JPH02127113A - Suspension device for vehicle - Google Patents

Suspension device for vehicle

Info

Publication number
JPH02127113A
JPH02127113A JP28064388A JP28064388A JPH02127113A JP H02127113 A JPH02127113 A JP H02127113A JP 28064388 A JP28064388 A JP 28064388A JP 28064388 A JP28064388 A JP 28064388A JP H02127113 A JPH02127113 A JP H02127113A
Authority
JP
Japan
Prior art keywords
vehicle height
floor height
vehicle
suspension mechanism
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28064388A
Other languages
Japanese (ja)
Inventor
Kosuke Matsubara
浩輔 松原
Takeo Fukumura
福村 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP28064388A priority Critical patent/JPH02127113A/en
Publication of JPH02127113A publication Critical patent/JPH02127113A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/12Sampling or average detecting; Addition or substraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/22Magnetic elements
    • B60G2600/26Electromagnets; Solenoids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To make it possible to adjust the floor height to the height approximate to an aimed value by stopping the output after actnating a drivesystem for a calculated time necessary for each of suspension mechanisms at the time when the difference between a detected value of the floor height and the aimed value exceeds an allowable range restraining an influence of external disturbance at the time of stopping the floor height adjustment output. CONSTITUTION:When the average floor height detection value during a time T exceeds the allowable range of an aimed value while a vehicle is running, for even one of respective suspension mechanism main bodies 10 an output time T necessary to get rid of the floor height difference in the main bodies 10 is calculated and a drive system 52 corresponding to the suspension mechanism main bodies 10 is actuated only for the time T. Namely, when the floor height is too large, a solenoid valve 56 for lowering is opened to extract a part of oil from the main bodies 10, and when the floor height is too small, a solenoid valve 55 for raising is opened to supply oil to the main bodies 10. Consequently, when the specifit output time T passes, the output to the drive system 52 is stopped to maintain the floor height. Accordingly, even if the influence of external disturbance is added during the adjustment of the floor height, it is possible to return the floor height to the floor height aimed value in the same way in the case of no external disturbance after getting rid of the external disturbance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車体の高さを調整できるような車高調整機能
を有する車両用懸架装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicle suspension system having a vehicle height adjustment function capable of adjusting the height of a vehicle body.

〔従来の技術〕[Conventional technology]

車高調整機能を有する車両用懸架装置は従来からいくつ
か提案されている。この種の懸架装置の一例として、油
あるいはガス等の流体を封入した懸架機構本体の内部に
油あるいはガスを出し入れすることにより、車高を制御
できるようにした懸架装置がある。このものにおいては
、車高センサ等の車高検出手段によって車高を常時監視
し、その検出値が所望の車高目標値の許容範囲を越えた
時に、懸架機構本体に上記流体を出し入れすることによ
り、車高目標値を維持できるようにしている。
Several vehicle suspension systems having a vehicle height adjustment function have been proposed in the past. An example of this type of suspension system is a suspension system in which the vehicle height can be controlled by pumping oil or gas into and out of a suspension mechanism body that is filled with a fluid such as oil or gas. In this device, the vehicle height is constantly monitored by a vehicle height detection means such as a vehicle height sensor, and when the detected value exceeds the allowable range of a desired vehicle height target value, the above fluid is introduced into and taken out from the suspension mechanism body. This allows the target vehicle height to be maintained.

ところで走行中の車両は路面の凹凸によって常時上下動
している。このため車高センサからの出力信号は一定時
間の平均値をとることによって実質的な車高を判断する
ことが望ましい。
By the way, a running vehicle constantly moves up and down due to the unevenness of the road surface. For this reason, it is desirable to determine the actual vehicle height by taking the average value of the output signal from the vehicle height sensor over a certain period of time.

このような観点から、本発明者らが先に提案した懸架装
置(特開昭82−8807号参照)の車高調整ロジック
では、第6図に示されるように、車両の走行中は比較的
長い時間tl (例えば20秒以上)の車高検出値の移
動平均を算出し、この平均値を車高目標値と比較すると
ともに、その車高差が所定の許容範囲を越えた時に車高
調整の出力を開始するようにしている。そして車高調整
出力を停止させる際には、比較的短い時間tz  (例
えば5秒以内)の移動平均値を車高目標値と比較させる
ことにより、調整後の車高が極力目標値に近付くように
考慮している。
From this point of view, the vehicle height adjustment logic of the suspension system previously proposed by the present inventors (see Japanese Patent Laid-Open No. 82-8807), as shown in FIG. Calculate the moving average of vehicle height detection values over a long period of time tl (for example, 20 seconds or more), compare this average value with the vehicle height target value, and adjust the vehicle height when the vehicle height difference exceeds a predetermined tolerance range. I am trying to start outputting. When stopping the vehicle height adjustment output, the moving average value over a relatively short period of time tz (for example, within 5 seconds) is compared with the vehicle height target value, so that the adjusted vehicle height comes as close to the target value as possible. We are taking this into account.

[発明が解決しようとする課題] 上記先行技術の懸架装置においては、ばね定数の比較的
高い車両であればロールやダイブ等の外乱の影響を受け
ずにすむが、ばね定数の低い車両の場合に、外乱の影響
を受けることによって実際の車高と目標値とのずれが大
きくなることがあった。すなわち第7図に示されるよう
に、車高調整中の出力と外乱が重なった時に、見掛は上
の車高目標値に達することにより車高調整出力が停止し
てしまい、その後に外乱が解消すると車高が目標値から
ずれてしまう。
[Problems to be Solved by the Invention] In the suspension system of the above-mentioned prior art, vehicles with relatively high spring constants are not affected by disturbances such as rolls and dives, but vehicles with low spring constants Furthermore, the deviation between the actual vehicle height and the target value could become large due to the influence of external disturbances. In other words, as shown in Figure 7, when the output during vehicle height adjustment and a disturbance overlap, the vehicle height adjustment output apparently stops as it reaches the vehicle height target value above, and then the disturbance occurs. If the problem is resolved, the vehicle height will deviate from the target value.

従って本発明の目的は、車高調整出力を停止する際に外
乱の影響を抑制して目標値に近い高さに制御できるよう
な懸架装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a suspension system that can control the height close to a target value by suppressing the influence of disturbance when stopping the vehicle height adjustment output.

[課題を解決するための手段] 上記目的を果たすために本発明者が発明した懸架装置は
、内部に油やガス等の流体が収容されその流体の量に応
じて軸方向に伸縮可能でかつ各車輪ごとに設けられる複
数の懸架機構本体と、これら懸架機構本体にそれぞれ流
体を出し入れ可能な駆動系と、各車輪ごとの車高値を検
出する車高検出手段とを備えている車両用懸架装置にお
いて、上記車高検出手段によって検出された各車輪ごと
の車高値または車高平均値を車高目標値と比較してその
差を算出するとともに、この車高差が許容範囲を越えた
時に、予め求めておいた各懸架機構本体に固有の基準作
動速度をもとにして上記車高差をなくすのに必要な各懸
架機構本体ごとの出力時間を算出し、この出力時間だけ
当該懸架機構本体に対応する駆動系を作動させたのちに
当該駆動系への出力を停止させるロジック回路を備えて
いることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present inventor has invented a suspension device which contains a fluid such as oil or gas inside and is capable of expanding and contracting in the axial direction according to the amount of the fluid. A vehicle suspension system that includes a plurality of suspension mechanism bodies provided for each wheel, a drive system that can feed fluid into and out of these suspension mechanism bodies, and vehicle height detection means that detects the vehicle height value of each wheel. In this step, the vehicle height value or vehicle height average value for each wheel detected by the vehicle height detection means is compared with a vehicle height target value to calculate the difference therebetween, and when this vehicle height difference exceeds an allowable range, The output time required for each suspension mechanism body to eliminate the above vehicle height difference is calculated based on the reference operating speed specific to each suspension mechanism body determined in advance, and the output time for each suspension mechanism body is calculated for this output time. The present invention is characterized in that it includes a logic circuit that operates the drive system corresponding to the drive system and then stops the output to the drive system.

[作用] 車両が走行状態にある時、上記ロジック回路においては
、車高検出手段によって検出された各車輪ごとの実質的
な車高値が車高目標値と比較されてその差が算出される
。そしてこの車高差が許容範囲を越えると、予め求めて
おいた各懸架機構本体に固有の作動速度をもとにして各
懸架機構本体に必要な出力時間が算出される。そしてこ
の出力時間だけ当該懸架機構本体に対応する駆動系が作
動させられたのちに、当該駆動系への出力が停止させら
れる。
[Operation] When the vehicle is in a running state, the logic circuit compares the actual vehicle height value of each wheel detected by the vehicle height detection means with the vehicle height target value and calculates the difference. If this vehicle height difference exceeds the allowable range, the output time required for each suspension mechanism body is calculated based on the predetermined operating speed unique to each suspension mechanism body. After the drive system corresponding to the suspension mechanism main body is operated for this output time, the output to the drive system is stopped.

上記ロジック回路は、車高調整出力を開始したのちは、
外乱の影響を受ける車高センサ等からの検出信号に頼る
ことなく、車高目標値に近付くよう車高差に応じて計算
された出力時間だけ懸架機構本体が駆動される。
After the above logic circuit starts outputting vehicle height adjustment,
The suspension mechanism main body is driven for an output time calculated according to the vehicle height difference so as to approach the vehicle height target value without relying on a detection signal from a vehicle height sensor or the like that is affected by external disturbances.

[実施例] 以下に本発明の一実施例について、第1図ないし第5図
を参照して説明する。
[Example] An example of the present invention will be described below with reference to FIGS. 1 to 5.

第2図に示されるように、前後左右の各車輪ごとに合計
4つの懸架機構本体10が設けられている。第3図に示
されるように、各懸架機構本体10は、主シリンダ機構
11と、副チャンバ12とを備えて構成されている。主
シリンダ機構11は、内部に油室15をもつシリンダ1
6と、このシリンダ16の軸線方向に移動自在に挿入さ
れた中空のロッド17を備えている。シリンダ16の図
示上端側には軸封部18が設けられている。シリンダ1
6の下部に設けられた取付は部20は、車輪側の部材に
連結される。
As shown in FIG. 2, a total of four suspension mechanism bodies 10 are provided for each of the front, rear, left and right wheels. As shown in FIG. 3, each suspension mechanism main body 10 includes a main cylinder mechanism 11 and a subchamber 12. The main cylinder mechanism 11 includes a cylinder 1 having an oil chamber 15 inside.
6, and a hollow rod 17 inserted movably in the axial direction of the cylinder 16. A shaft seal portion 18 is provided on the upper end side of the cylinder 16 in the drawing. cylinder 1
An attachment part 20 provided at the lower part of the wheel 6 is connected to a member on the wheel side.

ロッド17の図示下端側に設けられた減衰力発生機構2
2は、ピストン状部分23と、可変オリフィス24を備
えている。この可変オリフィス24は、減速機付きのモ
ータ25により回転される弁26の回転位置を変えるこ
とによって流路断面積、すなわち減衰力を変化させるこ
とができるようになっている。
Damping force generation mechanism 2 provided at the lower end side of the rod 17 in the drawing
2 includes a piston-like portion 23 and a variable orifice 24. The variable orifice 24 is configured such that the cross-sectional area of the flow path, that is, the damping force, can be changed by changing the rotational position of a valve 26 rotated by a motor 25 with a speed reducer.

ロッド17の内部には、軸線方向に沿う油の流通部27
が設けられており、この流通部27は上記可変オリフィ
ス24を介して油室15に連通可能としである。ロッド
17の上端に設けられた取付は部28は、図示しない車
体側の部材に連結される。
Inside the rod 17, there is an oil circulation section 27 along the axial direction.
The flow section 27 can communicate with the oil chamber 15 via the variable orifice 24. A mounting portion 28 provided at the upper end of the rod 17 is connected to a member on the vehicle body side (not shown).

副チャンバ12は、ハウジング31と、このハウジング
31の内部に設けられた内筒32と、ベローズ状仕切り
部材33などからなり、仕切り部材33の内側が油室3
5として使われる。この油室35は、油路36を介して
ロッド17の流通部27に連通ずる。仕切り部材33と
ハウジング31との間は気室37として使われ、この気
室37には窒素等の不活性ガスが封入されている。
The subchamber 12 consists of a housing 31, an inner cylinder 32 provided inside the housing 31, a bellows-shaped partition member 33, etc., and the inside of the partition member 33 is connected to the oil chamber 3.
Used as 5. This oil chamber 35 communicates with the circulation portion 27 of the rod 17 via an oil passage 36. The space between the partition member 33 and the housing 31 is used as an air chamber 37, and this air chamber 37 is filled with an inert gas such as nitrogen.

ベローズ状仕切り部月33は、気室37の容積変動に応
じて軸方向に伸縮する。38はベローズキャップである
。この副チャンバ12は、主シリンダ機構11のすぐ脇
に一体的に組付けられていてもよいし、あるいは主シリ
ンダ機構11とは別の位置に配置されていてもよい。
The bellows-like partition portion 33 expands and contracts in the axial direction in response to changes in the volume of the air chamber 37. 38 is a bellows cap. This sub-chamber 12 may be integrally assembled immediately beside the main cylinder mechanism 11, or may be located at a different position from the main cylinder mechanism 11.

気室37に封入されたガスの圧力は油室35と油路36
を介して油室15に作用するため、ロッド17はシリン
ダ16から突出する方向に付勢される。気室37内のガ
スは、車体の荷重を支持できるに足る高い圧力で封入さ
れている。シリンダ16に対してロッド17が軸方向に
相対移動すると、ロッド17の押込み量に応じた油が油
路36を介して油室15,35間を流れ、それに伴って
気室37の容積が変化するとともに、仕切り部材33が
軸方向に伸縮する。
The pressure of the gas sealed in the air chamber 37 is controlled by the oil chamber 35 and the oil passage 36.
Since the rod 17 acts on the oil chamber 15 through the cylinder 16, the rod 17 is urged in the direction of protruding from the cylinder 16. The gas in the air chamber 37 is sealed at a pressure high enough to support the load of the vehicle body. When the rod 17 moves relative to the cylinder 16 in the axial direction, oil according to the pushing amount of the rod 17 flows between the oil chambers 15 and 35 via the oil passage 36, and the volume of the air chamber 37 changes accordingly. At the same time, the partition member 33 expands and contracts in the axial direction.

第2図に示されるように、各懸架機構本体10に、油圧
配管41..42,43.44を介して車高調整用の弁
アセンブリ46.47,48.49と油圧ポンプ51が
接続されている。これらの弁アセンブリ46〜49と油
圧ポンプ51等は、流体の駆動系52を構成する。53
はドレン配管であり、このドレン配管53は懸架機構本
体10の軸封部18などから漏れる油をタンク54に回
収する。弁アセンブリ46〜49は互いに同一の構成で
あり、°それぞれ車高上昇用の電磁弁55と車高降下用
の電磁弁56を備えている。
As shown in FIG. 2, each suspension mechanism main body 10 has hydraulic piping 41. .. A hydraulic pump 51 is connected to valve assemblies 46, 47, 48, 49 for vehicle height adjustment via 42, 43, 44. These valve assemblies 46 to 49, hydraulic pump 51, etc. constitute a fluid drive system 52. 53
is a drain pipe, and this drain pipe 53 collects oil leaking from the shaft seal portion 18 of the suspension mechanism main body 10 into a tank 54. The valve assemblies 46 to 49 have the same construction and each includes a solenoid valve 55 for raising the vehicle height and a solenoid valve 56 for lowering the vehicle height.

また、各車輪ごとの車高値を検出するための手段として
車高センサ61(第4図参照)が設けられている。そし
て車高センサ61はマイクロコンピュータ等を用いた制
御装置62に接続されている。制御装置62は前述した
弁アセンブリ46〜49の電磁弁55.56に開閉制御
信号を送出するようになっている。また、この制御装置
62に、第1図に示すようなロジック回路63と補正用
ロジック回路64がプログラミングされている。第4図
中の65は車高設定器である。
Further, a vehicle height sensor 61 (see FIG. 4) is provided as means for detecting the vehicle height value for each wheel. The vehicle height sensor 61 is connected to a control device 62 using a microcomputer or the like. The control device 62 is configured to send opening/closing control signals to the electromagnetic valves 55, 56 of the valve assemblies 46-49 described above. Furthermore, a logic circuit 63 and a correction logic circuit 64 as shown in FIG. 1 are programmed into this control device 62. 65 in FIG. 4 is a vehicle height setting device.

次に、上記構成の懸架装置の作用について説明する。Next, the operation of the suspension system having the above configuration will be explained.

車高センサ61によって検出された車高値は、所定間隔
(例えば0.2秒)ごとに制御装置62に取込まれる。
The vehicle height value detected by the vehicle height sensor 61 is taken into the control device 62 at predetermined intervals (for example, every 0.2 seconds).

そして車両が駐車状態にある時と走行状態にある時とで
は異なったデータ処理が行なわれる。
Different data processing is performed when the vehicle is parked and when the vehicle is running.

駐屯時には、比較的短い時間(例えば1秒間)における
車高検出平均値が車高目標値と比較される。車高目標値
は予め設定器65によって入力することができる。そし
て上記時間ごとの検出平均値が車高目標値の許容範囲を
越えた時に、直ちに制御装置62によって車高調整出力
信号が駆動系52に送出され、車高が高過ぎている時に
は降下用電磁弁56が開弁させられて懸架機構本体10
の油室15,35から油の一部が抜かれ、車高が低過ぎ
ている時には上昇用電磁弁55が開弁されて懸架機構本
体10に浦が供給される。こうして検出平均値が車高目
標値と一致するまで各々の懸架機構本体10において車
高調整出力が継続される。駐車中は路面の凹凸による外
乱の影響がないため、車高センサ61からの検出信号を
もとに車高調整出力の停止時機を判断しても何ら問題は
ない。
When the vehicle is parked, the vehicle height detection average value over a relatively short period of time (for example, one second) is compared with the vehicle height target value. The vehicle height target value can be input in advance using the setter 65. When the average value detected at each time exceeds the allowable range of the vehicle height target value, the control device 62 immediately sends a vehicle height adjustment output signal to the drive system 52, and if the vehicle height is too high, the lowering electromagnetic The valve 56 is opened and the suspension mechanism main body 10
A portion of the oil is drained from the oil chambers 15, 35, and when the vehicle height is too low, the lifting solenoid valve 55 is opened to supply oil to the suspension mechanism main body 10. In this way, the vehicle height adjustment output is continued in each suspension mechanism main body 10 until the detected average value matches the vehicle height target value. While the vehicle is parked, there is no influence of disturbances due to unevenness of the road surface, so there is no problem in determining when to stop the vehicle height adjustment output based on the detection signal from the vehicle height sensor 61.

走行中においては、外乱(ロールやダイブ等)による影
響があるため、第1図に示されるロジック回路63を経
て車高の制御が行なわれる。すなわち走行中においては
、比較的長い時間t(例えば50秒以上)の車高検出平
均値が目標値と比較され、その差が許容範囲を越えた時
に、その車高差を解消させるのに必要な出力時間Tが算
出される。
While the vehicle is running, the vehicle height is controlled via a logic circuit 63 shown in FIG. 1 because of the influence of disturbances (roll, dive, etc.). In other words, while driving, the average vehicle height detection value over a relatively long period of time t (for example, 50 seconds or more) is compared with the target value, and when the difference exceeds the allowable range, the vehicle height difference is required to be resolved. The output time T is calculated.

車高差が許容範囲内に収まっている場合は、再び時間を
当りの平均を算出するとともに、目標値との比較を繰返
す。なお、車高センサ61がアナログ出力のものではロ
ーパスフィルタを通した後に車高センサ値をダイレクト
で判断することも可能である。但し、以下の説明では平
均値で判断する場合について述べる。
If the vehicle height difference is within the allowable range, the average over time is calculated again and the comparison with the target value is repeated. Note that if the vehicle height sensor 61 is an analog output type, it is also possible to directly determine the vehicle height sensor value after passing it through a low-pass filter. However, in the following explanation, a case will be described in which the determination is made based on the average value.

車高:A整に要する出力時間Tは、各懸架機構本体10
に固有の作動速度に左右される。つまり懸架機構本体1
0は、電磁弁55.56のいずれか一方を開弁させたと
きに油が懸架機構本体10に供給または排出されること
によって上昇または下降するものであり、駆動系52に
よって給排出できる能力は限られているから、懸架機構
本体10に負荷されている荷重条件等に応じて作動速度
に差がでてくる。また、車高調整の行なわれる懸架機構
本体10の数が1つか複数かによっても作動速度に差が
でてくるし、上昇か下降かによっても作動速度に差があ
る。このため、予め各懸架機構本体10ごとに所定の荷
重条件下で実測しておいた基準作動速度をもとにして、
各々の懸架機構本体10ごとの車高調整に必要な出力時
間Tを算出する。
Vehicle height: The output time T required for A adjustment is
depends on the specific actuation speed. In other words, the suspension mechanism body 1
0 indicates that when either one of the electromagnetic valves 55 or 56 is opened, oil is supplied to or discharged from the suspension mechanism main body 10, thereby raising or lowering the oil, and the ability to supply and discharge oil by the drive system 52 is Since it is limited, the operating speed will vary depending on the load conditions applied to the suspension mechanism main body 10, etc. Further, the operating speed also differs depending on whether the number of suspension mechanism bodies 10 to be adjusted is one or more, and there is also a difference depending on whether the vehicle height is being raised or lowered. For this reason, based on the reference operating speed that has been measured in advance under predetermined load conditions for each suspension mechanism main body 10,
The output time T necessary for adjusting the vehicle height for each suspension mechanism main body 10 is calculated.

具体的にいうと、前輪と後輪とでは荷重分担の差などに
よって各懸架機構本体10の作動速度に差があり、しか
も左右一対の懸架機構本体10゜10を左右同時に上昇
させる時の作動速度は、左右の片側のみを上昇させる時
の作動速度の半分になるといった具合である。
Specifically, there is a difference in the operating speed of each suspension mechanism body 10 between the front wheels and the rear wheels due to the difference in load sharing, and moreover, the operating speed when raising the left and right suspension mechanism bodies 10°10 of the pair of left and right wheels at the same time is different. is half the operating speed when only one side, left or right, is raised.

前輪と後輪双方の車高を上げる必要がある場合、まず後
輪側の車高を上げたのちに前輪側の車高を上げるような
シーケンス制御が行なわれる。左輪と右輪は同時に上げ
るようになっている。従って、前輪の片側のみを上げる
時の基準作動速度がvlであれば、前輪の左右を同時に
上げる時の作動速度はvl/2である。また、後輪の片
側のみを上げる時の作動速度がv2であるなら、後輪の
左右両側を同時に上げる時の速度はv2/2である。
When it is necessary to raise the vehicle height of both the front wheels and the rear wheels, sequence control is performed to first raise the vehicle height of the rear wheels, and then to raise the vehicle height of the front wheels. The left and right wheels are raised at the same time. Therefore, if the reference actuation speed when raising only one side of the front wheels is vl, the actuation speed when raising both the left and right front wheels simultaneously is vl/2. Furthermore, if the operating speed when raising only one side of the rear wheel is v2, then the speed when raising both left and right rear wheels simultaneously is v2/2.

この値は、前輪と後輪双方の車高を上げる必要がある時
にも当てはまる。また、車高を下げる時には、前輪側の
降下速度は左右同時でも片側でもV3であり、後輪側の
降下速度は左右同時でも片側でもv4である。このよう
にして、各車輪ごとの作動速度V、〜v4のデータを実
測により予め設定しておく。なお、これら基準作動速度
を求める時の荷重条件は、上昇時は上昇速度の速い空車
(積載荷重ゼロ)の状態とし、下降時は下降速度の速い
積車状態とすることによってζ実際の車高調整時に調整
量が過剰になることを防ぐようにする。
This value also applies when it is necessary to raise the vehicle height of both the front and rear wheels. Further, when lowering the vehicle height, the lowering speed of the front wheels is V3 both on the left and right sides at the same time and on one side, and the lowering speed of the rear wheels is V4 on both the left and right sides simultaneously and on one side. In this way, the data of the operating speed V, ~v4 for each wheel is set in advance by actual measurement. The load conditions when determining these reference operating speeds are as follows: When ascending, the vehicle is empty (with no load), and when descending, the vehicle is loaded, which is descending rapidly. To prevent excessive adjustment amount during adjustment.

上記のようにして各懸架機構本体10ごとの基準作動速
度を求めておき、車両の走行中に、各懸架機構本体10
のうち1つでもt時間中の車高検出平均値が目標値の許
容範囲を越えた時に、当該懸架機構本体10において車
高差をなくすのに必要な出力時間Tが算出され、その出
力時間Tだけ当該懸架機構本体10に対応する駆動系5
2が動作される。すなわち車高が高過ぎている時には降
下用電磁弁5°6が開弁させられて懸架機構本体10か
ら油の一部が抜かれ、車高が低過ぎている時には上昇用
電磁弁55が開弁させられて懸架機構本体10に油が供
給される。こうして所定の出力時間Tが経過したら駆動
系52への出力が停止され、車高が維持される。車高調
整出力終了後は、再び時間tの平均値をとり、車高目標
値と比較するといった繰返しを行なう。
The reference operating speed for each suspension mechanism main body 10 is determined as described above, and while the vehicle is running, each suspension mechanism main body 10
When even one of the vehicle height detection average values during time t exceeds the allowable range of the target value, the output time T required to eliminate the vehicle height difference in the suspension mechanism main body 10 is calculated, and the output time T is calculated. The drive system 5 corresponding to the suspension mechanism main body 10 by T
2 is operated. That is, when the vehicle height is too high, the lowering solenoid valve 5°6 is opened to drain some of the oil from the suspension mechanism main body 10, and when the vehicle height is too low, the ascending solenoid valve 55 is opened. As a result, oil is supplied to the suspension mechanism main body 10. In this way, after the predetermined output time T has elapsed, the output to the drive system 52 is stopped, and the vehicle height is maintained. After the vehicle height adjustment output is completed, the average value of the time t is again taken and compared with the vehicle height target value, and the process is repeated.

このように上記制御装置62におけるロジック回路63
は、車高調整出力を開始したのちは外乱の影響を受けや
すい車高センサ61からの検出信号に頼ることなく、各
懸架機構本体10に固有の基準作動速度v1〜V4をも
とにして計算された出力時間Tだけ駆動系52を動作さ
せることにより車高目標値に近付けるようにしたから、
第5図に示されるように、車高調整中に外乱の影響が加
わっても、外乱が解消したのちは外乱が無い場合と同様
に車高目標値まで車高を復帰させることができる。
In this way, the logic circuit 63 in the control device 62
is calculated based on the reference operating speeds v1 to V4 specific to each suspension mechanism main body 10, without relying on the detection signal from the vehicle height sensor 61, which is susceptible to disturbances after the vehicle height adjustment output has started. By operating the drive system 52 for the specified output time T, the vehicle height is brought closer to the target value.
As shown in FIG. 5, even if the influence of a disturbance is applied during vehicle height adjustment, after the disturbance is resolved, the vehicle height can be returned to the vehicle height target value as in the case without the disturbance.

なお、本実施例のロジック回路63において、基準作動
速度V】〜V4を補正するための補正用ロジック回路6
4を組込むようにしてもよい。この補正用ロジック回路
64としては、前述した初期基準速度V1〜v4を決定
したのちに、駐車から走行状態に移行するまでの最後に
行なった車高調整後における車高値または所定時間当り
の車高平均値と、その車高調整に要した出力時間をもと
にして新規の基準作動速度を算出し、この基準速度を次
回に車高調整を行なう際の基準速度として使用する。
In the logic circuit 63 of this embodiment, a correction logic circuit 6 for correcting the reference operating speed V] to V4 is provided.
4 may be incorporated. This correction logic circuit 64 determines the vehicle height value after the last vehicle height adjustment performed from parking to driving state after determining the above-mentioned initial reference speeds V1 to V4, or the vehicle height per predetermined time. A new reference operating speed is calculated based on the average value and the output time required for the vehicle height adjustment, and this reference speed is used as the reference speed for the next vehicle height adjustment.

あるいは、1回目の車高調整は前述した初期基準速度V
1〜V4をもとにして車高調整を行ない、2回目以降は
前回に行なった車高調整後における車高値または所定時
間当りの車高平均値とその車高調整に要した出力時間を
もとにして新規の2!準作動速度を算出し、この新規基
準速度と前回分の車高調整に使われた基準速度との平均
値を、次回に車高調整を行なう際の基準速度V、 〜V
4として使用する。こうすれば、新規基準速度が何らか
の原因によって実際の作動速度と食違いを生じた場合に
も、前回調整時のデータが加味されているから誤差によ
る影響を少なくできる。こうした補正ロジックの採用に
より、様々な荷重条件や温度条件等によって変化する作
動速度を次々に最適なものに更新してゆくことができる
Alternatively, the first vehicle height adjustment may be performed at the initial reference speed V as described above.
Adjust the vehicle height based on 1 to V4, and from the second time onwards, the vehicle height value after the previous vehicle height adjustment or the average vehicle height value per predetermined time and the output time required for the vehicle height adjustment are also calculated. A new 2! The semi-operating speed is calculated, and the average value of this new reference speed and the reference speed used for the previous vehicle height adjustment is set as the reference speed V, ~V for the next vehicle height adjustment.
Use as 4. In this way, even if the new reference speed deviates from the actual operating speed for some reason, the influence of the error can be reduced because the data from the previous adjustment is taken into account. By employing such correction logic, the operating speed, which changes depending on various load conditions, temperature conditions, etc., can be successively updated to the optimum speed.

前記実施例では副チャンバ12に気室37を設けている
が、本発明を実施するに当っては主シリンダ機構11に
気室と油室を内蔵するようにしてもよいし、あるいは2
つ以上の副チャンバ12を切換え可能に接続したもので
あってもよい。
In the embodiment described above, the sub-chamber 12 is provided with an air chamber 37, but in carrying out the present invention, the main cylinder mechanism 11 may have an air chamber and an oil chamber built-in, or two
Two or more sub-chambers 12 may be connected in a switchable manner.

[発明の効果コ 本発明によれば、車高調整の出力中に生じたロールやダ
イブ等の外乱に左右されることなく、所望の目標値に車
高を近付けることができる。
[Effects of the Invention] According to the present invention, the vehicle height can be brought close to a desired target value without being influenced by disturbances such as roll or dive that occur during the output of vehicle height adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の一実施例を示し、第1図
は車高調整のロジックを示すフローチャート、第2図は
懸架装置の構成の概略を示す油圧系統図、第3図は懸架
機構本体の縦断面図、第4図は制御装置と駆動系等との
関係を示す概略図、第5図は目標値と車高検出値との関
係を示す図、第6図は従来の懸架装置における目標値と
車高検出値との関係を示す図、第7図は従来の懸架装置
において外乱が加わった場合の目標値と車高検出値との
関係を示す図である・。 10・・・懸架機構本体、15・・・油室、16・・・
シリンダ、17・・・ロッド、33・・・仕切り部材、
35・・・油室、37・・・気室、46,47,48.
49・・・弁アセンブリ、52・・・駆動系、55・・
・車高上昇用電磁弁、56・・・車高降下用電磁弁、6
1・・・車高検出手段、 2・・・制御装置、 3・・・ロジック回路、 64・・・補正用ロジック回路。
1 to 5 show an embodiment of the present invention, FIG. 1 is a flowchart showing the logic of vehicle height adjustment, FIG. 2 is a hydraulic system diagram showing an outline of the structure of the suspension system, and FIG. 4 is a schematic diagram showing the relationship between the control device and the drive system, etc., FIG. 5 is a diagram showing the relationship between the target value and the detected vehicle height value, and FIG. 6 is the conventional FIG. 7 is a diagram showing the relationship between the target value and the detected vehicle height value in a suspension system, and FIG. 7 is a diagram showing the relationship between the target value and the detected vehicle height value when a disturbance is applied in a conventional suspension system. 10... Suspension mechanism body, 15... Oil chamber, 16...
cylinder, 17... rod, 33... partition member,
35... Oil chamber, 37... Air chamber, 46, 47, 48.
49... Valve assembly, 52... Drive system, 55...
・Solenoid valve for raising vehicle height, 56... Solenoid valve for lowering vehicle height, 6
DESCRIPTION OF SYMBOLS 1... Vehicle height detection means, 2... Control device, 3... Logic circuit, 64... Logic circuit for correction|amendment.

Claims (2)

【特許請求の範囲】[Claims] (1)内部に流体が収容されその流体の量に応じて軸方
向に伸縮可能でかつ各車輪ごとに設けられる複数の懸架
機構本体と、これら懸架機構本体にそれぞれ流体を出し
入れ可能な駆動系と、各車輪ごとの車高値を検出する車
高検出手段とを備えている車両用懸架装置において、 上記車高検出手段によって検出された各車輪ごとの車高
値または所定時間当りの車高平均値を車高目標値と比較
してその差を算出するとともに、この車高差が許容範囲
を越えた時に、予め求めておいた各懸架機構本体に固有
の基準作動速度をもとにして上記車高差をなくすのに必
要な各懸架機構本体ごとの出力時間を算出し、この出力
時間だけ当該懸架機構本体に対応する駆動系を作動させ
たのちに当該駆動系への出力を停止させるロジック回路
を備えていることを特徴とする車両用懸架装置。
(1) A plurality of suspension mechanism bodies that contain fluid inside and can expand and contract in the axial direction according to the amount of fluid, and are provided for each wheel, and a drive system that can put fluid in and out of each of these suspension mechanism bodies. , a vehicle suspension system comprising a vehicle height detection means for detecting a vehicle height value for each wheel, the vehicle height value for each wheel detected by the vehicle height detection means or the vehicle height average value per predetermined time is detected by the vehicle height detection means for each wheel. The vehicle height is compared with the target vehicle height value and the difference is calculated, and when this vehicle height difference exceeds the allowable range, the vehicle height is adjusted based on the standard operating speed unique to each suspension mechanism determined in advance. A logic circuit that calculates the output time required for each suspension mechanism body to eliminate the difference, operates the drive system corresponding to the suspension mechanism body for this output time, and then stops the output to the drive system. A vehicle suspension system comprising:
(2)車高調整後における車高値または所定時間当りの
車高平均値をその車高調整に要した出力時間をもとにし
て新規の基準作動速度を算出し、この新規作動速度と前
回の車高調整に使われた基準作動速度との平均値を、次
回に車高調整を行なう際の基準作動速度として使用する
補正用ロジック回路を備えている請求項1記載の車両用
懸架装置。
(2) Calculate a new standard operating speed based on the vehicle height value after vehicle height adjustment or the vehicle height average value per predetermined time based on the output time required for the vehicle height adjustment, and combine this new operating speed with the previous 2. The vehicle suspension system according to claim 1, further comprising a correction logic circuit that uses an average value of the reference operating speed used for vehicle height adjustment as the reference operating speed for the next vehicle height adjustment.
JP28064388A 1988-11-07 1988-11-07 Suspension device for vehicle Pending JPH02127113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28064388A JPH02127113A (en) 1988-11-07 1988-11-07 Suspension device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28064388A JPH02127113A (en) 1988-11-07 1988-11-07 Suspension device for vehicle

Publications (1)

Publication Number Publication Date
JPH02127113A true JPH02127113A (en) 1990-05-15

Family

ID=17627912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28064388A Pending JPH02127113A (en) 1988-11-07 1988-11-07 Suspension device for vehicle

Country Status (1)

Country Link
JP (1) JPH02127113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185795A (en) * 2015-03-27 2016-10-27 アイシン精機株式会社 Vehicle height adjustment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185795A (en) * 2015-03-27 2016-10-27 アイシン精機株式会社 Vehicle height adjustment device

Similar Documents

Publication Publication Date Title
US4729580A (en) Suspension controller
JP4012576B2 (en) Control configuration for automobile suspension system
US6282470B1 (en) Vehicle height adjust control apparatus and method
JPH02127113A (en) Suspension device for vehicle
US5217247A (en) Suspension control system
JPS6294413A (en) Car height adjustor
JPH02204114A (en) Suspension for vehicle
JPS62194918A (en) Hydraulic suspension control device
JPS62234708A (en) Vehicle posture controlling device
JP2625164B2 (en) Anti-rolling device for vehicles
JPH0751923Y2 (en) Vehicle attitude control device
JP2621883B2 (en) Hydraulic suspension device
JPH0737931Y2 (en) Vehicle height adjustment device
JPH08165Y2 (en) Fluid suspension system
JPS61202910A (en) Car height adjusting device
JP3059199B2 (en) Electronically controlled hydraulic suspension
JP2503228B2 (en) Vehicle height control device
JP2658511B2 (en) Active suspension system for vehicles
JPS62178412A (en) Ground clearance controller
JP2929625B2 (en) Height adjustment device
JPH078247Y2 (en) Vehicle height adjustment device
JP2621882B2 (en) Hydraulic suspension device
JPH02127114A (en) Suspension device for vehicle
JPS62283011A (en) Vehicle height control device
JPS61184107A (en) Car height regulating apparatus for automobile