JPH02128106A - Measurement of refractive index, absorption coefficient and thickness for thin film - Google Patents
Measurement of refractive index, absorption coefficient and thickness for thin filmInfo
- Publication number
- JPH02128106A JPH02128106A JP28108388A JP28108388A JPH02128106A JP H02128106 A JPH02128106 A JP H02128106A JP 28108388 A JP28108388 A JP 28108388A JP 28108388 A JP28108388 A JP 28108388A JP H02128106 A JPH02128106 A JP H02128106A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- absorption coefficient
- thin film
- thickness
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 52
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 35
- 238000005259 measurement Methods 0.000 title abstract description 17
- 239000010408 film Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000000691 measurement method Methods 0.000 claims description 2
- 230000001066 destructive effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- ZPAUMFOJNAADJN-UHFFFAOYSA-N 2-[4-[4-(1,2-benzothiazol-3-yl)piperazin-1-yl]butyl]-3h-isoindol-1-one Chemical compound C1C2=CC=CC=C2C(=O)N1CCCCN1CCN(C=2C3=CC=CC=C3SN=2)CC1 ZPAUMFOJNAADJN-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、薄膜の屈折率・吸収係数・膜厚を測定する方
法、詳しくは多層膜の最上層薄膜の屈折率・吸収係数・
膜厚を測定する方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the refractive index, absorption coefficient, and film thickness of a thin film, and more specifically, a method for measuring the refractive index, absorption coefficient, and film thickness of the uppermost thin film of a multilayer film.
This invention relates to a method for measuring film thickness.
[従来の技術]
薄膜の屈折率を、非接触、非破壊で測定する方法として
は、従来からエリプソメトリ−が知られているが、実施
に複雑で大がかりな装置を必要とする。[Prior Art] Ellipsometry has been known as a method for non-contact, non-destructive measurement of the refractive index of a thin film, but it requires a complicated and large-scale device to carry out.
[発明が解決しようとする課題]
発明者は、先に、屈折率を測定すべき薄膜にS偏光とP
偏光の単色光を入射させ、そのエネルギ−反射率を測定
し、その結果に基づき、演算的に屈折率を特定する方式
の屈折率測定方法を提案した(例えば、特開昭63−1
40940号公報)。[Problem to be solved by the invention] The inventor first applied S-polarized light and P-polarized light to a thin film whose refractive index was to be measured.
We proposed a refractive index measurement method in which polarized monochromatic light is incident, its energy reflectance is measured, and the refractive index is determined computationally based on the results (for example, Japanese Patent Laid-Open No. 63-1
40940).
しかし、これらの方法は使用波長に対して透明な膜にし
か適用出来ない。However, these methods can only be applied to films that are transparent to the wavelength used.
本発明は、上述した事情に鑑みてなされたものであって
、その目的とするところは、単層膜のみならず多層膜の
最上層薄膜の屈折率・吸収係数・膜厚を測定しうる、新
規な屈折率測定方法の提供にある。The present invention has been made in view of the above-mentioned circumstances, and its purpose is to measure the refractive index, absorption coefficient, and film thickness of the top layer thin film of not only a single layer film but also a multilayer film. The object of the present invention is to provide a new method for measuring refractive index.
〔課題を解決するための手段] 以下1本発明を説明する。[Means to solve the problem] One aspect of the present invention will be explained below.
本発明は、「屈折率及び吸収係数の知られた基板の上に
1層以上の薄膜が形成されており、最上層以外の薄膜の
屈折率及び吸収係数と膜厚が既知であり、上記最上層に
関してその屈折率nl・吸収係数kl・膜厚d+のうち
の1以上が未知量である場合に、これら最上層の薄膜に
関する未知量を測定する方法」である、薄膜が1層のみ
単層膜として形成されている場合は、この薄膜が最上層
膜であることは5言うまでもなく、この場合は基板の屈
折率と吸収係数とが知られていれば良い。The present invention is characterized in that ``one or more thin films are formed on a substrate whose refractive index and absorption coefficient are known, and the refractive index, absorption coefficient, and film thickness of the thin films other than the topmost layer are known; When one or more of the refractive index (nl), absorption coefficient (kl), and film thickness (d+) of the upper layer are unknown quantities, this is a method for measuring the unknown quantities of the uppermost thin film. If it is formed as a film, it goes without saying that this thin film is the top layer film, and in this case it is sufficient that the refractive index and absorption coefficient of the substrate are known.
本発明の方法は、以下の諸工程の実行により実現される
。即ち、エネルギー反射率を測定する測定工程と、演算
用の関数を特定する特定工程と。The method of the present invention is realized by performing the following steps. That is, a measurement process of measuring energy reflectance, and a specification process of specifying a function for calculation.
演算工程とである。This is a calculation process.
測定工程は、上記未知量の数をj個(i≦3)とすると
き、基板上の多層膜にj個(j≧i)の互いに異なる入
射角0゜1.θ。l++++θ。、で、波長がλである
P偏光とS偏光の単色光を入射させ、各入射光に対する
エネルギー反射率Rρ(OoJ、Rs(Ooh)(k”
x、2.、、j)を測定する工程である。In the measurement process, when the number of unknown quantities is j (i≦3), j (j≧i) different incident angles of 0°1. θ. l++++θ. , let P-polarized light and S-polarized monochromatic light whose wavelength is λ enter, and calculate the energy reflectance Rρ(OoJ, Rs(Ooh)(k”) for each incident light.
x, 2. , , j).
特定工程は、上記基板の屈折率及び吸収係数。The specific step is to determine the refractive index and absorption coefficient of the substrate.
最上層以外の薄膜の屈折率及び吸収係数、膜厚。Refractive index, absorption coefficient, and film thickness of thin films other than the top layer.
上記エネルギー反射率Rρ(θok)tR3(θok)
及び入射角θ。g(k:1tz−+j)、即ち、既知量
及び測定された量に基づきフレネルの公式に従って上記
nl+kl、diのみを変数とするj個の方程式4式%
)
を特定する工程である。The above energy reflectance Rρ(θok)tR3(θok)
and the angle of incidence θ. g(k:1tz-+j), i.e., j equations based on known quantities and measured quantities, according to Fresnel's formula, with only the above nl+kl and di as variables%
).
演算工程は、上記方程式群を上記nl+klydlの内
の未知量に付いて演算的に解いて未知量を求める工程で
ある。The calculation step is a step of calculating the unknown quantity by solving the above equation group for the unknown quantity among the above nl+klydl.
〔作 用コ 第1図を参照して本発明の詳細な説明する。[Made for use] The present invention will be described in detail with reference to FIG.
第1図(A)に於いて、符号13は基板、符号u、iz
は基板13上に積層された薄膜を示している0図のごと
く薄膜11が最上層薄膜であり、この薄膜の屈折率・吸
収係数・膜厚を測定する場合を例にとって説明する。即
ち、最上層薄膜11に関し、屈折率、吸収係数、膜厚が
未知量であるとする。In FIG. 1(A), the reference numeral 13 indicates a substrate, and the reference numerals u, iz
As shown in Figure 0, which shows thin films stacked on a substrate 13, the thin film 11 is the topmost thin film, and the case where the refractive index, absorption coefficient, and film thickness of this thin film are to be measured will be described as an example. That is, it is assumed that the refractive index, absorption coefficient, and film thickness of the uppermost thin film 11 are unknown quantities.
図の如く、入射媒質と薄膜11との境界面を50.。As shown in the figure, the interface between the incident medium and the thin film 11 is 50. .
薄膜11.12の境界面をS、2.薄膜12と基板13
の境界面をS23とする。The interface between the thin films 11 and 12 is S, 2. Thin film 12 and substrate 13
Let the boundary surface be S23.
屈折率は、入射媒質のそれをn。、薄膜11.薄膜12
、基板13の屈折率をぞれぞれ、
’Flt”n+−IJ 、”nz”nz−1kl 、7
1g”nl−iksとする。これらの式の右辺の虚数部
分が吸収係数であるarloは通常は空気の屈折率とし
て1を使用できる。The refractive index is that of the incident medium n. , thin film 11. Thin film 12
, the refractive index of the substrate 13 is 'Flt'n+-IJ, 'nz'nz-1kl, 7, respectively.
1g"nl-iks.The imaginary part on the right side of these equations is the absorption coefficient. Normally, 1 can be used as the refractive index of air.
また薄膜If、12の膜厚を図の如<d+、d2とし、
薄膜11への光の入射角をθ。、境界面So1および5
LitS23での屈折角を、それぞれ01.θ1.θ宝
とする。In addition, the film thickness of the thin film If, 12 is set as <d+, d2 as shown in the figure,
The incident angle of light to the thin film 11 is θ. , interface So1 and 5
The refraction angle at LitS23 was set to 01. θ1. θ Treasure.
上に出てきた量のうちで既知の量は、n、、′n2.に
3、d2.であり、また入射角θ。やレーザー光源LS
からの入射光の波長λは、測定の条件として一義的に定
めることができる。Among the quantities shown above, the known quantities are n,,'n2. 3, d2. and the angle of incidence θ. and laser light source LS
The wavelength λ of the incident light from can be uniquely determined as a measurement condition.
さて第1図(B)は、基板13の上に形成された薄膜1
2に、屈折率6Iの入射媒質中を光が入射角θ1で入射
している状態、即ち、第1図(A)の状態で薄膜11を
屈折率61の入射媒質で置き換えた状態を示している。Now, FIG. 1(B) shows a thin film 1 formed on a substrate 13.
2 shows a state in which light enters an incident medium with a refractive index of 6I at an incident angle θ1, that is, a state in which the thin film 11 in the state shown in FIG. 1(A) is replaced by an incident medium with a refractive index of 61. There is.
この第1図(B)のように、レーザー光源しSから単色
光を入射させた場合、その振幅反射率は次ぎの様になる
。As shown in FIG. 1(B), when monochromatic light is incident from a laser light source S, its amplitude reflectance is as follows.
rs、p”[r+ta、p+rz、s、pexp(2i
β1)コ/[1+rtzs、przss、pexp(2
iβ01 (1)添字のS、Pは入射光がS偏
光かP偏光かを示し、r□2+r!3は境界面512r
SN3でのフレネルの反射係数である。rs, p” [r+ta, p+rz, s, pexp(2i
β1) ko/[1+rtzs, przss, pexp(2
iβ01 (1) The subscripts S and P indicate whether the incident light is S-polarized light or P-polarized light, and r□2+r! 3 is the boundary surface 512r
This is the Fresnel reflection coefficient at SN3.
これら反射係数は入射角θ1.屈折角θ1.θ1を用い
て次ぎのように表すことができる。These reflection coefficients are determined by the angle of incidence θ1. Refraction angle θ1. It can be expressed as follows using θ1.
rlzp”cnxcosθT−n2cosθ箋)/(r
izcosθ7+F+xcosθH(2−1)r+z@
”(Fi+cosθY−n2cosθ箋)/(n2co
sθ箋”6zCO9θi) (2−2)r2sp
:crJcO9θm−n2cosθ箋)/CE5cos
θi+nzcosθ:) (2−3)rzxs”
(n2cO9θff−n5co!l01)/(W、co
s 8 :+n1cos e :) (2−4
)また、(1)式に於ける2β1は、光が境界面S+Z
と523との間を通る間に生ずる位相の変化で、入射光
の波長λ、膜厚d2、屈折角θ1、屈折率6.を用いて
。rlzp"cnxcosθT-n2cosθpaper)/(r
izcosθ7+F+xcosθH(2-1)r+z@
”(Fi+cosθY-n2cosθnote)/(n2co
sθ paper”6zCO9θi) (2-2) r2sp
:crJcO9θm-n2cosθpaper)/CE5cos
θi+nzcosθ:) (2-3)rzxs”
(n2cO9θff-n5co!l01)/(W, co
s8:+n1cos e:) (2-4
) Also, 2β1 in equation (1) means that the light travels to the boundary surface S+Z
and 523, the wavelength λ, film thickness d2, refraction angle θ1, and refractive index 6. Using.
2β:”4 x axdx (cosθ1)/λ
(3)と表される。2β:”4 x axdx (cosθ1)/λ
It is expressed as (3).
再び、第1図(A)に戻ると、同図のような2層の薄膜
11.12が積層されている場合の振幅反射率rs、
pは、境界面SXZに於ける振幅反射率が上記(1)式
に於けるra、 tと等価であるので、ra、p”[r
obs、p”rs、、exp(2jβ↑)コ/[Dro
++s、pra、pexp(2i β’r)]
(4)と表せる。但し、rotは境界面S。I
に於けるフレネルの反射係数で、
rotp”(rlcos θ o−nocos Oj
)/(n、cosθo+nocO5θ1) (
4−1)rQlfi:(nQcO8θo4rcO8θτ
)/(nocos θ o+n+cos θ t)
(4−2)であり光が境界面S。l
とS+Zの間を1往復する間に生ずる位相の変化2β1
は、
2βτ=4πn、d、(cosθ1)/λ
(5)である。Returning to FIG. 1(A) again, the amplitude reflectance rs when two thin films 11 and 12 are laminated as shown in the same figure,
Since the amplitude reflectance at the boundary surface SXZ is equivalent to ra and t in the above equation (1),
obs, p”rs,,exp(2jβ↑)ko/[Dro
++s, pra, pexp(2i β'r)]
It can be expressed as (4). However, rot is the boundary surface S. I
The Fresnel reflection coefficient at
)/(n, cosθo+nocO5θ1) (
4-1) rQlfi: (nQcO8θo4rcO8θτ
)/(nocos θ o+n+cos θ t)
(4-2) and the light is the boundary surface S. l
The phase change 2β1 that occurs during one round trip between and S+Z
is 2βτ=4πn, d, (cosθ1)/λ
(5).
基板13の上に薄膜11.12の他にさらに他の薄膜が
形成されている場合(他の薄膜は順次、薄膜12と基板
13との間に設けられているものとする)は、上記の手
続きを繰り返すことにより、一般に基板上に形成された
多層膜の最上N薄膜での振幅反射率ra、 pは、最上
層と入射媒質との境界面に於ける振幅反射率をr0□2
1.とし、上記最上層薄膜をそれと屈折率の等しい入射
媒質(屈折率へ)で置き換えて、直下の薄膜に直接単色
光入射させたときの振幅反射率をrs、 Pとすれば、
上記の(4)式をそのまま適用できる。If other thin films are formed on the substrate 13 in addition to the thin films 11 and 12 (assuming that the other thin films are sequentially provided between the thin film 12 and the substrate 13), the above By repeating the procedure, the amplitude reflectance ra, p at the topmost N thin film of a multilayer film formed on a substrate can be calculated by changing the amplitude reflectance ra,p at the interface between the top layer and the incident medium to r0□2
1. If the above-mentioned top layer thin film is replaced with an incident medium (refractive index) having the same refractive index as that of the top layer thin film, and the amplitude reflectance when monochromatic light is directly incident on the thin film directly below is rs, P, then
The above equation (4) can be applied as is.
rotal prrl Pは一般には複素量であるので
。rotal prrl Since P is generally a complex quantity.
これらを、
robs、p=/)ops、peXP(j φ 。xa
、P) (8−1)ra、p=ρs、peXP
(jδ l、P) (6−2)と
おき、また2βtも複素量であるので、これを2βτ=
γ(ut+iv+) (6−3)と置
く、但しγ=4πdt/λである。These are defined as robs, p=/)ops, peXP(j φ .xa
, P) (8-1) ra, p=ρs, peXP
(jδ l, P) (6-2) Since 2βt is also a complex quantity, we can write this as 2βτ=
γ(ut+iv+) (6-3) where γ=4πdt/λ.
また、11.V、は以下のように与えられる。Also, 11. V is given as follows.
2ut=ni−kj−ngsin”θ。+nI−に+−
nosln θ。÷nmJ (6−4)2u4=
−(nf−ki−ngsin”θ。)÷nl−に+−n
os111 θo +4nxkn (6−5)
(8−1)、 (6−2)、 (8−3)式を(4)式
に代入すると、振幅反射率r=、 pは以下の様になる
。2ut=ni-kj-ngsin"θ.+nI-to+-
nosln θ. ÷nmJ (6-4)2u4=
−(nf−ki−ngsin”θ.)÷nl−+−n
os111 θo +4nxkn (6-5)
When formulas (8-1), (6-2), and (8-3) are substituted into formula (4), the amplitude reflectance r=, p becomes as follows.
rsrp:[p ota、pexp(iφoss、p
)” ρ !L peXP(−Vt γ)axp(i(
δs+p”utγ))]/[Dpoxm、ppts、p
eXPC−v1γ)exp(i(φ oss、p+δ
a、plum ’f ))] (7)この(7)
式で、eXP(−V□7 )=f’ y u+γ=θと
置くと、エネルギー反射率は以下のようになる。rsrp: [p ota, pexp(iφoss, p
)” ρ !L peXP(-Vt γ)axp(i(
δs+p”utγ)]/[Dpoxm, ppts, p
eXPC-v1γ)exp(i(φ oss, p+δ
a, plum 'f))] (7) This (7)
If we set eXP(-V□7)=f' yu+γ=θ in the equation, the energy reflectance will be as follows.
Rp=I rp I ”
[ρRI?+ρ工ρ2+2ρOIPρpρcos(δP
−φ。rp+ o )]/[l+ρjlPρj p 2
+2p orpp pp cos(φOIP+δ、θ)
]R5=1r312=
[ρ島、+ρヱρ2+2ρG+8ρ、pcos(δ3−
φ018”θ)]/[1+ρ島3ρヱρ2+2ρ018
ρ3ρcos (φ01a+68+θ)](8−1)
、 (8−2)は、以下のように変形できる。Rp=I rp I ” [ρRI?+ρ ρ2+2ρOIPρpρcos(δP
−φ. rp+ o )]/[l+ρjlPρj p 2
+2p orpp pp cos(φOIP+δ, θ)
]R5=1r312=[ρ island, +ρヱρ2+2ρG+8ρ, pcos(δ3−
φ018”θ)]/[1+ρ island 3ρヱρ2+2ρ018
ρ3ρcos (φ01a+68+θ)] (8-1)
, (8-2) can be transformed as follows.
Apcosθ−Bpsjnθ”CP
(9−1)^acosθ−B、sinθ=Ca
(El−1)但し。Apcosθ−Bpsjnθ”CP
(9-1)^acosθ−B, sinθ=Ca
(El-1) However.
As、 P
=R,,、cos(φ611!1.P÷δa、 P)−
CO5(δs、p−φ01B、 P)8B、 P
”Ra、 psin(φoss、p+δa、 p)−s
in(δs、p−φ61111P)CM、 p
=[ρR+s、p−Ra、p÷ρ2ρ!、F(1−R8
,Pρo、、、 P)]/2ρO1a、Pρs、pρ
である。As, P = R,, cos(φ611!1.P÷δa, P)-
CO5(δs, p-φ01B, P)8B, P''Ra, psin(φoss, p+δa, p)-s
in (δs, p-φ61111P) CM, p = [ρR+s, p-Ra, p÷ρ2ρ! ,F(1-R8
, Pρo, , P)]/2ρO1a, Pρs, pρ.
上記(9−1)、 (9−2)をsinθ、cosθに
付いて解くとsinθ=(C,A、−A、C,)/(A
、BS−BPA8)cosθ:(CpBs−BpCs)
/ (AJs−BpAs)となる。そこで、恒等式 s
in”θ÷eO9”θ=1を利用すると。Solving the above (9-1) and (9-2) for sin θ and cos θ, sin θ = (C, A, -A, C,)/(A
, BS-BPA8) cos θ: (CpBs-BpCs)
/ (AJs-BpAs). Therefore, the identity s
If we use in"θ÷eO9"θ=1.
Cj(AM+Bり”CM(Ai!+[j)−2CpC+
+(ApAs”BpBg)”(ApBs−BpAs)”
(10)が得られる。Cj(AM+Bri)CM(Ai!+[j)-2CpC+
+(ApAs"BpBg)"(ApBs-BpAs)"
(10) is obtained.
この(10)をρに付いてあられに書くと、a(θ)+
o”+b(θ)p +c((j ) (
11)という2次方程式になる。If we write this (10) in addition to ρ, we get a(θ)+
o”+b(θ)p+c((j) (
11) becomes a quadratic equation.
但し。however.
a(θ)”/) As3/) M”ρ5(1−RpρL
p)”(AM+8り”J)alpP f’/)a(1
−R8/)Ls)”(Ai+Bi)−2ρ。、8ρλρ
。、Pρ滲(1−RpρgIP)(1−Rsp Lm)
(AJa十BPBII)b(θ)=l) gsslJ
Mp!(、o Lp−RP)(1−RPρLr)(Ai
+Bわ+27) LplJ 寥ρM(1) Lm−R8
)(1−Rsp島s)(AM+Bり+2ρLa/) a
ρg、pl) p((1) Lp−RP) 9 M(1
−RspLs)+(ρLs−Rs)ρi (1−Rp+
o j IF)) (APA8+BPBII)−4ρ(
i Isρ蟲ρglPρ1(ApBs”ApBa)”C
(θ):ρgISρ鳳(ρLp−Rp)”(Ai+Bi
)”/) Lpρi(、o Ls−R5)”(Af+
÷Bt)−2ρ018ρSρo+pρ デ(ρg 1p
−Rp)(ρLa−Rs)(ApAs+BJs)上の方
程式(11)をρに付いて解くと、ρ =
(−b(θ)± −aθbθ )/2a(θ)
(12)となる、ところでで、ρ=exp(−v、γ)
であるから(12)をざらにγに付いて解くと、
γ =
−(1/2v+)In[−b(θ)± −a
c/2a(θ)] (13)と
なる、このことがらYは、次のように表すことができる
。a(θ)”/) As3/) M”ρ5(1-RpρL
p)"(AM+8ri"J)alpP f'/)a(1
−R8/)Ls)”(Ai+Bi)−2ρ., 8ρλρ
. , Pρ 滲(1-RpρgIP)(1-Rsp Lm)
(AJa×BPBII)b(θ)=l) gsslJ
MP! (, o Lp-RP) (1-RPρLr) (Ai
+Bwa+27) LplJ 寥ρM(1) Lm-R8
) (1-Rsp island s) (AM+Bri+2ρLa/) a
ρg, pl) p((1) Lp-RP) 9 M(1
−RspLs)+(ρLs−Rs)ρi (1−Rp+
o j IF)) (APA8+BPBII)-4ρ(
i Isρ蟲ρglPρ1(ApBs”ApBa)”C
(θ): ρgISρho(ρLp−Rp)”(Ai+Bi
)”/) Lpρi(, o Ls-R5)”(Af+
÷Bt)-2ρ018ρSρo+pρ de(ρg 1p
−Rp) (ρLa−Rs) (ApAs+BJs) Solving the above equation (11) for ρ, we get ρ = (−b(θ)± −aθbθ )/2a(θ)
(12), by the way, ρ=exp(-v, γ)
Therefore, by solving (12) roughly for γ, we get γ = −(1/2v+)In[−b(θ)± −a
c/2a(θ)] (13) This fact Y can be expressed as follows.
γ=γ(λ、θ0tnOtnl、+*+tns、に1.
に2.、 、 、kwtdl+dz+−−td+++t
na、ka、RP+R5) (”)即ち、γ
は、単色光の波長λ、入射角θ。、入射媒質の屈折率n
0(通常はn、、=1)、基板の屈折率および吸収係数
n8.ks、基板の上にm層に積層された薄膜の屈折率
と吸収係数n1〜nmtkl〜に11.膜厚d。γ=γ(λ, θ0tnOtnl, +*+tns, 1.
2. , , ,kwtdl+dz+--td+++t
na, ka, RP+R5) (”) i.e. γ
are the wavelength λ of monochromatic light and the angle of incidence θ. , refractive index n of the incident medium
0 (usually n, , = 1), the refractive index and absorption coefficient of the substrate n8. ks, the refractive index and absorption coefficient n1~nmtkl~ of the thin film laminated in m layers on the substrate. Film thickness d.
〜d atエネルギー反射率Rp、Rsの関数として定
められる。~d at is determined as a function of the energy reflectance Rp, Rs.
γは、その定義により4πd+/λである。By definition, γ is 4πd+/λ.
上記(14)式に於いて、γを定める引数の内、上記λ
、θ。、no+ n1lyB、n2〜+)@yk2〜に
+a+ d2〜d mは既知の量であり、エネルギー反
射率Rp、Rsは測定により得られる。従って、Rp、
Rsを測定したのちは、未知量nI t k l +
d Hに関する次の方程式が得られる。In the above equation (14), among the arguments that determine γ, the above λ
, θ. , no+ n1lyB, n2~+)@yk2~+a+ d2~d m are known quantities, and the energy reflectances Rp and Rs are obtained by measurement. Therefore, Rp,
After measuring Rs, the unknown quantity nI t k l +
The following equation for d H is obtained:
4zd+/λ=y (nxtks)
(15)関数γの形は必ずしも単純でないが、基本的
には、定義式の各要素を基本的な上記変数λ、θ。等の
関数として順次還元して計算することができ、このプロ
セスはコンピューターにその演算プロセスをプログラミ
ングしておけば良い。4zd+/λ=y (nxtks)
(15) The form of the function γ is not necessarily simple, but basically, each element of the defining equation is replaced by the basic variables λ and θ. It can be calculated by sequentially reducing it as a function, and this process can be done by programming the calculation process in a computer.
方程式(15)に於ける未知量の数は、3個であるから
、これらを特定するには、(15)と同様の方程式が3
以上あれば、それらを未知量に関する連立方程式として
解くことにより、これら未知量を特定できる。(1,5
)と同様の方程式を得るには、入射角を変えてエネルギ
ー反射率を測定すれば良い。Since the number of unknown quantities in equation (15) is three, in order to specify these, the same equation as (15) must be written as three.
If there are any of the above, these unknown quantities can be identified by solving them as simultaneous equations regarding the unknown quantities. (1,5
) can be obtained by measuring the energy reflectance by varying the incident angle.
即ち、入射角が変われば、一般にエネルギー反射率も変
化するので(14)式に於けるパラメーター〇。、Rp
、Rsが変化し、 (15)と等価な方程式が得られる
。That is, if the incident angle changes, the energy reflectance generally changes, so the parameter 〇 in equation (14). , Rp
, Rs changes, and an equation equivalent to (15) is obtained.
従って、最上層の薄膜の屈折率nt、吸収係数に、、膜
厚d、の内で、一般に未知量の数を1個(i≦3)とす
るならば、必要な方程式の数はi個以上であるから、基
板上の多層膜にj個(j≧i)の互いに異なる入射角θ
。1.θ。2*++to。、で、波長がλであるP偏光
とS偏光の単色光を入射させ、各入射光に対するエネル
ギー反射率Rp(θok)、Rs(θ、、)(k=i。Therefore, if the number of unknown quantities in the refractive index nt, absorption coefficient, and film thickness d of the top layer thin film is generally one (i≦3), then the number of required equations is i. Because of the above, there are j (j≧i) different incident angles θ on the multilayer film on the substrate.
. 1. θ. 2*++to. , , P-polarized light and S-polarized monochromatic light having a wavelength of λ are input, and the energy reflectances Rp(θok) and Rs(θ, , )(k=i) for each incident light are made incident.
2、、、j)を測定し、上記基板の屈折率及び吸収係数
、最上層以外の薄膜の屈折率及び吸収係数、膜厚。2, , j) were measured, and the refractive index and absorption coefficient of the above-mentioned substrate, the refractive index and absorption coefficient of the thin film other than the top layer, and the film thickness were measured.
上記エネルギー反射率Rp(θokLRs(θok)及
び入射角θox(k:1t2.、、j)に基づき上記n
1ykl+dlのみを変数とするj個の方程式
4πd+/λ=γx(nt+に+) (k:1〜.0を
特定し、これら方程式群を上記n1ykl*dlの内の
未知量に付いて演算的に解いて未知量を求めることによ
り所望の測定を実現することができる。Based on the energy reflectance Rp (θokLRs (θok)) and the incident angle θox (k: 1t2., j),
j equations with only 1ykl+dl as a variable 4πd+/λ=γx (+ for nt+) (k: 1 to .0 is specified, and these equations are calculated computationally for the unknown quantity in n1ykl*dl above. The desired measurement can be achieved by solving the equation and finding the unknown quantity.
なお、上記方程式群を連立方程式として数値計算により
演算的に解く方法は既に種々の方法がプログラム化され
ているので、これらを適宜利用することかできる。It should be noted that various methods have already been programmed to solve the above-mentioned equation group computationally by numerical calculation as simultaneous equations, so these can be used as appropriate.
[実施例] 以下、具体的な実施例に即して説明する。[Example] Hereinafter, description will be given based on specific examples.
第2図は、本発明を実施するための装置の1例を示して
いる。FIG. 2 shows an example of an apparatus for carrying out the invention.
光源21.22は波長6328人の出力安定He−Ne
レーザーであり、偏光子25.26によりそれぞれS偏
光、P偏光を取り出し得るようになっている。 S、
P偏光の選択はシャッター23.24の開閉により行な
う。符号27は消光比の高い偏光ビームスプリッタ−で
あり、S、P各側光を測定試料0へ導く。Light sources 21 and 22 are He-Ne with a stable output of 6328 wavelengths.
It is a laser, and S-polarized light and P-polarized light can be extracted by polarizers 25 and 26, respectively. S,
Selection of P-polarized light is performed by opening and closing shutters 23 and 24. Reference numeral 27 denotes a polarizing beam splitter with a high extinction ratio, which guides the S and P side lights to the measurement sample 0.
測定試料Oとフォトデテクター28とはθ−2θ系に図
の如く設定される。即ち、測定試料Oは。The measurement sample O and the photodetector 28 are set in the θ-2θ system as shown in the figure. That is, the measurement sample O is.
ターンテーブル29上に設置され、フォトデテクター2
8はアーム30の先端部に固定されている。アーム49
を20だけ回転させると、ターンテーブル29はθだけ
同方向へ回転する。従って測定試料Oへの入射角を0〜
90度の範囲で任意に設定できる。Installed on the turntable 29, the photodetector 2
8 is fixed to the tip of the arm 30. arm 49
When the turntable 29 is rotated by 20, the turntable 29 is rotated by θ in the same direction. Therefore, the angle of incidence on the measurement sample O is set to 0~
It can be set arbitrarily within a 90 degree range.
フォトデテクター28の出力はデータ処理系38に入力
される。データ処理系38は光電変換系38Aとその出
力を演算処理する演算回路38B(具体的にはコンピュ
ーターである)とで構成され、前記特定工程、演算工程
を実行すし、その結果は、出力装置39に出力される。The output of the photodetector 28 is input to a data processing system 38. The data processing system 38 is composed of a photoelectric conversion system 38A and an arithmetic circuit 38B (specifically, a computer) that performs arithmetic processing on the output of the photoelectric conversion system 38A. is output to.
測定試料として屈折率3.858−0.018iの、
Siの基板上にSiN膜をプラズマCVD法により形成
したものを用意した。As a measurement sample, a refractive index of 3.858-0.018i,
A SiN film formed on a Si substrate by plasma CVD was prepared.
このSiNの薄膜の屈折率n1w吸収係数kl+膜厚d
1が測定対象である。Refractive index n1w absorption coefficient kl + film thickness d of this SiN thin film
1 is the measurement target.
この測定試料を第2図の装置にセットし、入射角θ。を
θ。、=30° θ。2=45°、θ、3=60°に設
定し、これら3つの入射角の各々に付きS偏光単色光、
P偏光単色光に対するエネルギー反射率Rp、Rsを求
めた。This measurement sample was set in the apparatus shown in Fig. 2, and the incident angle θ was set. θ. ,=30° θ. 2 = 45°, θ, 3 = 60°, and for each of these three incident angles, S-polarized monochromatic light,
Energy reflectances Rp and Rs for P-polarized monochromatic light were determined.
これらの値は、 Rp(θ。1=30°)=0.03432.Rp(θ。These values are Rp(θ.1=30°)=0.03432. Rp(θ.
、=45″″)=0.01430゜Rp(θ。、=60
°)=0.00318Rs(θot”30” )=0.
08119.R3(θa*”45’ )=0.1359
9゜Rs(θoi=60’ )”0.25276であっ
た。,=45″″)=0.01430°Rp(θ.,=60
°)=0.00318Rs(θot"30")=0.
08119. R3(θa*”45’)=0.1359
9°Rs(θoi=60')"0.25276.
これらを用いて、前述の方程式
%式%)
が得られるが、n1yk+の真値に対して、γl:γ2
=γ3が成り立つはずである。Using these, the above equation (%) is obtained, but for the true value of n1yk+, γl: γ2
=γ3 should hold true.
従って、例えばnlの値を適当に仮定し、klの値をパ
ラメーターとして変化させて、上記γ1=γ、=γ、が
成り立つに□の値があるか否かを調べ、上記に1が無い
ときは、nlの値を別の値に変えて同じことを繰り返す
、この演算プロセスはプログラミングにより計算機によ
り行えば良く、上記γ1=γよ=γ3を満足するnl、
に1が見つかったら、これらの値を上記方程式の右辺に
代入することにより膜厚dユを得ることができる。Therefore, for example, assuming an appropriate value of nl and changing the value of kl as a parameter, check whether there is a value of □ for the above γ1 = γ, = γ to hold, and if there is no 1 in the above, then The same operation is repeated by changing the value of nl to another value. This calculation process can be performed by a computer by programming, and nl that satisfies the above γ1 = γ = γ3,
If 1 is found, the film thickness d can be obtained by substituting these values into the right-hand side of the above equation.
本実施例では、先ずに、の値を0.400に仮定して、
nlの値を1.800から2.200まで変化させてγ
l、γ2゜γ3を計算した。このときγl二γ2=γ3
を満足するnlの値は無かった。そこで次に、klの値
を0.400から若干ずらし、上記と同様の演算を行う
、このようにして演算を繰り返すうち、k□の値を0.
500としたとき、nlの変化に伴いγ、、γ2.γ、
は第3図のように変化し、n1=2.000でγ1=γ
、=γ、=0.9929の関係が満足された。In this example, first, assuming that the value of is 0.400,
By changing the value of nl from 1.800 to 2.200, γ
l, γ2°γ3 were calculated. At this time, γl2 γ2 = γ3
There was no value of nl that satisfied. Therefore, next, the value of kl is slightly shifted from 0.400 and the same calculation as above is performed.While repeating the calculation in this way, the value of k□ is changed to 0.400.
500, as nl changes, γ, γ2 . γ,
changes as shown in Figure 3, and when n1=2.000, γ1=γ
, =γ, =0.9929 was satisfied.
このことから、SiNの薄膜の屈折率nx=2.000
、吸収係数に、=0.500と特定できる6また膜厚d
、は上記方程式4zd+/λ”7x(n++kt)の右
辺を0.9929と置き、λとして6328人を用いる
と、d+=5oo人と特定できる。From this, the refractive index of the SiN thin film nx = 2.000
, the absorption coefficient can be specified as = 0.5006 and the film thickness d
, can be specified as d+=5oo people by setting the right side of the above equation 4zd+/λ''7x(n++kt) as 0.9929 and using 6328 people as λ.
第4図は、本発明を実施するための別の装置例を示して
いる。繁雑を避けるために混同の恐れのないものに付い
ては、第2図に於けると同一の符号を用いた。FIG. 4 shows another example of an apparatus for carrying out the invention. To avoid confusion, the same reference numerals as in FIG. 2 are used for items that are unlikely to be confused.
波長6328人のHe−Neし7ザー21からのレーザ
ー光は、ビームスプリッタ−42により2分割され。The laser light from the He-Ne laser 21 with a wavelength of 6328 is split into two by the beam splitter 42.
一方はフォトデテクター44により受光され、光電変換
系38Gにより光電変換されてデータ処理系38Bに入
力される。One of the lights is received by the photodetector 44, photoelectrically converted by the photoelectric conversion system 38G, and input to the data processing system 38B.
一方、2分割されたレーザー光の他方は、偏向子43に
よりSもしくはP偏光にされて測定試料Oに入射する。On the other hand, the other of the two divided laser beams is made into S or P polarized light by the polarizer 43 and enters the measurement sample O.
先ず、ビームスプリッタ−42と偏光子43を通った後
の入射光量と、フォトデテクター44に入射する光量の
比を予め測定してデータ処理系38Bに入力して置く。First, the ratio of the amount of incident light after passing through the beam splitter 42 and the polarizer 43 to the amount of light incident on the photodetector 44 is measured in advance and input to the data processing system 38B.
測定試料Oとしては、屈折率3.858−0.018i
のSi基板上に熱酸化によりSiO□の膜(屈折率1.
460.膜厚5000人)を形成し、さらにその上にプ
ラズマCVD法によりSiNの膜を形成した。この最上
層薄膜の吸収係数x、=o、sooが知られているもの
とし、屈折率n3、膜厚d1を未知量として、以下の如
くに本発明を実施した。The measurement sample O has a refractive index of 3.858-0.018i
A film of SiO□ (with a refractive index of 1.
460. A SiN film with a thickness of 5,000 mm) was formed, and a SiN film was further formed thereon by plasma CVD. The present invention was carried out as follows, assuming that the absorption coefficient x, =o, soo of this top layer thin film is known, and the refractive index n3 and film thickness d1 are unknown quantities.
即ち、入射角としてθ。、=30° θ。z”80@
とし。That is, θ is the angle of incidence. ,=30° θ. z"80@
year.
S、P偏光に対する。各入射角でのエネルギー反射率を
測定した所。For S, P polarized light. The energy reflectance measured at each angle of incidence.
Rp(θ。、=30°)=0.22609.Rp(0,
2=60@)、0.00313゜Rs(θo+”30°
)=0.33770.Rs(0012”60°)=0.
30120となった。これらを用いて方程式
%式%)
が得られるが、kは既知であるので右辺はnのみの関数
であるenlの真値に対して、γ、=γ2が成り立つは
ずである。Rp(θ.,=30°)=0.22609. Rp(0,
2=60@), 0.00313°Rs(θo+”30°
)=0.33770. Rs(0012"60°)=0.
It became 30120. Using these, the equation %) can be obtained, but since k is known, the right-hand side should hold γ, = γ2 for the true value of enl, which is a function of only n.
本実施例では、n、の値を1.800から2.200ま
で変化させてγ1.γ2を計算した。このときγ1.γ
2の変化は第5図に示す如くなった。図の如<、n、”
2.000でγ1=γ、=t、9858となった。In this example, the value of n is changed from 1.800 to 2.200, and γ1. γ2 was calculated. At this time, γ1. γ
The changes in No. 2 were as shown in Figure 5. As shown in the figure,
2.000, γ1 = γ, =t, 9858.
従って4πd、/λ=1.9858なる関係に、1.6
328人を用いてd、=IO00人を得られる。Therefore, the relationship 4πd, /λ = 1.9858, 1.6
Using 328 people, we can get d,=IO00 people.
かくして、 SiNの薄膜に付きその屈折率2.0、膜
厚1000人を特定できた。In this way, we were able to identify a SiN thin film with a refractive index of 2.0 and a film thickness of 1,000 mm.
[発明の効果]
以上、本発明によれば新規な屈折率・吸収係数・膜厚測
定方法を提供できる。この方法は上述のごとき構成とな
っているので、単層膜・多層膜の最上層薄膜の屈折率・
吸収係数・膜厚を非破壊。[Effects of the Invention] As described above, according to the present invention, a novel method for measuring refractive index, absorption coefficient, and film thickness can be provided. Since this method has the above-mentioned configuration, the refractive index of the topmost thin film of a single-layer film or multi-layer film
Non-destructive absorption coefficient and film thickness.
非接触で精度良く且つ簡易に測定できる。Can be measured easily and accurately without contact.
【図面の簡単な説明】
第1図は、本発明の詳細な説明するための図、第2図は
、本発明の実施に用いる装置の1例を要部のみ略伝する
図、第3図は、第2図の装置を用いた実施例を説明する
ための図、第4図は、本発明の実施に用いる装置の別例
を要部のみ略伝する図、第5図は、第4図の装置を用い
た実施例を説明するための図である。
110.最上層の薄膜、12.、、薄膜、13.、、基
板、0゜ち
図
(A’)
CB>
塵
り
霞
匁f
馬
υ
図[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a diagram for explaining the present invention in detail, Fig. 2 is a diagram schematically illustrating only the main parts of an example of an apparatus used for carrying out the present invention, and Fig. 3 is a diagram for explaining the present invention in detail. , FIG. 4 is a diagram schematically illustrating only the main parts of another example of the apparatus used for carrying out the present invention, and FIG. 5 is a diagram for explaining an embodiment using the apparatus shown in FIG. FIG. 3 is a diagram for explaining an example using the device. 110. Top layer thin film, 12. , , thin film, 13. ,, Board, 0° diagram (A') CB> Dust haze momme f Horse υ diagram
Claims (1)
が形成されており、最上層以外の薄膜の屈折率と吸収係
数及び膜厚が既知であり、上記最上層に関してその屈折
率n_1・吸収係数k_1・膜厚d_1のうちの1以上
が未知量である場合に、これら最上層の薄膜に関する未
知量を測定する方法であって、 上記未知量の数をi個(i≦3)とするとき、基板上の
多層膜にj個(j≧i)の互いに異なる入射角θ_0_
2、θ_0_2、..、θ_0_jで、波長がλである
P偏光とS偏光の単色光を入射させ、各入射光に対する
エネルギー反射率Rp(θ_o_k)、Rs(θ_o_
k)(k=1、2..、j)を測定する工程と、 上記基板の屈折率及び吸収係数、最上層以外の薄膜の屈
折率及び吸収係数、膜厚、上記エネルギー反射率Rp(
θ_o_k)、Rs(θ_o_k)及び入射角θ_o_
K(k=1、2..、j)に基づきフレネルの公式に従
って上記n_1、k_1、d_1のみを変数とするj個
の方程式4πd_1/λ=γ_K(n_1、k_1)(
k=1〜j)を特定する工程と、 上記方程式群を上記n_1、k_1、d_1の内の未知
量に付いて演算的に解いて未知量を求める工程とを有す
る、薄膜の屈折率・吸収係数・膜厚測定方法。[Claims] One or more thin films are formed on a substrate whose refractive index and absorption coefficient are known, and the refractive index, absorption coefficient, and film thickness of the thin films other than the top layer are known, and the above-mentioned When one or more of the refractive index n_1, absorption coefficient k_1, and film thickness d_1 of the top layer is an unknown quantity, this is a method for measuring the unknown quantities of the thin film of the top layer. When i (i≦3), there are j (j≧i) different incident angles θ_0_ on the multilayer film on the substrate.
2, θ_0_2, . .. , θ_0_j, P-polarized light and S-polarized monochromatic light with wavelength λ are incident, and the energy reflectances Rp(θ_o_k) and Rs(θ_o_
k) (k = 1, 2..., j), the refractive index and absorption coefficient of the substrate, the refractive index and absorption coefficient of the thin film other than the top layer, the film thickness, and the energy reflectance Rp (
θ_o_k), Rs(θ_o_k) and incident angle θ_o_
Based on K (k=1, 2.., j), j equations with only the above n_1, k_1, d_1 as variables according to Fresnel's formula 4πd_1/λ=γ_K(n_1, k_1) (
refractive index/absorption of a thin film, which includes a step of specifying k=1 to j), and a step of calculating the unknown amounts by computationally solving the above equation group for the unknown quantities among the above n_1, k_1, and d_1. Coefficient/film thickness measurement method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28108388A JPH02128106A (en) | 1988-11-07 | 1988-11-07 | Measurement of refractive index, absorption coefficient and thickness for thin film |
DE3936541A DE3936541C2 (en) | 1988-11-02 | 1989-11-02 | Method for measuring at least two unknown physical quantities of a single-layer thin film or the top layer of a multi-layer thin-film structure |
US07/610,088 US5107105A (en) | 1988-11-02 | 1990-11-07 | Method for measuring an unknown parameter of a thin film and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28108388A JPH02128106A (en) | 1988-11-07 | 1988-11-07 | Measurement of refractive index, absorption coefficient and thickness for thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02128106A true JPH02128106A (en) | 1990-05-16 |
Family
ID=17634093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28108388A Pending JPH02128106A (en) | 1988-11-02 | 1988-11-07 | Measurement of refractive index, absorption coefficient and thickness for thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02128106A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014016194A (en) * | 2012-07-06 | 2014-01-30 | Otsuka Denshi Co Ltd | Optical characteristics measuring system and optical characteristics measuring method |
RU2772310C1 (en) * | 2021-07-07 | 2022-05-18 | Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" | Method for determining the absorption coefficients of transparent film-forming materials |
-
1988
- 1988-11-07 JP JP28108388A patent/JPH02128106A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014016194A (en) * | 2012-07-06 | 2014-01-30 | Otsuka Denshi Co Ltd | Optical characteristics measuring system and optical characteristics measuring method |
RU2772310C1 (en) * | 2021-07-07 | 2022-05-18 | Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" | Method for determining the absorption coefficients of transparent film-forming materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2927934B2 (en) | Thin film measurement method and apparatus | |
CA1256573A (en) | Method and apparatus for nondestructively determining the characteristics of a multilayer thin film structure | |
US5120966A (en) | Method of and apparatus for measuring film thickness | |
US5101111A (en) | Method of measuring thickness of film with a reference sample having a known reflectance | |
JPH02503115A (en) | differential ellipsometer | |
US5096298A (en) | Method for measuring refractive index of thin film layer | |
US4983823A (en) | Method for determining incident angle in measurement of refractive index and thickness | |
Yang et al. | Design and fabrication of ultra-high precision thin-film polarizing beam splitter | |
JPH02128106A (en) | Measurement of refractive index, absorption coefficient and thickness for thin film | |
US5107105A (en) | Method for measuring an unknown parameter of a thin film and apparatus therefor | |
JP2883192B2 (en) | Optical film thickness measuring device | |
Urban III et al. | Virtual interface method for in situ ellipsometry of films grown on unknown substrates | |
US6731386B2 (en) | Measurement technique for ultra-thin oxides | |
JPH08152307A (en) | Method and apparatus for measuring optical constants | |
Toussaere et al. | Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach | |
CN113532296A (en) | Optical measurement system, multilayer film manufacturing apparatus, and optical measurement method | |
JPS63140940A (en) | Measuring method for refractive index and film thickness | |
JPH02124449A (en) | Method for measuring refractive index of thin film | |
JPH02198305A (en) | Incident-angle determining method in measurement of refractive index and film thickness | |
JPH0365637A (en) | Method of measuring index of refraction and thickness of thin film | |
JP3401058B2 (en) | Method and apparatus for measuring optical properties of thin film | |
JPS63313034A (en) | Refractive index measuring method | |
JPH04109147A (en) | Measuring method for complex refraction factor and measuring device thereof | |
JPH04361106A (en) | Measuring method of intermediate layer | |
JPS60249007A (en) | Instrument for measuring film thickness |