JPH02126147A - Method for measuring crack depth of reinforced concrete - Google Patents

Method for measuring crack depth of reinforced concrete

Info

Publication number
JPH02126147A
JPH02126147A JP27874688A JP27874688A JPH02126147A JP H02126147 A JPH02126147 A JP H02126147A JP 27874688 A JP27874688 A JP 27874688A JP 27874688 A JP27874688 A JP 27874688A JP H02126147 A JPH02126147 A JP H02126147A
Authority
JP
Japan
Prior art keywords
crack
concrete
electrical resistance
depth
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27874688A
Other languages
Japanese (ja)
Inventor
Masanao Fujii
正直 藤井
Katsuya Kajimoto
梶本 勝也
Ryosuke Murai
亮介 村井
Kenichi Kachi
健一 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27874688A priority Critical patent/JPH02126147A/en
Publication of JPH02126147A publication Critical patent/JPH02126147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and accurately measure the crack depth by flowing a high- conductivity liquid to a crack of concrete and measuring the electric resistance between the crack part surface and a reinforcing rod to estimate the crack depth. CONSTITUTION:A high-conductivity liquid 4 is poured to a crack 3 of concrete 2, in which a reinforcing rod 1 is buried, up to the surface, and a measuring circuit 7a having an ohm-meter 6 is connected between the surface part of this liquid 4 and an earth terminal 5 connected to the reinforcing rod 1. In this constitution, an electric resistance Rb between the surface of an indefectible part 8 of concrete and the reinforcing rod is first measured by a measuring circuit 7b, and an electric resistance Rc of an internal (t) of the liquid 4 is measured by a measuring circuit 7c, and an electric resistance Ra between the surface of the crack 3 of concrete 2 and the reinforcing rod 1 is measured by the measuring circuit 7a. Resistance values Ra and Rb are compared based on the resistance value Rc to estimate the depth of the crack 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄筋コンクリートのひび割れ深さ測定方法に関
する 〔従来の技術〕 鉄筋コンクリート構造物に表面から内部へ向けひび割れ
が入った場合、それが表層だけのものか、内部深く鉄筋
まで達しているものかを知ることは補修の要否を判断す
る上で重要である。しかして従来、このひび割れ深さの
検知にあたっては、ひび割れの表面の開口量の大きさか
らひび割れの深さを推定し、コンクリートとのかぶり厚
みと比較して経験的にひび割れが鉄筋まで達しているか
を推定している。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the depth of cracks in reinforced concrete [Prior Art] When a crack appears in a reinforced concrete structure from the surface to the inside, it is possible to determine whether the crack is only at the surface layer. It is important to know whether the damage is serious or has reached the reinforcing steel deep inside in order to determine whether repairs are necessary. However, conventionally, when detecting the depth of a crack, the depth of the crack is estimated from the size of the opening on the surface of the crack, and compared with the thickness of the cover with the concrete, it is empirically determined whether the crack has reached the reinforcing steel. is estimated.

しかしながら、コンクリートにひび割れが発生している
部には、単純引張り力の他に圧縮力1曲げ力等複雑な外
力が作用している場合が多いので、従来の割れ表面の開
口量の大きさだけでひび割れが鉄筋まで達しているかを
判定するには無理があり、精度的に問題がある。
However, in addition to simple tensile force, complex external forces such as compressive force and bending force are often acting on areas where cracks occur in concrete. It is impossible to determine whether a crack has reached the reinforcing steel, and there are problems with accuracy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような事情に迄みて提案されたもので、
鉄筋コンクリートのひび割れ深さを簡便かつ正確に測定
することができ、ひいては鉄筋コンクリート構造物の補
修要否の判断を容易に行うことができる鉄筋コンクリー
トのひび割れ深さ測定方法を提供すること・を目的とす
る。
The present invention was proposed in view of these circumstances.
It is an object of the present invention to provide a method for measuring the depth of cracks in reinforced concrete, which can easily and accurately measure the depth of cracks in reinforced concrete, and by which it is possible to easily determine whether or not repair of a reinforced concrete structure is necessary.

〔課題を解決するための手段] そのために本発明は、適宜のかぶり厚みを有して内部に
鉄筋を埋設しているコンクリートの表面から内部に向か
うひび割れの深さを測定するにあたり、上記コンクリー
トのひび割れに高導電率液体を流し込んで同ひび割れ部
の表面と上記鉄筋との間の電気抵抗を測定するとともに
、上記コンクリートの健全部と上記鉄筋間の電気抵抗と
上記高導電率液体中の上記かぶり厚み相当の間隔の電気
抵抗とをそれぞれ測定し、上記高導電率液体の電気抵抗
値を基準に上記ひび割れ部の電気抵抗値と上記健全部の
電気抵抗値を対比することにより上記ひび割れの深さを
推定することを特徴とする。
[Means for Solving the Problems] To this end, the present invention provides a method for measuring the depth of cracks inward from the surface of concrete in which reinforcing bars are embedded with an appropriate cover thickness. A high conductivity liquid is poured into the crack and the electrical resistance between the surface of the crack and the reinforcing bars is measured, and the electrical resistance between the sound part of the concrete and the reinforcing bars and the fog in the high conductivity liquid are measured. The depth of the crack can be determined by measuring the electrical resistance at intervals corresponding to the thickness, and comparing the electrical resistance value of the cracked part and the electrical resistance value of the sound part based on the electrical resistance value of the high conductivity liquid. It is characterized by estimating.

〔作用〕[Effect]

本発明方法において、コンクリートのひび割れに流し込
む高導電率液体はひび割れ内部に浸入するので、ひび割
れが鉄筋まで達していれば、ひび割れ部の表面と鉄筋と
は高導電率液体で結ばれ両者間の電気抵抗は液体そのも
のの電気抵抗値とほぼ同じになり、また表層部のみのひ
び割れであれば健全部の電気抵抗値とほぼ同じとなる。
In the method of the present invention, the highly conductive liquid poured into the concrete cracks infiltrates into the cracks, so if the crack reaches the reinforcing bars, the surface of the crack and the reinforcing bars are connected by the highly conductive liquid, and the electricity between them is The resistance will be almost the same as the electrical resistance of the liquid itself, and if the cracks are only in the surface layer, it will be almost the same as the electrical resistance of the healthy part.

更にひび割れがコンクリートの表面と鉄筋の中間に止ま
っている場合には、高導電率液体の電気抵抗値を基準に
してひび割れ部の電気抵抗値と健全部の電気抵抗値を対
比すれば、ひび割れの先端がコンクリート内部のどの位
置にあるかが推定される。
Furthermore, if the crack is located between the concrete surface and the reinforcing steel, comparing the electrical resistance value of the cracked part with the electrical resistance value of the healthy part using the electrical resistance value of the high conductivity liquid as a reference, it is possible to determine the extent of the crack. It is estimated where the tip is located inside the concrete.

〔実施例〕〔Example〕

本発明鉄筋コンクリートのひび割れ深さ測定方法の一実
施例を図面について説明すると、第1図は本発明方法の
実施態様を示す模式図、第2図は同上におけるアース端
子の取付は要領を示す説明図、第3図は第1図の方法に
よる測定結果に基づきひび割れ深さを推定する要領の説
明図、第4図は具体的実験例におけるコンクリートのひ
び割れ状態を示す斜視図、第5図は同上におけるひび割
れ深さと電気抵抗値の関係を示す線図である。
An embodiment of the method for measuring crack depth in reinforced concrete according to the present invention will be explained with reference to the drawings. Figure 1 is a schematic diagram showing an embodiment of the method of the present invention, and Figure 2 is an explanatory diagram showing the procedure for installing the ground terminal in the same method. , Fig. 3 is an explanatory diagram of the procedure for estimating the crack depth based on the measurement results by the method shown in Fig. 1, Fig. 4 is a perspective view showing the state of cracks in concrete in a specific experimental example, and Fig. 5 is an explanatory diagram of the method of estimating the crack depth based on the measurement results according to the method shown in Fig. 1. FIG. 3 is a diagram showing the relationship between crack depth and electrical resistance value.

まず第1図において、適宜のかぶり厚みtを持って内部
に鉄筋1を埋設するコンクリート2のひび割れ3に、水
酸化マグネシウム水溶液、水酸化カルシウム水溶液、酸
化鉄水溶液9食塩水等の高導電率液体4を表面まで流し
込み、この高導電率液体4の表面部と鉄筋1接続のアー
ス端子5との間に、電気抵抗計6を有する測定回路7a
を接続する。またコンクリート2の表面の健全部8に同
じ高導電率液体4を塗布したうえ、この健全部8とアー
ス端子5との間に、電気抵抗計6を有する測定回路7b
を接続する。更に高導電率液体4を入れた液体容器9中
に、かぶり厚みと等しい間隔tで立てた一対の端子棒1
0.10に電気抵抗計6を有する測定回路7cを接続す
る。
First, in Fig. 1, a highly conductive liquid such as magnesium hydroxide aqueous solution, calcium hydroxide aqueous solution, iron oxide aqueous solution 9 saline solution, etc. 4 is poured to the surface, and a measuring circuit 7a having an electric resistance meter 6 is connected between the surface of this high conductivity liquid 4 and the ground terminal 5 connected to the reinforcing bar 1.
Connect. Further, the same high conductivity liquid 4 is applied to a sound part 8 on the surface of the concrete 2, and a measuring circuit 7b having an electric resistance meter 6 is connected between this sound part 8 and the earth terminal 5.
Connect. Furthermore, a pair of terminal rods 1 are set up in a liquid container 9 containing a high conductivity liquid 4 at a distance t equal to the cover thickness.
A measurement circuit 7c having an electrical resistance meter 6 is connected to the 0.10.

なお上記測定回路?a、7bの形成にあたり、既設のコ
ンクリート2で鉄筋1が表面に露出していない場合には
、第2図(A)におけるように、強度的に問題がないコ
ンクリート部分を削ってアース端子5を取付けるか、新
規造成のコンクリート2の場合には、同図(B)におけ
るように、鉄筋1に達するカーボン棒11を埋め込みそ
の表面にアース端子5を取付ける。
What about the above measurement circuit? When forming parts a and 7b, if the reinforcing bars 1 are not exposed on the surface of the existing concrete 2, as shown in Fig. 2 (A), the ground terminal 5 should be ground by scraping the concrete part that does not have any strength problems. In the case of newly constructed concrete 2, a carbon rod 11 reaching the reinforcing bar 1 is embedded and a ground terminal 5 is attached to the surface of the carbon rod 11, as shown in FIG.

このような電気抵抗測定回路7a、7b。Such electrical resistance measuring circuits 7a, 7b.

7cを形成したうえで、まず測定回路7bにより、コン
クリート2の健全部8の表面と内部の鉄筋1との間の電
気抵抗Rbを測定し、また測定回路7Cにより高導電率
液体4の間隔を間の電気抵抗RCを測定し、これら測定
値に基づき第3図のように、コンクリート表面からの深
さTと電気抵抗値Rとの関係図を作成する。すなわち、
コンクリート表面からの深さ0点に健全部の抵抗値Rb
をとり1、コンクリート表面からの深さt点に液体の抵
抗値Rcをとったうえ、この2点Rb、Rcを直線で結
び、これを抵抗値線Riとする。
7c, first, the measuring circuit 7b measures the electrical resistance Rb between the surface of the sound part 8 of the concrete 2 and the internal reinforcing bars 1, and the measuring circuit 7C measures the distance between the high conductivity liquids 4. The electrical resistance RC between the concrete surfaces is measured, and based on these measured values, a relationship diagram between the depth T from the concrete surface and the electrical resistance value R is created as shown in FIG. That is,
Resistance value Rb of sound part at depth 0 point from concrete surface
1, take the resistance value Rc of the liquid at a depth t from the concrete surface, connect these two points Rb and Rc with a straight line, and make this the resistance value line Ri.

しかして測定回路7aにより、コンクリート2のひび割
れ3表面と内部の鉄筋1との間の電気抵抗Raを測定し
、この測定値Raを第3図の抵抗値線Ri上にプロット
すると、この抵抗値Ri上でRaに相当するコンクリー
ト表面からの深さtaが、ひび割れ3の深さを推定する
ことになる。
The measuring circuit 7a measures the electrical resistance Ra between the surface of the crack 3 in the concrete 2 and the internal reinforcement 1, and when this measured value Ra is plotted on the resistance value line Ri in FIG. The depth ta from the concrete surface, which corresponds to Ra on Ri, estimates the depth of the crack 3.

なお上記の場合は図−ヒにて深さtaを求める方法を説
明したが、第3図において、(Rb−Rc):  (R
b ・−Ra)=t : taの比例関係が成り立つの
で、これより、の計算を行うことにより、ひび割れ3の
深さを算出推定することができる。
Note that in the above case, the method for determining the depth ta was explained in Figure-H, but in Figure 3, (Rb-Rc): (R
b · - Ra) = t : Since the proportional relationship of ta holds true, the depth of the crack 3 can be calculated and estimated by calculating from this.

次に本発明方法の成立性と効果を実証する具体的実験例
を第4図、第5図について説明する。
Next, a specific experimental example for demonstrating the feasibility and effectiveness of the method of the present invention will be explained with reference to FIGS. 4 and 5.

第4図はひび割れを加工した供試体のコンクリートブロ
ックを示し、その形状寸法は150顛×300璽l×5
0層重で、コンクリート2内部のかぶり厚み30+nの
鉄筋1まで達しているひび割れ3、表面より深さ10龍
の機械スリット3′、表面より深さ2011の機械スリ
ン]・3″の3種のひび割れを加工しである。
Figure 4 shows a concrete block as a specimen with cracks processed, and its dimensions are 150 squares x 300 squares x 5
0 layer weight, crack 3 reaching the reinforcing bar 1 with a cover thickness of 30+n inside the concrete 2, mechanical slit 3' with a depth of 10 dragons from the surface, and mechanical slit with a depth of 2011 mm from the surface]・3'' The cracks have been processed.

この割れ深さの異なる3種のひび割れと健全部の表面部
に水酸化マグネシウム水溶液。
An aqueous magnesium hydroxide solution was applied to the three types of cracks with different depths and the surface of the healthy part.

水酸化カルシウム水溶液、酸化鉄水溶液1食塩水および
水道水の5種類の液体を流し込み、流し込み完了から1
0秒後に、これら表面部と鉄筋間の電気抵抗を第1図の
測定回路7a。
Pour 5 types of liquids: 1 calcium hydroxide aqueous solution, 1 iron oxide aqueous solution, saline water and tap water, and 1 after pouring is completed.
After 0 seconds, the electrical resistance between these surface parts and the reinforcing bars is measured by the measuring circuit 7a of FIG.

7bにより測定するとともに、上記各液体の電気抵抗を
第1図の測定回路7Cにより測定し、その結果を第5図
に示した。
7b, and the electrical resistance of each liquid was also measured using the measuring circuit 7C shown in FIG. 1, and the results are shown in FIG.

第5図に示すように、この中で電気抵抗Rの最も小さい
液体は食塩水で6にΩ、次いで水酸化マグネシウム水溶
液の15にΩ、酸化鉄水溶液の18にΩ、水酸化カルシ
ウム水溶液の2SkΩ、水道水の35にΩの頃になり、
鉄筋1まで達しているひび割れ3の電気抵抗値は、この
部に流し込んだ液体の抵抗値とほぼ同じになった。また
健全部の表面部と鉄筋1間の電気抵抗Rは、コンクリー
ト2の表面に食塩水を流した場合25にΩ、水道水を流
した場合は30にΩであり、その他の液体を流した場合
はこれらの中間であった。次に、深さ101と20mの
機械スリットによるひび割れ3’、3’部の電気抵抗R
は、健全部の値と鉄筋1まで達したひび割れ3の値すな
わち液体の抵抗値Rを直線で結んだ線近傍の値となった
As shown in Figure 5, among these liquids, the liquids with the lowest electrical resistance R are saline solution with 6Ω, followed by magnesium hydroxide aqueous solution with 15Ω, iron oxide aqueous solution with 18Ω, and calcium hydroxide aqueous solution with 2SkΩ. , when the tap water reached 35Ω,
The electrical resistance value of the crack 3 that reached the reinforcing bar 1 was almost the same as the resistance value of the liquid poured into this part. In addition, the electrical resistance R between the surface of the healthy part and the reinforcing bar 1 is 25Ω when saline water is poured on the surface of the concrete 2, 30Ω when tap water is poured on the surface of the concrete 2, and when other liquids are poured The case was between these. Next, the electrical resistance R of the cracks 3' and 3' due to the mechanical slits with depths of 101 and 20 m.
was a value near a line connecting the value of the sound part and the value of the crack 3 that reached the reinforcing bar 1, that is, the resistance value R of the liquid, with a straight line.

従ってこの実験例結果から、第1図の測定回路7b、7
cにより、健全部と使用する高導電率液体の電気抵抗値
を測定してコンクリートのかぶり厚み間にわたる直線状
の抵抗値線を想定し、この抵抗値線を実際に図示するか
又は測定値を記録しておき、測定回路7aによるひび割
れ部の電気抵抗値を上記抵抗値線に関し実際図上にプロ
ットすること又は前記計算式により、測定電気抵抗値に
対応するひび割れ深さを推定することができる。
Therefore, from the results of this experimental example, it is clear that the measurement circuits 7b and 7 in FIG.
c, measure the electrical resistance value of the healthy part and the high conductivity liquid used, assume a straight resistance value line spanning the concrete cover thickness, and either actually draw this resistance value line or record the measured value. The crack depth corresponding to the measured electrical resistance value can be estimated by recording the electrical resistance value of the cracked part obtained by the measuring circuit 7a and plotting it on the actual diagram with respect to the resistance value line, or by using the above calculation formula. .

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、適宜のかぶり厚みを有して内
部に鉄筋を埋設しているコンクリートの表面から内部に
向かうひび割れの深さを測定するにあたり、上記コンク
リートのひび割れに高導電率液体を流し込んで同ひび割
れ部の表面と上記鉄筋との間の電気抵抗を測定するとと
もに、上記コンクリートの健全部と上記鉄筋間の電気抵
抗と上記高導電率液4゜ 体中の上記かふり厚み相当の間隔の電気抵抗とをそれぞ
れ測定し、上記高導電率液体の電気抵抗値を基準に上記
ひび割れ部の電気抵抗値と上記健全部の電気抵抗値を対
比することにより上記ひび割れの深さを推定することに
より、鉄筋コンクリートのひび割れ深さを簡便かつ正確
に測定することができ、ひいては鉄筋コンクリート構造
物の補修要否の判断を容易に行うことができる鉄筋コン
クリートのひび割れ深さ測定方法を得るから、本発明は
産業上極めて有益なものである。
In short, according to the present invention, when measuring the depth of a crack inward from the surface of concrete in which reinforcing bars are embedded with an appropriate cover thickness, a highly conductive liquid is poured into the crack in the concrete. Measure the electrical resistance between the surface of the cracked part and the reinforcing bars, and also measure the electrical resistance between the sound part of the concrete and the reinforcing bars and the distance equivalent to the thickness of the burlap in the high conductivity liquid 4°. and estimating the depth of the crack by comparing the electrical resistance value of the cracked part and the electrical resistance value of the sound part based on the electrical resistance value of the high conductivity liquid. As a result, the present invention provides a method for measuring the crack depth of reinforced concrete that can easily and accurately measure the crack depth of reinforced concrete, and furthermore, can easily determine whether or not repair of a reinforced concrete structure is necessary. Above all, it is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鉄筋コンクリートのひび割れ深さ測定方
法の一実施例における実施態様を示す模式図、第2図は
同上におけるアース端子の取付は要領を示す説明図、第
3図は第1図の方法による測定結果に基づきひび割れ深
さを推定する要領の説明図、第4図は具体的実験例にお
けるコンクリートのひび割れ状態を示す斜視図、第5図
は同上におけるひび割れ深さと電気抵抗値の関係を示す
線図である。 1・・・鉄筋、2・・・コンクリート、3・・・ひび割
れ、4・・・高導電率液体、5・・・アース端子、6・
・・電気抵抗計、?a、7b、7c・・・測定回路、8
・・・健全部、9・・・液体容器、10・・・端子棒、
11・・・カーボン棒。
FIG. 1 is a schematic diagram showing an embodiment of the method for measuring crack depth in reinforced concrete according to the present invention, FIG. Fig. 4 is a perspective view showing the state of cracks in concrete in a specific experimental example, and Fig. 5 shows the relationship between crack depth and electrical resistance value in the same method. FIG. 1...Reinforcement bar, 2...Concrete, 3...Crack, 4...High conductivity liquid, 5...Earth terminal, 6...
...Electric resistance meter? a, 7b, 7c... measurement circuit, 8
...Healthy part, 9...Liquid container, 10...Terminal bar,
11... Carbon rod.

Claims (1)

【特許請求の範囲】 適宜のかぶり厚みを有して内部に鉄筋を埋 設しているコンクリートの表面から内部に向かうひび割
れの深さを測定するにあたり、上記コンクリートのひび
割れに高導電率液体を流し込んで同ひび割れ部の表面と
上記鉄筋との間の電気抵抗を測定するとともに、上記コ
ンクリートの健全部と上記鉄筋間の電気抵抗と上記高導
電率液体中の上記かぶり厚み相当の間隔の電気抵抗とを
それぞれ測定し、上記高導電率液体の電気抵抗値を基準
に上記ひび割れ部の電気抵抗値と上記健全部の電気抵抗
値を対比することにより上記ひび割れの深さを推定する
ことを特徴とする鉄筋コンクリートのひび割れ深さ測定
方法。
[Claims] To measure the depth of cracks inward from the surface of concrete in which reinforcing bars are embedded with an appropriate cover thickness, a highly conductive liquid is poured into the cracks in the concrete. In addition to measuring the electrical resistance between the surface of the cracked part and the reinforcing bars, the electrical resistance between the sound part of the concrete and the reinforcing bars and the electrical resistance at intervals corresponding to the cover thickness in the high conductivity liquid are measured. Reinforced concrete characterized in that the depth of the crack is estimated by measuring each and comparing the electrical resistance value of the cracked part and the electrical resistance value of the sound part based on the electrical resistance value of the high conductivity liquid. How to measure crack depth.
JP27874688A 1988-11-04 1988-11-04 Method for measuring crack depth of reinforced concrete Pending JPH02126147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27874688A JPH02126147A (en) 1988-11-04 1988-11-04 Method for measuring crack depth of reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27874688A JPH02126147A (en) 1988-11-04 1988-11-04 Method for measuring crack depth of reinforced concrete

Publications (1)

Publication Number Publication Date
JPH02126147A true JPH02126147A (en) 1990-05-15

Family

ID=17601626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27874688A Pending JPH02126147A (en) 1988-11-04 1988-11-04 Method for measuring crack depth of reinforced concrete

Country Status (1)

Country Link
JP (1) JPH02126147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612621A (en) * 1992-10-27 1997-03-18 Industrial Technology Research Institute Method for monitoring cracks and critical concentration by using phase angle
WO2021095166A1 (en) * 2019-11-13 2021-05-20 日本電信電話株式会社 Estimation method, estimation device, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612621A (en) * 1992-10-27 1997-03-18 Industrial Technology Research Institute Method for monitoring cracks and critical concentration by using phase angle
WO2021095166A1 (en) * 2019-11-13 2021-05-20 日本電信電話株式会社 Estimation method, estimation device, and program

Similar Documents

Publication Publication Date Title
EP1597553B1 (en) Measurement of residual and thermally-induced stress in a rail
CN103575769B (en) A kind of piezoelectric transducer for monitoring steel bar corrosion and monitoring steel bar corrosion method
JP2009008521A (en) Inspection method and device of casted concrete
JP2685358B2 (en) Corrosion diagnosis method for reinforcing bars in concrete
JPH02126147A (en) Method for measuring crack depth of reinforced concrete
US11879885B2 (en) Electrochemical measurement system and method for monitoring a concrete structure
JP6691384B2 (en) Corrosion sensor and corrosion detection method
JP2017032515A (en) Corrosion sensor and corrosion detection method
JP2017032515A5 (en)
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
CN105466833A (en) In-situ monitoring method for concrete pore structure evolution under load effect and testing device
JP2799117B2 (en) Detecting method of filling property of seam filling in concrete structure
Millard et al. Novel method for linear polarisation resistance corrosion measurement
JP3853200B2 (en) Method for predicting the degree of corrosion of buried pipes
CN218583949U (en) Cast-in-place concrete plate thickness measuring instrument
CN108872319A (en) A kind of corrosion sensor
Cikrle et al. Non-destructive diagnostics of steel-reinforced concrete structures: detecting and locating reinforcement
CN212458173U (en) Concrete post-cast strip shrinkage measuring device
Sangha et al. Core-Cube Relationships of Plain Concrete
JPH10197467A (en) Concrete filling checker
JPH10282087A (en) Method and instrument for measuring unsaturated moisture in earth and sand
JP7129804B2 (en) Soundness evaluation method for surface protective layer of concrete structure
CN115128128A (en) Embedded concrete reinforcement corrosion monitoring sensor, monitoring system and method
JP6673675B2 (en) Corrosion sensors and sheath fittings
Lim et al. Formulation of a nondestructive technique for evaluating steel corrosion in concrete structures