JPH02128123A - Spectroscopic photometer - Google Patents

Spectroscopic photometer

Info

Publication number
JPH02128123A
JPH02128123A JP63281860A JP28186088A JPH02128123A JP H02128123 A JPH02128123 A JP H02128123A JP 63281860 A JP63281860 A JP 63281860A JP 28186088 A JP28186088 A JP 28186088A JP H02128123 A JPH02128123 A JP H02128123A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion signal
converter
light
applied voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63281860A
Other languages
Japanese (ja)
Other versions
JP2705153B2 (en
Inventor
Masahiko Arai
正彦 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP28186088A priority Critical patent/JP2705153B2/en
Publication of JPH02128123A publication Critical patent/JPH02128123A/en
Application granted granted Critical
Publication of JP2705153B2 publication Critical patent/JP2705153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To perform a quick measurement by varying an applied voltage of a photoelectric converter until a photoelectric conversion signal of a 0th-order diffraction light depending on an intensity of all spectroscopic wavelengths reaches a specified value or is within a specified range. CONSTITUTION:A photometer has a spectroscope 1 to vary an angle of rotation of a scattering element 1a into which is incident light from a sample sequentially with a driver 1b so that a wavelength of light emitted at an outlet slit 1e is changed sequentially and a photoelectric converter 2 which converts the light emitted at the slit to into electricity while varying sensitivity according to a size of an applied voltage to obtain a spectroscopic sensitivity characteristic based on a photoelectric conversion signal of the converter 2. Then, a computer 4 inputs a command signal to the driver 1b to emit a 0th-order diffraction light at the slit 1e with the control of an angle of rotation of the scatting element 1a. The computer 4 further makes the applied voltage of the photoelectric converter 2 change until the photoelectric conversion signal from the photo-electric converter 2 of the 0th-order diffraction light emitted at the slit 1e reaches a specified value or is within a specified range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分光測光装置に関し、印加電圧の大きさに応
して感度の変化する光電変換器を有する分光測光装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spectrophotometric device, and more particularly, to a spectrophotometric device having a photoelectric converter whose sensitivity changes depending on the magnitude of applied voltage.

〔従来の技術〕[Conventional technology]

試料からの光を入射する分散素子の回転角度を駆動装置
により順次変化させて、出口スリットより射出される光
の波長を順次変化させる分光装置と、前記出口スリット
より射出される光を光電変換すると共に、印加電圧の大
きさに応じて感度の変化する光電変換器と、を有し、前
記光電変換器の光電変換信号に基づいて分光感度特性を
得る分光測光装置が知られている。
A spectrometer that sequentially changes the rotation angle of a dispersion element into which light from a sample is incident using a drive device to sequentially change the wavelength of light emitted from an exit slit, and a spectrometer that photoelectrically converts the light emitted from the exit slit. Additionally, a spectrophotometric device is known which includes a photoelectric converter whose sensitivity changes depending on the magnitude of an applied voltage and obtains spectral sensitivity characteristics based on a photoelectric conversion signal of the photoelectric converter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如き従来の技術に於いては、光電変換信号が低レ
ベルで信号変化分がほとんど現われなかったり、光電変
換信号が飽和してしまわないように、CRT等に表示さ
れた分光感度特性を見なから光電変換器の印加電圧の大
きさを調節していた。
In the conventional technology as described above, the spectral sensitivity characteristics displayed on a CRT etc. are checked to prevent the photoelectric conversion signal from appearing at a low level with almost no signal change or from saturating the photoelectric conversion signal. Therefore, the magnitude of the applied voltage to the photoelectric converter was adjusted.

この1ljlffは勘によっているため、−度印加電圧
の大きさを変化させた後、再び新たな印加電圧の下に分
光感度特性を求め、適当でなければ再度印加電圧の変更
を行う必要があった。
This 1ljlff is based on intuition, so after changing the magnitude of the applied voltage - degree, it was necessary to find the spectral sensitivity characteristics again under the new applied voltage, and if it was not suitable, it was necessary to change the applied voltage again. .

そのため、操作性が悪く、印加電圧の調節に時間がかか
る、という問題点があった。
Therefore, there were problems in that the operability was poor and it took time to adjust the applied voltage.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明では、試料からの光を入射する分散素子の
回転角度を駆動装置により順次変化させて、出口スリッ
トより射出される光の波長を順次変化させる分光袋W(
1)と、前記出口スリットより射出される光を光電変換
すると共に、印加電圧の大きさに応じて感度の変化する
光電変換器(2)と、を有し、前記光電変換器(2)の
光電変換信号に基づいて分光感度特性を得る分光測光装
置において、前記駆動装置に、前記分散素子の回転角度
を制御して前記出口スリットよりO次回折光を射出せし
める指令信号を入力する指令手段(第2図のステップ2
0を実行するコンピュータ4内の手段)と、前記出ロス
リントより射出されたO次回折光の前記光電変換器によ
る光電変換信号が所定の値もしくは所定の範囲内になる
まで前記光電変換器の印加電圧を変化させる制御手段(
第2図のステップ21.22.23.24を実行するコ
ンピュータ4内の手段と、を存することを特徴とする。
Therefore, in the present invention, the spectral bag W (
1), and a photoelectric converter (2) that photoelectrically converts the light emitted from the exit slit and whose sensitivity changes depending on the magnitude of the applied voltage, and the photoelectric converter (2) has a In a spectrophotometric device that obtains spectral sensitivity characteristics based on a photoelectric conversion signal, a command means (a third command means) for inputting a command signal to the drive device to control the rotation angle of the dispersion element and cause the O-th order diffracted light to be emitted from the exit slit. Step 2 in Figure 2
0 in the computer 4) and the applied voltage to the photoelectric converter until the photoelectric conversion signal by the photoelectric converter of the O-order diffracted light emitted from the output loss lint reaches a predetermined value or within a predetermined range. control means (
means in the computer 4 for executing steps 21, 22, 23, 24 of FIG.

〔作  用〕[For production]

本発明に於いては、全ての分光波長の強度に依存した0
次回折光の光電変換信号が、所定の値もしくは所定の範
囲内になるまで光電変換器の印加電圧を変化させるので
、波長走査を行なうことなく簡易迅速に印加電圧を調節
できる。0次回折光は全ての分光波長の強度に依存して
いるので、試料が変わらない限り、波長走査により得ら
れる光電変換信号は、小さすぎたり飽和してしまうこと
はない。
In the present invention, 0, which depends on the intensity of all spectral wavelengths,
Since the voltage applied to the photoelectric converter is changed until the photoelectric conversion signal of the next-order diffracted light reaches a predetermined value or within a predetermined range, the applied voltage can be easily and quickly adjusted without performing wavelength scanning. Since the 0th-order diffracted light depends on the intensity of all spectral wavelengths, the photoelectric conversion signal obtained by wavelength scanning will not become too small or saturated as long as the sample does not change.

[実 施 例] 以下、図面に示した実施例に基づいて本発明を説明する
。第1図は本発明の一実施例のブロック図であり、第2
図は第1図で用いられるコンピュータのフローチャート
である。
[Example] The present invention will be described below based on the example shown in the drawings. FIG. 1 is a block diagram of one embodiment of the present invention;
The figure is a flowchart of the computer used in FIG.

第1図において、分光装置1は、分散素子1aと、分散
素子1aを回転する駆動装置1bと、不図示の試料から
の光を入射し、分散素子まで導く入射光学系1cと、分
散素子1aがらの光を出ロスリノ)leまで導く射出光
学系1dとを内蔵している公知のものである。分光装置
1の分散素子laは、コンピュータ4からの制御指令を
受ける駆動袋ff1bによって回転制御され、出口スリ
ット1eから射出される光の゛波長が順次変化される。
In FIG. 1, a spectroscopic device 1 includes a dispersive element 1a, a drive device 1b that rotates the dispersive element 1a, an input optical system 1c that receives light from a sample (not shown) and guides it to the dispersive element, and a dispersive element 1a. This is a well-known system that incorporates an exit optical system 1d that guides the light from the outside to the exit point. The dispersion element la of the spectrometer 1 is rotationally controlled by a drive bag ff1b that receives control commands from the computer 4, and the wavelength of the light emitted from the exit slit 1e is sequentially changed.

分光装置lの出ロスリント1eから射出された光は、印
加電圧の大きさに応じて感度の変化する光電変換器とし
てのフォトマル(光電子増倍管)2に入射し、光電変換
される。フォトマル2の光電変換信号は、A/D変換器
3にてデジタル信号に変換された後、コンピュータ4に
取り込まれる。
The light emitted from the output loss lint 1e of the spectrometer 1 enters a photomultiplier tube 2, which serves as a photoelectric converter whose sensitivity changes depending on the magnitude of the applied voltage, and is photoelectrically converted. The photoelectric conversion signal of the photomultiplier 2 is converted into a digital signal by the A/D converter 3 and then taken into the computer 4.

コンピュータ4はキーボード5から種々の指示を受ける
と共に、分光袋W1の駆動装置に制御指令を行ない、ま
たデイスプレィ6に測定結果等の表示を行なわせ、さら
に、可変電圧発生器7にフォトマル2への印加電圧の制
御指令を行なう。
The computer 4 receives various instructions from the keyboard 5, issues control commands to the driving device of the spectroscopic bag W1, causes the display 6 to display measurement results, etc., and also causes the variable voltage generator 7 to output signals to the photomultiplier 2. The control command for the applied voltage is given.

コンピュータ4は、キーボード5からの測定開始命令に
よって、まず第2図のフローチャートによるフォトマル
の感度設定動作を行なう。すなわち、コンピュータ4は
、分光装置1の分散素子1aの駆動装置に、0次回折光
が出口スリット1eから出力されるように、駆動装置に
tbに制御指令を行なう(ステップ20)。機構的には
、分散素子1aの回転角度を単に大きくするだけで、0
次回折光を出ロスリソ)leから射出するようになすこ
とをできる。より具体的には、試料からの光が分散素子
1aにて正反射し、出口スリットleに向かう角度に分
散素子1aを回転させる。コンピュータ4はそのときの
フォトマル2の光電変換信号をA/D変換器3を通して
人力し、あらかじめ定められた所定範囲内に光電変換信
号があるか否かの判定を行なう。
In response to a measurement start command from the keyboard 5, the computer 4 first performs a photomultiplier sensitivity setting operation according to the flowchart of FIG. That is, the computer 4 issues a control command tb to the drive device for the dispersion element 1a of the spectrometer 1 so that the 0th order diffracted light is output from the exit slit 1e (step 20). Mechanically, by simply increasing the rotation angle of the dispersion element 1a, 0
The next diffracted light can be emitted from the laser beam. More specifically, the light from the sample is specularly reflected by the dispersion element 1a, and the dispersion element 1a is rotated at an angle toward the exit slit le. The computer 4 inputs the photoelectric conversion signal of the photomultiplier 2 at that time through the A/D converter 3, and determines whether the photoelectric conversion signal is within a predetermined range.

すなわち、まず所定範囲の上限より大きいか小さいかを
判断しくステラフ21)、大きければフォトマル2の感
度を下げるように、可変電圧発生器7にフォトマル2へ
の印加電圧を所定値下げるように指令を行なう(ステッ
プ22)。ステラフ21とステラフ22は、光電変換信
号が所定の範囲の上限より小さくなるまで繰り返される
。光電変換信号が所定範囲の上限より小さい場合は、光
電変換信号が所定範囲の下限より大きいか小さいかを判
断しくステップ23)、下限より小さい場合はフォトマ
ル2の感度を上げるように、可変電圧発生器7にフォト
マル2への印加電圧を所定値上げるように指令を行なう
(ステラフ24)、ステップ23とステップ24は、光
電変換信号が所定範囲の下限より大きくなるまで繰り返
される。
That is, first, it is determined whether it is larger or smaller than the upper limit of a predetermined range (Stellaf 21), and if it is larger, the sensitivity of the photomultiplier 2 is lowered, and the variable voltage generator 7 is instructed to lower the voltage applied to the photomultiplier 2 by a predetermined value. A command is issued (step 22). Stelaph 21 and Stellaf 22 are repeated until the photoelectric conversion signal becomes smaller than the upper limit of a predetermined range. If the photoelectric conversion signal is smaller than the upper limit of the predetermined range, it is determined whether the photoelectric conversion signal is larger or smaller than the lower limit of the predetermined range (step 23). Steps 23 and 24 of instructing the generator 7 to increase the voltage applied to the photomultiplier 2 by a predetermined value (Stellaf 24) are repeated until the photoelectric conversion signal becomes larger than the lower limit of the predetermined range.

ステップ23で光電変換信号が下限より大きいと、フォ
トマル2への印加電圧はそのままで、分光測光モード2
5に入る。分光測光モード25では、コンピュータ4は
、測定に必要な所定波長範囲(例えば400nm〜70
0na+)の下限の波長の光が出ロスリントから射出す
るように、分光装置1の駆動装置1bに制御指令を入力
し、分散素子1aを回転する。そして、A/D変換器3
からの光電変換信号を上記設定した波長に対応させてメ
モリに記憶し、駆動装置1bに制御指令を入力して分散
素子1aをわずかに回転させる。そして、上記と同様に
、A/D変換器3からの光電変換信号を、分散素子1a
の回転により出口スリット1eより射出される光の波長
に対応させてメモリに記憶する。そして、このように分
散素子1aの回転、光電変換信号の記憶、分散素子1a
の回転と繰り返される動作を、出ロスリント1eから所
定波長範囲の上限の波長の光が得られるまで続ける。
If the photoelectric conversion signal is larger than the lower limit in step 23, the voltage applied to the photomultiplier 2 remains unchanged and the spectrophotometry mode 2
Enter 5. In the spectrophotometry mode 25, the computer 4 selects a predetermined wavelength range (for example, 400 nm to 70 nm) necessary for measurement.
A control command is input to the drive device 1b of the spectrometer 1 to rotate the dispersion element 1a so that light with a lower limit wavelength of 0na+) is emitted from the output loss lint. And A/D converter 3
A photoelectric conversion signal from the dispersion element 1a is stored in a memory in correspondence with the wavelength set above, and a control command is input to the drive device 1b to slightly rotate the dispersion element 1a. Then, similarly to the above, the photoelectric conversion signal from the A/D converter 3 is transferred to the dispersion element 1a.
The wavelength of the light emitted from the exit slit 1e is stored in the memory in correspondence with the wavelength of the light emitted from the exit slit 1e. In this way, the rotation of the dispersion element 1a, the storage of the photoelectric conversion signal, and the rotation of the dispersion element 1a
The rotation and repeated operations are continued until light of the upper limit wavelength of the predetermined wavelength range is obtained from the output loss lint 1e.

この結果、メモリには試料の分光感度に相当するデータ
か記憶されるので、コンピュータ4はメモリから波長に
対応させたデータを読み出し、デイスプレィ6に、横軸
が波長、縦軸が光強度となるような分光感度特性(波形
)を表示せしめる。
As a result, data corresponding to the spectral sensitivity of the sample is stored in the memory, so the computer 4 reads data corresponding to the wavelength from the memory, and the horizontal axis shows the wavelength and the vertical axis shows the light intensity on the display 6. The spectral sensitivity characteristics (waveform) are displayed.

このとき、あらかじめ試料からの光の全波長の光強度に
依存したO次回折光によってフォトマル2の感度を設定
しであるので、全波長の光強度のほぼ平均強度によって
感度設定ができるので、分光感度特性が飽和状態になっ
たり、信号が小さすぎて、最大強度位置がわからなくな
るようなこともないほどよい信号レベルとなすことがで
きる。
At this time, the sensitivity of Photomul 2 is set in advance using the O-order diffracted light that depends on the light intensity of all wavelengths of light from the sample, so the sensitivity can be set based on approximately the average intensity of the light intensities of all wavelengths, so the spectral It is possible to achieve a signal level that is so good that the sensitivity characteristics do not become saturated or the signal becomes so small that the position of maximum intensity is not known.

勿論、この場合、平均強度が飽和しない最大値をとるよ
うに感度設定を行っては、最大強度位置がわからなくな
るので、あらかじめいくつがの典型的な分光特性の得ら
れる試料に基づいて、ステップ21とステップ23の上
限、下限の値を定めておく必要がある。
Of course, in this case, if the sensitivity is set so that the average intensity takes the maximum value that does not saturate, the maximum intensity position will not be known. It is necessary to determine the upper and lower limit values in step 23.

一般的には、飽和しない最大強度に対して上限を70%
、下限を40%程度に定めることになる。
Generally, the upper limit is 70% for the maximum strength that does not saturate.
, the lower limit will be set at around 40%.

また、上限、下限で定まる所定範囲内に光電変換信号を
入れるのではなく、所定値にほぼ一致するように追い込
んでいくことでもよいのであるが、この場合の所定値は
、飽和しない最大強度に対してほぼ50%の値に定めれ
ばよい。
Also, instead of putting the photoelectric conversion signal within a predetermined range determined by the upper and lower limits, it is also possible to drive it so that it almost matches a predetermined value, but in this case, the predetermined value is the maximum intensity that does not saturate. It is sufficient to set the value to approximately 50%.

そして、分光感度特性は、一般的には強度の絶対値が問
題となるのではなく、最大強度となる波長、波形等であ
るから、データを正規化し、正規化したデータに基づい
てデイスプレィ6に分光感度特性を表示するのが一般的
である。このときの縦軸は相対的な分光感度を表わすこ
とになる。このように正規化を前提にした場合には、最
大強度を飽和直前まで持ってくるような必要性がないの
で、前述の如く、光電変換信号の大きさを比較する所定
範囲の上限と下限はかなり大雑把に定めることのできる
ことが理解される。
Spectral sensitivity characteristics are generally not concerned with the absolute value of intensity, but with the wavelength and waveform of the maximum intensity, so the data is normalized and the display 6 is displayed based on the normalized data. It is common to display spectral sensitivity characteristics. The vertical axis at this time represents relative spectral sensitivity. When normalization is assumed in this way, there is no need to bring the maximum intensity to just before saturation, so as mentioned above, the upper and lower limits of the predetermined range for comparing the magnitude of the photoelectric conversion signal are It is understood that it can be defined quite roughly.

なお、分散素子1aの回転角度を変化させる駆動!Jl
 l bとしてはサインバーを用いたものや、パルスモ
ータを分散素子に直接接続したものを用いることができ
る。
Note that the drive for changing the rotation angle of the dispersion element 1a! Jl
As lb, a sine bar or a pulse motor directly connected to a dispersion element can be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、測定の初めにO次回
折光の強度に基づいて、光電変換器の感度設定が自動的
に行なわれるので、感度設定の煩わしさがないばかりで
なく、感度設定時間が大幅に減少するので、迅速な測定
ができるようになる。
As described above, according to the present invention, the sensitivity of the photoelectric converter is automatically set based on the intensity of the O-order diffracted light at the beginning of measurement, so not only is there no need to worry about setting the sensitivity, but the sensitivity Since the setup time is significantly reduced, rapid measurements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は、第
1図におけるコンピュータ4の本発明に係るフローチャ
ートである。 〔主要部分の符号の説明〕 1・・・・・・分光装置 la・・・分散素子 ib・・・駆動装置 1e・・・出ロスリント 2・・・・・・フォトマル 3・・・・・・A/D変換器 4・・・・・・コンピュータ 7・・・・・・可変電圧発生器
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a flow chart of the computer 4 in FIG. 1 according to the present invention. [Explanation of symbols of main parts] 1...Spectroscope la...Dispersion element ib...Driver 1e...Output loss lint 2...Photomulti 3...・A/D converter 4...Computer 7...Variable voltage generator

Claims (1)

【特許請求の範囲】 試料からの光を入射する分散素子の回転角度を駆動装置
により順次変化させて、出口スリットより射出される光
の波長を順次変化させる分光装置と、前記出口スリット
より射出される光を光電変換すると共に、印加電圧の大
きさに応じて感度の変化する光電変換器と、を有し、前
記光電変換器の光電変換信号に基づいて分光感度特性を
得る分光測光装置において、 前記駆動装置に、前記分散素子の回転角度を制御して前
記出口スリットより0次回折光を射出せしめる指令信号
を入力する指令手段と、 前記出口スリットより射出された0次回折光の前記光電
変換器による光電変換信号が所定の値もしくは所定の範
囲内になるまで前記光電変換器の印加電圧を変化させる
制御手段と、 を有することを特徴とする分光測光装置。
[Scope of Claims] A spectroscopy device that sequentially changes the rotation angle of a dispersion element into which light from a sample is incident using a drive device to sequentially change the wavelength of light emitted from an exit slit; A spectrophotometric device that obtains spectral sensitivity characteristics based on a photoelectric conversion signal of the photoelectric converter, comprising a photoelectric converter that photoelectrically converts light and whose sensitivity changes depending on the magnitude of an applied voltage, a command means for inputting a command signal to the drive device to control the rotation angle of the dispersion element and cause the zero-order diffracted light to be emitted from the exit slit; A spectrophotometric device comprising: control means for changing the voltage applied to the photoelectric converter until the photoelectric conversion signal reaches a predetermined value or within a predetermined range.
JP28186088A 1988-11-08 1988-11-08 Spectrophotometer Expired - Fee Related JP2705153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28186088A JP2705153B2 (en) 1988-11-08 1988-11-08 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28186088A JP2705153B2 (en) 1988-11-08 1988-11-08 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPH02128123A true JPH02128123A (en) 1990-05-16
JP2705153B2 JP2705153B2 (en) 1998-01-26

Family

ID=17645006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28186088A Expired - Fee Related JP2705153B2 (en) 1988-11-08 1988-11-08 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP2705153B2 (en)

Also Published As

Publication number Publication date
JP2705153B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US4330207A (en) Fluorescence spectrophotometer
US4180327A (en) Spectrophotometers with digital processing
JP5215939B2 (en) Spectrofluorometer and spectrophotometer
JPS6337224A (en) Fluorescent spectrophotometer
JP2783291B2 (en) Standardization method of spectral line intensity and a spectrometer implementing the standardization method
WO1980000189A1 (en) Calibratiob system for spectroscopes
US4930891A (en) Method and apparatus for scanning wavelength in spectrophotometers
JPH02128123A (en) Spectroscopic photometer
US4373813A (en) Control of system energy in a single beam spectrophotometer
JP3982731B2 (en) Spectrometer wavelength correction method
US4299487A (en) Method of and device for analyzing one ingredient in a mixed solution with two light beams of different wavelengths
US3176576A (en) Tracking accuracy control for analyzers
JP3267162B2 (en) Atomic absorption spectrophotometer
JP3340204B2 (en) Integrating spectrophotometer
JP2564009Y2 (en) Spectrometer
US4169678A (en) Spectrophotometer
US20020050560A1 (en) Spectrophotometer
JP2008292249A (en) Spectrophotometer
JPS5845525A (en) Calibrating method for wavelength of spectroscope
JPH10185686A (en) Spectrophotometer
JP2906478B2 (en) Spectrophotometer
JPS6058809B2 (en) Double beam spectrophotometer
JPH01143920A (en) Spectrophotometric device
JPS623364B2 (en)
JPH03200024A (en) Multiple-wavelength spectrophotometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees