JPH0212907B2 - - Google Patents

Info

Publication number
JPH0212907B2
JPH0212907B2 JP6861286A JP6861286A JPH0212907B2 JP H0212907 B2 JPH0212907 B2 JP H0212907B2 JP 6861286 A JP6861286 A JP 6861286A JP 6861286 A JP6861286 A JP 6861286A JP H0212907 B2 JPH0212907 B2 JP H0212907B2
Authority
JP
Japan
Prior art keywords
weight
parts
natural glassy
less
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6861286A
Other languages
Japanese (ja)
Other versions
JPS62226872A (en
Inventor
Yasuo Inukai
Hiromi Sakota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6861286A priority Critical patent/JPS62226872A/en
Publication of JPS62226872A publication Critical patent/JPS62226872A/en
Publication of JPH0212907B2 publication Critical patent/JPH0212907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(従来の技術) 従来、無機断熱発泡材としては、ガラス繊維又
は石綿製品が広く一般に使用されているが、これ
らの製品は吸水しやすいために、多湿環境下では
吸湿して熱伝導率が高くなり断熱効果が急激に低
下するという欠点があつた。 又、非吸水性の製品としては、ガラスを発泡さ
せて得られた泡ガラスからなるフオームグラス
(米国ピツツバーグコーニング社製)等があり、
この製品は、多湿環境下でも吸湿することがな
く、従つて熱伝導率も低い。しかし、このうよう
な従来の泡ガラスは、酸化アルミニウム成分の少
ない(5%以下)廃ガラス又はガラスカレツトを
用いるため、温度衝撃で容易に割れ、クラツクが
発生し、又製造時、複雑な形状への成形が難し
く、冷却に長時間を要し、高価である等の欠点が
あるため、極低温用保温材等の特殊な用途にしか
使用できなかつた。 しかして、例えば、特公昭55−40550号公報に
記載の如く、シラス−水ガラス系組成物に高炉滓
を加え焼成して発泡させると共に、微結晶を析出
させることにより、気泡安定化及び製品の強度上
昇を成した結晶化泡ガラスを得ることが提案され
ているが、低比重(0.4以下)の断熱材は得られ
ず、上記泡ガラスの欠点を根本的に解消するもの
ではない。 (本発明が解決しようとする問題点) 本発明は比重が小さく(0.4以下)、しかも独立
気泡率が高く(50%以下)、且つ気泡径が均一で
内部と表面付近の気泡径がほぼ同じでああり、し
かして軽量にして断熱性に優れ、且つ製造時複雑
な形状への成形が容易な無機断熱発泡材の製造方
法を提供することを目的としてなされたものであ
る。 (問題点を解決するための手段) 本発明の要旨は、天然ガラス質鉱物100重量部
に、炭化珪素又は/及び窒化珪素0.3乃至5重量
部と、五酸化バナジウム又は/及び酸化第一鉛
0.1乃至5重量部と、水50重量部以下とを添加し
た組成物を、0.1乃至2000Kg/cm2の圧力にて加圧
成形した後、その成形物を天然ガラス質鉱物の焼
成温度に昇温して溶融発泡し、その後冷却するこ
とを特徴とする無機断熱発泡材の製造方法に存す
る。 本発明において使用される天然のガラス質鉱物
としては、例えば、シラス、黒曜石、抗火石等が
挙げられ、平均粒径100μm以下、好ましくは46μ
m以下のものが好適に用いられる。平均粒径
100μmを越えるものを用いた場合は、独立気泡
率の高い発泡材を得にくく、連続気泡が多いもの
になりやすい。 本発明において使用される炭化珪素、窒化珪素
としては、天然ガラス質鉱物の平均粒径未満、純
度が75%以上、残留カーボン5重量%以下のもの
が好適に用いられる。天然ガラス質鉱物の平均粒
径以上のものを用いた場合は、独立気泡率の高い
発泡材が得にくく、連続気泡が多いものになりや
すい。 尚、炭化珪素、窒化珪素は各単独で用いること
もできるし、又両者混合して用いることもでき
る。 又、炭化珪素、窒化珪素は天然ガラス質鉱物
100重量部に対して、0.3乃至5重量部添加する必
要がある。添加量が0.3重量部未満の場合は、比
重の大きなものしか得ることができず、又、5重
量部を越える場合は独立気泡率の高い発泡材が得
られず、連続気泡が多いものになつてしまう。 本発明に使用される五酸化バナジウム、酸化第
一鉛としては、天然ガラス質鉱物の平均粒径未満
の平均粒径を有するものが好適に用いられる。天
然ガラス質鉱物の平均粒径以上のものを用いた場
合には均一な気泡を有する発泡材を得にくい。 尚、五酸化バナジウム、酸化第一鉛は各単独で
用いることもできるし、又両者混合して用いるこ
ともできる。又、五酸化バナジウム、酸化第一鉛
は天然のガラス質鉱物100重量部に対して、0.1乃
至5重量部添加する必要がある。添加量が0.1未
満の場合は、均一な気泡が得られず、5重量部を
越えると独立気泡率の多い発泡材が得られず、連
続気泡が多いものとなつてしまう。 本発明においては、必要に応じて、バインダー
と水が添加される。バインダーと水は後述する加
圧成形の効果を保持させるために用いるものであ
る。バインダーとしては水溶性高分子であるポリ
ビニルアルコール、ポリエチレンオキサイド、又
はセルロース誘導体(メチルセルロース、カルボ
キシメチルセルロース、ヒドロキシセルロース、
又は結晶性セルロース)などが用いられる。バイ
ンダーの添加量は天然ガラス質鉱物100重量部に
対して10重量部以下添加される。水の添加量は天
然ガラス質鉱物100重量部に対して50重量部以下
添加される。バインダーと水の添加量は加圧成形
の圧力により定まり、加圧成形の効果を保持させ
るため加圧力が低い場合は添加量も多くする必要
があり、加圧力が500Kg/cm2に近づくにつれて次
第に少量でよく、500Kg/cm2以上の場合は必ずし
も必要でない。 本発明においては、上記組成分を焼成前に0.1
乃至2000Kg/cm2の圧力にて加圧成形する必要があ
る。この加圧成形工程が、独立気泡率の高い発泡
材を得るための必須の工程であると共に、焼成温
度に昇温するまでの間の、内部ガス圧に対して成
形物組織内にひびやクラツクが発生するのを防
ぐ。 この成形物を電気炉等の焼成炉中にて天然ガラ
ス質鉱物の焼成温度である1000乃至1200℃に昇温
発泡し、その後焼成炉より取り出して、徐冷又は
急冷して目的とする無機断熱発泡材を得る。 本発明においては、(1)主原料が天然ガラス質鉱
物であること、(2)炭化珪素、窒化珪素の添加量が
天然ガラス質鉱物100重量部に対して0.3乃至5重
量部であること、(3)五酸化バナジウム、酸化第一
鉛の添加量が天然ガラス質鉱物100重量部に対し
て0.1乃至5重量部であること、(4)これらを含む
組成物を0.1乃至20Kg/cm2の圧力にて予め加圧成
形することが極めて重要な要件である。 これらの要件を満たした本発明方法を採用する
ことにより、はじめて、比重が0.4以下と小さく、
しかも独立気泡率が50%以上と高く、且つ気泡径
が均一で内部と表面付近の気泡径がほぼ同じであ
る、軽量で断熱性に優れた無機断熱発泡材を製造
することができる。 この事実は次の如き原理に基づくものと考えら
れる。即ち、天然ガラス質鉱物と、炭化珪素又
は/及び窒化珪素と、五酸化バナジウム又は/及
び酸化第一鉛とを混合すると、天然ガラス質鉱物
粒子の周りに多数の炭化珪素又は/及び窒化珪素
の粒子、及び多数の五酸化バナジウム又は/及び
酸化第一鉛の粒子が付着した混合組成物となる。
この状態でこの組成物を0.1乃至2000Kg/cm2の圧
力にて予め加圧成形すると、天然ガラス質鉱物の
粒子間に炭化珪素又は/及び窒化珪素、及び五酸
化バナジウム又は/及び酸化第一鉛の粒子を介在
させた状態で押し詰まつて密接状態となる。この
ような状態で、天然ガラス質鉱物の焼成温度に昇
温すると、五酸化バナジウム又は/及び酸化第一
鉛が天然ガラス質鉱物の溶融状態における表面張
力を低下させ、発泡材である炭化珪素又は/及び
窒化珪素を均一に分散させて天然ガラス質鉱物の
無機質成分が溶融連結する。 次いで、その中で発泡剤が適度に発泡して、比
重が小さく、しかも気泡間がつながることが少な
く、且つ気泡が均一で内面と表面付近の気泡径が
ほぼ同じである独立気泡率の高い発泡材が成形さ
れる。 (実施例) 以下、本発明を実施例により説明する。 実施例 1〜3 天然のガラス質鉱物として、粒径46μm以下を
90%以上含む平均粒径52μmのシラス(化学組成
は二酸化珪素:70.36重量%、酸化アルミニウ
ム:13.16重量%を含む)(鹿児島県吉田産)の乾
燥粉末100重量部に、炭化珪素(BFC:太平洋ラ
ンダム株式会社製)、窒化珪素(TS−7:東洋曹
達株式会社製)、五酸化バナジウム(試薬1級:
半井化学株式会社製)、酸化第一鉛(試薬1級和
光純薬株式会社製)、及び水を、それぞれ、第1
表に示す添加量混合した組成物を得た。これらの
組成物を、それぞれ、油圧プレスを用いて圧力10
Kg/cm2にて3分間加圧後脱型し、寸法直径148mm、
厚さ10mmの円板状の成形物とした。 これらの成形物を、それぞれ、電気炉中に入れ
て昇温速度150℃/hrで1120℃まで昇温し、その
温度で30分間保持して焼成発泡し、その後冷却し
て取り出し、無機断熱発泡材を得た。 これらの無機断熱発泡材について、それぞれ外
観(気泡の均一性)、比重、独立気泡率及び定常
状態と吸水後の熱伝導率を測定して評価したとこ
ろ、何れも気泡径が均一で、比重が0.4以下、独
立気泡率が50%以上で、しかも吸水率が低くて熱
伝導率は吸水後もほとんど変化していなかつた。 尚、無機断熱発泡材の評価方法は次の通りであ
る。 (試験片は全て表皮を除いて作製した) (1) 比重 縦横40mm×40mm、厚さ20mmの試験片を105℃
で24時間乾燥した時の重量(Wg)と容積(V
cm3)を測定し、次式で比重を求めた。 比重(g/cm3)=W/V (2) 独立気泡率 縦横40mm×10mm、厚さ15mmの試験片を、20
℃、RH60%の恒温室でまず容積(Vcm3)を測
定し、次に空気比較式比重計(東芝ベツクマン
製)を用いて容積(Vbcm3)を測定し、次式に
より独立気泡率を求めた。 独立気泡率(%)=Vb/V (3) 熱伝導率 縦横45mm×100mm、厚さ20mmの試験片を、20
℃、RH60%の恒温室で、QTM迅速熱伝導計
(昭和電工製)を用いて測定(λm)し、次式
により定常状態における熱伝導率を求めた。 熱伝導率(kcal/mh℃)=λm×A−B A、Bは補正値 又、試験片を水中24時間浸して吸水した後、
上記に準じて吸水後の熱伝導率を測定した。 (比較例) 五酸化バナジウム及び酸化第一鉛を添加しない
以外は、実施例1と同様にして無機断熱発泡材を
得て、評価を行つた。その結果を第1表に併せて
示す。 比較例の場合、無機断熱発泡材の内部は均一に
発泡しているが、表層付近ではほとんど発泡せず
スキン層を形成し、全体として実施例1と比べて
不均一な発泡状態となつた。
(Prior art) Conventionally, glass fiber or asbestos products have been widely used as inorganic insulation foam materials, but since these products easily absorb water, they absorb moisture and have high thermal conductivity in humid environments. The drawback was that the heat insulation effect suddenly decreased. In addition, non-water-absorbing products include foam glass (manufactured by Pittsburgh Corning, USA), which is made of foamed glass obtained by foaming glass.
This product does not absorb moisture even in humid environments, and therefore has low thermal conductivity. However, since such conventional foam glass uses waste glass or glass cullet with a low aluminum oxide content (less than 5%), it easily breaks due to temperature shock, causing cracks, and is difficult to create into complicated shapes during manufacturing. Because of the disadvantages of being difficult to mold, requiring a long time to cool, and being expensive, it could only be used for special purposes such as cryogenic insulation. For example, as described in Japanese Patent Publication No. 55-40550, by adding blast furnace slag to a shirasu-water glass composition and firing it to foam, and precipitating microcrystals, bubble stabilization and product quality are achieved. Although it has been proposed to obtain crystallized foam glass with increased strength, a heat insulating material with a low specific gravity (0.4 or less) cannot be obtained, and the above-mentioned drawbacks of foam glass cannot be fundamentally solved. (Problems to be solved by the present invention) The present invention has a low specific gravity (0.4 or less), a high closed cell ratio (50% or less), and a uniform cell diameter, with the cell diameters inside and near the surface being almost the same. The purpose of this invention is to provide a method for producing an inorganic heat-insulating foam material that is lightweight, has excellent heat insulation properties, and can be easily formed into complex shapes during production. (Means for Solving the Problems) The gist of the present invention is to add 0.3 to 5 parts by weight of silicon carbide or/and silicon nitride to 100 parts by weight of natural glassy mineral, and vanadium pentoxide or/and leadous oxide.
A composition containing 0.1 to 5 parts by weight and 50 parts by weight or less of water is pressure molded at a pressure of 0.1 to 2000 Kg/cm 2 , and then the molded product is heated to the firing temperature of natural glassy minerals. The present invention relates to a method for producing an inorganic heat-insulating foam material, which comprises melting and foaming the material, followed by cooling. Examples of the natural glassy minerals used in the present invention include shirasu, obsidian, and flint, and the average particle size is 100 μm or less, preferably 46 μm.
m or less is preferably used. Average particle size
If a material with a diameter exceeding 100 μm is used, it is difficult to obtain a foam material with a high closed cell ratio, and the foam material tends to have many open cells. As the silicon carbide and silicon nitride used in the present invention, those having a particle size smaller than the average particle size of natural glassy minerals, a purity of 75% or more, and a residual carbon of 5% by weight or less are preferably used. If a material with a particle size larger than the average particle size of natural glassy minerals is used, it is difficult to obtain a foam material with a high closed cell ratio, and the foam material tends to have many open cells. Note that silicon carbide and silicon nitride can be used alone or in combination. In addition, silicon carbide and silicon nitride are natural glassy minerals.
It is necessary to add 0.3 to 5 parts by weight per 100 parts by weight. If the amount added is less than 0.3 parts by weight, only a product with a high specific gravity can be obtained, and if it exceeds 5 parts by weight, a foamed material with a high closed cell ratio cannot be obtained, and a foam with many open cells will be obtained. I end up. As vanadium pentoxide and first lead oxide used in the present invention, those having an average particle size smaller than the average particle size of natural glassy minerals are preferably used. If a natural glassy mineral with a particle size larger than the average particle size is used, it is difficult to obtain a foamed material having uniform cells. Incidentally, vanadium pentoxide and first lead oxide can be used alone or in combination. Further, it is necessary to add vanadium pentoxide and first lead oxide in an amount of 0.1 to 5 parts by weight per 100 parts by weight of natural glassy mineral. If the amount added is less than 0.1, uniform cells will not be obtained, and if it exceeds 5 parts by weight, a foamed material with a high closed cell ratio will not be obtained and will have many open cells. In the present invention, a binder and water are added as necessary. The binder and water are used to maintain the effect of pressure molding, which will be described later. As a binder, water-soluble polymers such as polyvinyl alcohol, polyethylene oxide, or cellulose derivatives (methylcellulose, carboxymethylcellulose, hydroxycellulose,
or crystalline cellulose). The amount of binder added is 10 parts by weight or less per 100 parts by weight of natural glassy mineral. The amount of water added is 50 parts by weight or less per 100 parts by weight of natural glassy mineral. The amount of binder and water added is determined by the pressure of pressure molding, and in order to maintain the effect of pressure molding, if the pressure is low, it is necessary to increase the amount added, and as the pressure approaches 500Kg/cm 2 , the amount of water added will gradually increase. A small amount is sufficient, and it is not necessarily necessary if the amount is 500Kg/cm 2 or more. In the present invention, the above composition is added to 0.1% before firing.
It is necessary to perform pressure molding at a pressure of 2000 kg/cm 2 to 2000 kg/cm 2 . This pressure molding process is an essential process to obtain a foamed material with a high closed cell ratio, and it also prevents cracks in the structure of the molded product due to the internal gas pressure until the temperature is raised to the firing temperature. prevent this from occurring. This molded product is heated and foamed in a firing furnace such as an electric furnace to 1000 to 1200°C, which is the firing temperature of natural glassy minerals, and then taken out from the firing furnace and slowly or rapidly cooled to produce the desired inorganic insulation. Get foam. In the present invention, (1) the main raw material is a natural glassy mineral; (2) the amount of silicon carbide and silicon nitride added is 0.3 to 5 parts by weight per 100 parts by weight of the natural glassy mineral; (3) The amount of vanadium pentoxide and lead oxide added is 0.1 to 5 parts by weight per 100 parts by weight of natural glassy mineral, (4) The composition containing these should be added in an amount of 0.1 to 20 kg/cm 2 . Pre-pressing under pressure is a very important requirement. By adopting the method of the present invention that satisfies these requirements, for the first time, the specific gravity is as low as 0.4 or less.
Moreover, it is possible to produce a lightweight inorganic heat-insulating foam material with a high closed cell ratio of 50% or more, a uniform cell diameter, and a cell diameter of approximately the same inside and near the surface, which is lightweight and has excellent heat insulation properties. This fact is considered to be based on the following principle. That is, when a natural glassy mineral, silicon carbide or/and silicon nitride, and vanadium pentoxide or/and lead oxide are mixed, a large number of silicon carbide and/or silicon nitride particles are formed around the natural glassy mineral particles. A mixed composition is obtained in which particles and a large number of particles of vanadium pentoxide or/and lead oxide are attached.
When this composition is press-molded in advance at a pressure of 0.1 to 2000 kg/cm 2 in this state, silicon carbide or/and silicon nitride, and vanadium pentoxide or/and leadous oxide are formed between the particles of the natural glassy mineral. The particles are packed together and form a close contact state. In such a state, when the temperature is raised to the firing temperature of natural glassy minerals, vanadium pentoxide and/or lead oxide lowers the surface tension of the natural glassy minerals in the molten state, and the foamed silicon carbide or / and silicon nitride are uniformly dispersed to melt and connect the inorganic components of the natural glassy mineral. Next, the foaming agent foams appropriately in the foam, resulting in foaming with a high closed cell ratio, which has a low specific gravity, little connection between the cells, and uniform cells, with the cell diameters on the inner surface and near the surface being almost the same. The material is formed. (Example) Hereinafter, the present invention will be explained with reference to Examples. Examples 1 to 3 As a natural glassy mineral, the particle size is 46 μm or less.
Silicon carbide (BFC: Pacific Random Co., Ltd.), silicon nitride (TS-7: Toyo Soda Co., Ltd.), vanadium pentoxide (reagent grade 1:
(manufactured by Hanui Chemical Co., Ltd.), lead oxide (reagent 1st grade manufactured by Wako Pure Chemical Industries, Ltd.), and water, respectively.
A composition was obtained by mixing the amounts shown in the table. Each of these compositions was heated to a pressure of 10% using a hydraulic press.
After pressurizing for 3 minutes at Kg/cm 2 , the mold was removed, and the dimensions were 148 mm in diameter.
It was made into a disk-shaped molded product with a thickness of 10 mm. Each of these molded products was placed in an electric furnace and heated to 1120°C at a heating rate of 150°C/hr, held at that temperature for 30 minutes to fire and foam, and then cooled and taken out to form inorganic insulation foam. I got the material. These inorganic heat-insulating foam materials were evaluated by measuring their appearance (uniformity of cells), specific gravity, closed cell ratio, and thermal conductivity in steady state and after water absorption. The closed cell ratio was 0.4 or less, the closed cell ratio was 50% or more, and the water absorption rate was low, so the thermal conductivity hardly changed after water absorption. The evaluation method for the inorganic heat insulating foam material is as follows. (All test pieces were prepared with the epidermis removed.) (1) Specific gravity A test piece measuring 40 mm x 40 mm in length and width and 20 mm in thickness was heated at 105℃.
The weight (Wg) and volume (V
cm 3 ) was measured, and the specific gravity was determined using the following formula. Specific gravity (g/cm 3 ) = W/V (2) Closed cell ratio A test piece of 40 mm x 10 mm in length and width and 15 mm in thickness was
First, measure the volume (Vcm 3 ) in a constant temperature room at ℃ and RH 60%, then measure the volume (Vbcm 3 ) using an air comparison hydrometer (manufactured by Toshiba Beckman), and calculate the closed cell ratio using the following formula. Ta. Closed cell ratio (%) = Vb/V (3) Thermal conductivity A test piece of 45 mm x 100 mm in length and width and 20 mm in thickness was
Measurement (λm) was performed using a QTM rapid thermal conductivity meter (manufactured by Showa Denko) in a constant temperature room at ℃ and RH 60%, and the thermal conductivity in a steady state was determined using the following formula. Thermal conductivity (kcal/mh℃) = λm x A-B A and B are correction values In addition, after soaking the test piece in water for 24 hours to absorb water,
The thermal conductivity after water absorption was measured according to the above procedure. (Comparative Example) An inorganic heat-insulating foam material was obtained and evaluated in the same manner as in Example 1, except that vanadium pentoxide and first lead oxide were not added. The results are also shown in Table 1. In the case of the comparative example, the inside of the inorganic heat-insulating foam material was foamed uniformly, but there was almost no foaming near the surface layer, forming a skin layer, resulting in a non-uniform foaming state as a whole compared to Example 1.

【表】 (発明の効果) 本発明無機断熱発泡材の製造方法は、上述の如
き構成であるので、比重が0.4以下と小さく、し
かも独立気泡率が50%以上と高く、且つ気泡径が
均一で内部と表面部付近の気泡径がほぼ同じであ
り、しかして、軽量で断熱性の優れ、且つ製造時
複雑な形状への成形が容易な無機断熱発泡材を製
造することができ、例えば断熱保温カバー等の製
造をすることができる。
[Table] (Effects of the invention) Since the method for manufacturing the inorganic heat insulating foam material of the present invention has the above-described configuration, the specific gravity is as low as 0.4 or less, the closed cell ratio is high as 50% or more, and the cell diameter is uniform. The cell diameters inside and near the surface are almost the same, making it possible to produce an inorganic heat-insulating foam material that is lightweight, has excellent heat insulation properties, and is easy to mold into complex shapes during production. We can manufacture heat insulation covers, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 天然ガラス質鉱物100重量部に、炭化珪素又
は/及び窒化珪素0.3乃至5重量部と、五酸化バ
ナジウム又は/及び酸化第一鉛0.1乃至5重量部
と、水50重量部以下とを添加した組成物を、0.1
乃至2000Kg/cm2の圧力にて加圧成形した後、その
成形物を天然ガラス質鉱物の焼成温度に昇温して
溶融発泡し、その後冷却することを特徴とする無
機断熱発泡材の製造方法。
1. 0.3 to 5 parts by weight of silicon carbide or/and silicon nitride, 0.1 to 5 parts by weight of vanadium pentoxide or/and first lead oxide, and 50 parts by weight or less of water were added to 100 parts by weight of natural glassy mineral. composition, 0.1
A method for producing an inorganic heat-insulating foam material, which comprises press-molding at a pressure of 2000 Kg/cm 2 to 2000 Kg/cm 2 , then heating the molded product to the firing temperature of natural glassy minerals, melting and foaming it, and then cooling it. .
JP6861286A 1986-03-28 1986-03-28 Manufacture of inorganic heat insulating foaming material Granted JPS62226872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6861286A JPS62226872A (en) 1986-03-28 1986-03-28 Manufacture of inorganic heat insulating foaming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6861286A JPS62226872A (en) 1986-03-28 1986-03-28 Manufacture of inorganic heat insulating foaming material

Publications (2)

Publication Number Publication Date
JPS62226872A JPS62226872A (en) 1987-10-05
JPH0212907B2 true JPH0212907B2 (en) 1990-03-29

Family

ID=13378759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6861286A Granted JPS62226872A (en) 1986-03-28 1986-03-28 Manufacture of inorganic heat insulating foaming material

Country Status (1)

Country Link
JP (1) JPS62226872A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH671954A5 (en) * 1987-04-16 1989-10-13 Misag Ag

Also Published As

Publication number Publication date
JPS62226872A (en) 1987-10-05

Similar Documents

Publication Publication Date Title
US4758538A (en) Foamed ceramic body and process for production thereof
CN101445326B (en) High corrosion-resisting foam glass and low-temperature production method thereof
US2758937A (en) Production of cellulated glass
US2233608A (en) Cellular glass and process of manufacture thereof
JPH0212907B2 (en)
CN103819095A (en) Low-density foam glass and preparation method thereof
JPH0212908B2 (en)
US3974315A (en) Closed cellular fused silica bodies
US8409345B1 (en) Gaseous concrete raw mixture
CN112876072B (en) Preparation method of microporous foamed glass
US3342572A (en) Method of making cellular phosphate glass
JPS59182223A (en) Hollow silica sphere and its preparation
US3623897A (en) Novel foamable glass compositions comprising copper
US3949030A (en) Method for production of cellular fused silica
JPS5815045A (en) Production of foam glass
CN110591176A (en) Heat-insulating material and preparation method and application thereof
CN109053151A (en) A kind of method of fast cooling production foamed ceramic
JPS6217081A (en) Manufacture of inorganic heat insulating foamed material
JPH0324414B2 (en)
RU2149146C1 (en) Blend for preparing foam glass
KR19990064420A (en) Method of light block with waste glass of soda-lime glass silicate
JPS5860634A (en) Preparation of granular air-bubble glass
CN108610032A (en) A kind of production method of fused quartz ceramic coke oven door
JPH02225370A (en) Production of mica compounded ceramics
CN102020414A (en) Method for producing foam glass by utilizing scrap material from crystal glass processing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term