対する板バネ体32の取付は状態と従
動軸4に対する板バネ体34の取付は状態とは同一であ
る。即ち、原動軸側の板バネ体32は第8図の矢印Bの
向きに回転する様に原動軸2に取付けられており、これ
に対し従動軸側の板バネ体34は第8図の矢印Cの向き
に回転する様に従動軸4に取付けられている。
The state in which the leaf spring body 32 is attached to the end of the driving shaft 2 is the same as the state in which the leaf spring body 34 is attached to the driven shaft 4. That is, the leaf spring body 32 on the driving shaft side is attached to the driving shaft 2 so as to rotate in the direction of the arrow B in FIG. 8, whereas the leaf spring body 34 on the driven shaft side rotates in the direction of the arrow B in FIG. It is attached to the driven shaft 4 so as to rotate in the direction C.

そして、第7図に示される様に、上記原動軸側板バネ体
32のアーム部の先端が原動軸側溝板14に接合されて
おり、上記従動軸側板バネ体34のアーム部の先端が従
動軸側溝板16に接合されている。この接合の際、板バ
ネ体のアーム部は幾分変形せしめられており、これによ
り溝板14゜16と原動軸2及び従動軸4とにそれぞれ
偏角を生ぜしめることが可tF:とされている。
As shown in FIG. 7, the tip of the arm of the drive shaft side leaf spring body 32 is joined to the drive shaft side groove plate 14, and the tip of the arm of the driven shaft side leaf spring body 34 is connected to the driven shaft. It is joined to the side gutter board 16. At the time of this joining, the arm part of the leaf spring body is deformed to some extent, and thereby it is possible to produce deflection angles between the groove plate 14 and the driving shaft 2 and the driven shaft 4, respectively. ing.

第9図は溝板14の平面形状を示す図である。FIG. 9 is a diagram showing the planar shape of the groove plate 14.

本実施例では、上記第1実施例における溝15a、15
bのかわりに独立した4つの溝15a  、15a  
、15b’、15b″が形成されている。これらの溝は
溝板の両面に貫通しており、第7図にも示される様に、
原動軸2側の面において座ぐり36が設けられている。
In this embodiment, the grooves 15a and 15 in the first embodiment are
Four independent grooves 15a, 15a instead of b
, 15b', 15b'' are formed. These grooves penetrate both sides of the groove plate, and as shown in FIG.
A counterbore 36 is provided on the surface on the driving shaft 2 side.

lI!1板16板上6溝板14と同一・の形状を有する
lI! It has the same shape as the 1 plate 16 plate 6 groove plate 14.

そして、本実施例においては、駆動力伝達駒(20a、
20c)は5IJ10図に示される様に円柱状体の両端
面にフランジ38を有する形状であり、該7ランジが溝
板14,16の6溝の座ぐり36により係止されている
。尚、第10図に示される様に、駒の内部に両側の7ラ
ンジ38を互いに引さ寄せる作用をなす伸張バネ40を
設けておくことができる。
In this embodiment, the driving force transmission pieces (20a,
20c) has a cylindrical body with flanges 38 on both end faces, as shown in FIG. Incidentally, as shown in FIG. 10, an extension spring 40 can be provided inside the bridge, which acts to draw the seven lunges 38 on both sides toward each other.

本実施例では、MgJ軸2の駆動回転力はまず板バネ体
32のアーム部先端に対し引っ張り力を作用させ、該先
端が溝板14から溝板16までの部材により構成される
偏心軸継手に対し引っ張り力を作用させ、該偏心軸継手
が板バネ体34のアーム部先端を引っ張り、これにより
該板バネ体34が回転せしめられ、該回転力が従動軸4
に伝達される。この様に1本実施例では原動軸側のアー
ム部にも従動軸側のアーム部にも引っ張り力を作用させ
ているので、比較的大きな駆動力を円滑に伝達すること
ができる。
In this embodiment, the driving rotational force of the MgJ shaft 2 first applies a tensile force to the tip of the arm portion of the leaf spring body 32, and the tip is an eccentric shaft joint constituted by the members from the groove plate 14 to the groove plate 16. A tensile force is applied to the eccentric shaft joint, which pulls the end of the arm portion of the leaf spring body 34. This causes the leaf spring body 34 to rotate, and the rotational force is applied to the driven shaft 4.
transmitted to. In this way, in this embodiment, a tensile force is applied to both the arm portion on the driving shaft side and the arm portion on the driven shaft side, so that a relatively large driving force can be smoothly transmitted.

また、本実施例においては、扱バネ体32.34は、偏
心発生に対し機能する必要がないので、比較的強度の大
きなものとすることができ、かくして良好に駆動力を伝
達することができる。
Furthermore, in this embodiment, the handling spring bodies 32 and 34 do not need to function against the occurrence of eccentricity, so they can be made relatively strong, and thus the driving force can be transmitted well. .

E発明の効果] 以上の様な本発明の偏心偏角輌耕rは、偏心;を及び偏
角量の双方を同時に大きくとることができ比つ良好な駆
動力伝達がで、!る、
[Effects of the Invention] As described above, the eccentric vehicle according to the present invention can increase both the eccentricity and the amount of deviation at the same time, resulting in better driving force transmission. Ru,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本9.明による偏心偏角@jII[を示す概W
IS断面図であり、第2図は該偏心偏角軸継手を原動軸
回転中心方向に従動軸側から見た概略図であり、第3図
はそのm−mR略郡部分断面図ある。 第4図、第5図及び第6図は本発明による偏心偏角軸継
手の作用を説明するための模式図である。 第7図は本発明による偏心偏角軸継手を示す概略断面図
であり、第8図及び第9図はそれぞれその板バネ体及び
溝板の平面形状を示す図であり、第1O図は駆動力伝達
駒の概略斜視図であるや2:原動軸、     2′:
原動軸回転中心、4:従動軸、    4′:従動軸回
転中心、6.8=アーム、   !0,12:保持板。 14.16:溝板。 15a 〜15d:溝、 18:中間板、 19a 〜19d:貫通孔。 20a−20d:駆動力伝達駒。 12a−12d:球状体、 32 、34 :板バネ体。 第1図 第 図 ^デー 第 図 第 図 第 図
Figure 1 shows book 9. Approximate W showing the eccentric declination angle @jII[ due to brightness
It is an IS sectional view, FIG. 2 is a schematic diagram of the eccentric shaft joint viewed from the driven shaft side in the direction of the rotation center of the driving shaft, and FIG. 3 is a partial sectional view along m-mR thereof. FIG. 4, FIG. 5, and FIG. 6 are schematic diagrams for explaining the operation of the eccentric shaft joint according to the present invention. FIG. 7 is a schematic cross-sectional view showing the eccentric declination shaft joint according to the present invention, FIGS. 8 and 9 are views showing the planar shapes of the leaf spring body and groove plate, respectively, and FIG. FIG. 2 is a schematic perspective view of a force transmission piece; 2: driving shaft; 2':
Driving shaft rotation center, 4: Driven shaft, 4': Driven shaft rotation center, 6.8 = arm, ! 0,12: Holding plate. 14.16: Groove plate. 15a to 15d: groove, 18: intermediate plate, 19a to 19d: through hole. 20a-20d: Driving force transmission piece. 12a-12d: Spherical body, 32, 34: Leaf spring body. Figure 1 Figure ^ Day Figure Figure Figure

Claims (3)

【特許請求の範囲】[Claims] (1)偏角軸継手の原動軸側と従動軸側との接続部分に
偏心軸継手を介在させてなり、該偏心軸継手において、
原動軸側溝板と従動軸側溝板とを対向配置し、これら溝
板の対向面にはそれぞれ複数の溝が形成されており、こ
こで原動軸側溝板の各溝の方向はこれに対応する従動軸
側溝板の溝の方向を横切る方向であり、上記原動軸側溝
板の各溝とこれに対応する従動軸側溝板の溝との間には
駆動力伝達駒が配置されており、更に上記原動軸側溝板
と従動軸側溝板との間には上記駆動力伝達駒を収容する
貫通孔を有し全駆動力伝達駒の相対的配置を設定保持す
るための中間板が配置されていることを特徴とする、偏
心偏角軸継手。
(1) An eccentric shaft joint is interposed between the driving shaft side and the driven shaft side of the eccentric shaft joint, and in the eccentric shaft joint,
A driving shaft side groove plate and a driven shaft side groove plate are arranged facing each other, and a plurality of grooves are formed on the opposing surfaces of these groove plates, and the direction of each groove on the driving shaft side groove plate is determined by the corresponding driven The direction crosses the direction of the groove of the shaft side groove plate, and a driving force transmission piece is arranged between each groove of the driving shaft side groove plate and the corresponding groove of the driven shaft side groove plate. An intermediate plate is disposed between the shaft side groove plate and the driven shaft side groove plate and has a through hole for accommodating the driving force transmission piece and for setting and holding the relative arrangement of all the driving force transmission pieces. An eccentric shaft joint.
(2)偏角軸継手がフック式自在軸継手であり、その原
動軸側アーム及び従動軸側アームに対し原動軸回転中心
方向と直交する方向または従動軸回転中心方向と直交す
る方向のまわりに相対的に回動可能にそれぞれ原動軸側
溝板及び従動軸側溝板が取付けられている、請求項1に
記載の偏心偏角軸継手。
(2) The eccentric shaft joint is a hook type universal joint, and the driving shaft side arm and the driven shaft side arm are rotated in a direction perpendicular to the driving shaft rotation center direction or in a direction perpendicular to the driven shaft rotation center direction. The eccentric eccentric shaft joint according to claim 1, wherein the driving shaft side groove plate and the driven shaft side groove plate are respectively attached so as to be relatively rotatable.
(3)偏角軸継手がたわみ軸継手である、請求項1に記
載の偏心偏角軸継手。
(3) The eccentric eccentric shaft joint according to claim 1, wherein the eccentric shaft joint is a flexible shaft joint.
JP63279480A 1988-11-07 1988-11-07 Eccentric and deflection angle coupling Pending JPH02129409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279480A JPH02129409A (en) 1988-11-07 1988-11-07 Eccentric and deflection angle coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279480A JPH02129409A (en) 1988-11-07 1988-11-07 Eccentric and deflection angle coupling

Publications (1)

Publication Number Publication Date
JPH02129409A true JPH02129409A (en) 1990-05-17

Family

ID=17611634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279480A Pending JPH02129409A (en) 1988-11-07 1988-11-07 Eccentric and deflection angle coupling

Country Status (1)

Country Link
JP (1) JPH02129409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046971A (en) * 2007-08-15 2009-03-05 Wirtgen Gmbh Raking leveller and construction machine
WO2021171641A1 (en) * 2020-02-26 2021-09-02 三菱重工エンジン&ターボチャージャ株式会社 Shaft coupling device and torsion natural frequency adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046971A (en) * 2007-08-15 2009-03-05 Wirtgen Gmbh Raking leveller and construction machine
WO2021171641A1 (en) * 2020-02-26 2021-09-02 三菱重工エンジン&ターボチャージャ株式会社 Shaft coupling device and torsion natural frequency adjustment method

Similar Documents

Publication Publication Date Title
US20170014994A1 (en) Parallel link mechanism and link actuation device
EP0860622A1 (en) A constant velocity joint
JPH02113123A (en) Eccentric shaft coupling
US4321805A (en) Rotary drive flexible coupling
US4498656A (en) Universal mechanical linkage
US5765443A (en) Joint mechanism and robot having the joint mechanism
US3965700A (en) Drive line coupling device with substantially homokinetic features
US4516958A (en) Flexible shaft coupling device
JPH02129409A (en) Eccentric and deflection angle coupling
US3789625A (en) Bisecting plane rotary motion transmission device
JPH02113124A (en) Torque transmission device
JPH02225825A (en) Universal coupling
JPH06221339A (en) Shaft coupling for rotary transmission shaft
JPH04145230A (en) Shaft coupling
JPH02113125A (en) Flexible shaft coupling
JPS5871092A (en) Robot arm
JPH03168417A (en) Flexible shaft coupling
JPH01247825A (en) Constant velocity universal joint
JPH0314914A (en) Flexible shaft coupling
JPH02163518A (en) Flexible coupling
JPH0232491B2 (en)
JPH04125315A (en) Shaft coupling
JPH04366025A (en) Coupling
JPH02271111A (en) Flexible shaft coupling
JPH02159417A (en) Flexible shaft coupling