JPH02126023A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH02126023A
JPH02126023A JP27724188A JP27724188A JPH02126023A JP H02126023 A JPH02126023 A JP H02126023A JP 27724188 A JP27724188 A JP 27724188A JP 27724188 A JP27724188 A JP 27724188A JP H02126023 A JPH02126023 A JP H02126023A
Authority
JP
Japan
Prior art keywords
temperature
inner cylinder
orifice
combustor
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27724188A
Other languages
Japanese (ja)
Inventor
Hidetora Kojima
児嶋 日出虎
Katsuaki Watanabe
渡辺 勝精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HESCO
Hitachi Ltd
Original Assignee
HESCO
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HESCO, Hitachi Ltd filed Critical HESCO
Priority to JP27724188A priority Critical patent/JPH02126023A/en
Publication of JPH02126023A publication Critical patent/JPH02126023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cause a temperature of an inner cylinder to be uniformly less than a design temperature by a method wherein a temperature of an inner cylinder of a combustor is measured and an orifice is installed in order to cool a position where a high temperature is found in its distribution of the temperatures. CONSTITUTION:Temperatures of an inner cylinder of a prior art combustor are measured for an entire area, an orifice 1 is mounted at a place showing a high temperature to perform a temperature measurement again. If there is a high or a low temperature and there is a place where the temperature exceeds a design temperature, an orifice mounting place is changed or additional orifice is set. A hoop to which the orifice 1 is fixed is welded to an inside part of an outer cylinder 3 of the combustor. The hoop is provided with a threaded hole so as to enable the orifice 1 to be fixed by a bolt in advance, and then a plurality of hoops are mounted in such a way as a fixing position of the orifice 1 may be selected to a certain degree. In this way, a temperature within the inner cylinder can be made uniform by setting one orifice to one place where a high temperature of the inner cylinder 6f the combustor is found and in turn by setting two orifices to the two locations where a high temperatures of the inner cylinder of the combustor are found.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器に係り、特に、内筒の効果
的冷却を、空気流通の抵抗を最少にて行なわせ、内筒温
度を設計温度以下に保持するために設計するオリフィス
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas turbine combustor, and in particular, the present invention relates to a gas turbine combustor, and in particular, it is possible to effectively cool the inner cylinder with minimum air flow resistance, and to design the inner cylinder temperature. Concerning an orifice designed to maintain temperature below.

〔従来の技術〕[Conventional technology]

従来の燃焼器内筒の冷却は、例えば、特開昭59−22
9114号公報に記載のようしこ、整流筒(フロースリ
ーブ)により空気の流れを調整して行うが、これは尾筒
の冷却にも効果があるが、本発明の目的である内筒温度
を一様に設計温度以下に冷却し、空気の流通抵抗を最少
にすることは達せられない。
Conventional cooling of the combustor inner cylinder is described, for example, in Japanese Patent Application Laid-Open No. 59-22
This is done by adjusting the air flow using a straightening tube (flow sleeve) as described in Japanese Patent No. 9114. Although this is effective for cooling the transition tube, it is also effective for cooling the transition tube, which is the purpose of the present invention. Uniform cooling below the design temperature and minimizing air flow resistance cannot be achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、燃焼器の内筒の冷却に関するものであ
るが、(1)内筒温度を一様にすることおよび(2)空
気流通の抵抗を最少にすることに上限が置かれておらず
、効果的な冷却に至っていない。
The above-mentioned conventional technology relates to cooling the inner cylinder of the combustor, but the upper limit is not placed on (1) making the temperature of the inner cylinder uniform and (2) minimizing the resistance of air circulation. However, effective cooling has not been achieved.

本発明の目的は、(1)内筒温度を一様にすることおよ
び(2)空気流通の抵抗を最少にすることにあり、その
ため、従来使用しているフロースリーブを使用せず、オ
リフィスのような構造物を内筒の温度を下げたり箇所に
設置し、内筒の温度が一様に設計温度以下となるように
オリフィスの設置位置を選択する。
The objects of the present invention are (1) to make the inner cylinder temperature uniform and (2) to minimize the resistance of air circulation. A structure such as this is installed at a location where the temperature of the inner cylinder is lowered, and the installation position of the orifice is selected so that the temperature of the inner cylinder is uniformly below the design temperature.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、まず、従来技術による燃焼器の内筒温度を
正確に測定し、その温度分布で、高くなる位置を特に冷
却するため、オリフィスを設置する。
The above purpose is to first accurately measure the internal cylinder temperature of the combustor according to the prior art, and install an orifice in order to particularly cool the high temperature position in the temperature distribution.

〔作用〕[Effect]

本発明のオリフィスは、燃焼器内筒の部分を効果的に冷
却することに役立つが、内筒のどの部分を冷却すべきか
をよく調査する必要がある。このため、従来の燃焼器の
内筒の温度を全域にわたって測定し、温度の高い箇所に
オリフィスを設にして、再度測定し、温度の高低があっ
て、設計温度を超えている箇所があれば、オリフィスの
設置箇所を変更するか、あるいは、もう一つ追加設置す
る。このように、試行錯誤により、最適の位置に適当な
構造、寸法、員数のオリフィスを設置することができる
Although the orifice of the present invention is useful for effectively cooling portions of the combustor liner, it is necessary to carefully investigate which portions of the liner should be cooled. For this reason, the temperature of the inner cylinder of a conventional combustor is measured over the entire area, an orifice is installed at a high temperature point, and the temperature is measured again. , change the location of the orifice, or install one more. In this way, through trial and error, it is possible to install an orifice with an appropriate structure, size, and number at an optimal position.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。この
実施例は従来例に、オリフィス1を取付けたものである
。図はガスタービン燃焼器の断面を表わし、空気、高温
ガスの流れの系統も示しである。圧縮機が大気を吸入し
、圧縮空気として燃焼器へ送る。圧縮機吐出ケーシング
6を出た圧縮空気は、ガスタービン軸のまわりに複数本
配置されだ燃焼器内に流入する。燃焼器は圧縮機吐出ケ
ーシング6、燃焼器外筒3、バーレル7、ラッパー5、
タービン第一段静翼8、第一段サバ−1〜リング9で囲
まれた圧力容器の一部を形成し、圧縮空気はこの中には
いった後、燃焼器内筒2の中に流入する。流入する前に
燃焼器内筒2や燃焼器尾筒4の外表面を冷却する。特に
、オリフィス1を設置することにより、オリフィス1と
燃焼器内筒2の間隙を通過する圧縮空気の速度が大きく
なり、燃焼器内筒2の外表面の熱伝達率が大きくなる。
An embodiment of the present invention will be described below with reference to FIG. This embodiment is a conventional example with an orifice 1 attached thereto. The figure shows a cross section of a gas turbine combustor, and also shows the flow system of air and hot gas. The compressor sucks atmospheric air and sends it to the combustor as compressed air. Compressed air leaving the compressor discharge casing 6 flows into a plurality of combustors arranged around the gas turbine shaft. The combustor includes a compressor discharge casing 6, a combustor outer cylinder 3, a barrel 7, a wrapper 5,
It forms part of a pressure vessel surrounded by the turbine first stage stationary blade 8 and the first stage server 1 to ring 9, and after compressed air enters this, it flows into the combustor inner cylinder 2. . The outer surfaces of the combustor inner pipe 2 and the combustor transition pipe 4 are cooled before flowing into the combustion chamber. In particular, by installing the orifice 1, the speed of compressed air passing through the gap between the orifice 1 and the combustor inner cylinder 2 increases, and the heat transfer coefficient of the outer surface of the combustor inner cylinder 2 increases.

従って、オリフィス1を設置した位置の燃焼器内筒外表
面が他の部分より大きく冷却される。燃焼器内筒2の温
度は、ガスタービンの機種、容量、構造、運転方式等に
より異るが、その代表例を第4図に示す。図でフロース
リーブのない場合とフロースリーブがある場合の内筒温
度はそれぞれ従来例の第8図と第7図に示す燃焼器構造
に対するもので、フロースリーブによる内筒温度の低下
が内筒2の長手方向にわたって一様にみられる。
Therefore, the outer surface of the combustor inner cylinder where the orifice 1 is installed is cooled more than other parts. The temperature of the combustor inner cylinder 2 varies depending on the model, capacity, structure, operating method, etc. of the gas turbine, and a typical example thereof is shown in FIG. In the figure, the inner cylinder temperatures without a flow sleeve and with a flow sleeve are for the conventional combustor structures shown in Figures 8 and 7, respectively. It can be seen uniformly along the length.

方、本発明のオリフィスを設置した場合は、従来例の温
度が高い部分を特に冷却して、内筒全体がほぼ一定の温
度になる。第2図は本発明の第二の実施例であり、第1
図と異る点は、オリフィス1が二個設置される点である
。第2図において、1−1および1−2がそのオリフィ
スであり、燃焼器内筒2の長手方向に温度が高くなる箇
所が二箇所現われる場合に適用される6オリフイス1は
第3図に示すフープに取付けられる。フープはたがの形
状のものを燃焼器外筒3の内側に溶接する。
On the other hand, when the orifice of the present invention is installed, the temperature of the entire inner cylinder is kept at a substantially constant temperature by particularly cooling the high-temperature portion of the conventional example. FIG. 2 shows a second embodiment of the present invention;
The difference from the diagram is that two orifices 1 are installed. In Fig. 2, 1-1 and 1-2 are the orifices, and 6 orifices 1 are shown in Fig. 3, which are applied when there are two places where the temperature becomes high in the longitudinal direction of the combustor inner cylinder 2. Mounted on the hoop. A hoop-shaped hoop is welded to the inside of the combustor outer cylinder 3.

オリフィス1をボルトで固定できるようフープにはネジ
孔をあけておく。第3図に示すように、オリフィス1の
取付位置をある程度選択できるようにフープは複数設置
する。このようにして、オリフィスは燃焼器内筒の温度
が高くなる位置に、それが一箇所の場合はオリフィスを
一個、二箇所の場合はオリフィスを二個設置することに
より、内筒の温度を均一にすることができる。第3図に
おいて、寸法aとbはオリフィス間隙を通過する圧縮空
気の条件を決定するもので、燃焼器外筒3゜内筒2の形
状および寸法、内筒2の温度、圧縮空気の温度、圧力等
により最適値が決定される。オリフィスの角度dは圧縮
空気が間隙aを通過するときに発生する;尚を調整する
A screw hole is made in the hoop so that the orifice 1 can be fixed with a bolt. As shown in FIG. 3, a plurality of hoops are installed so that the mounting position of the orifice 1 can be selected to some extent. In this way, by installing one orifice in the position where the temperature of the combustor inner cylinder becomes high, if there is one orifice, or two orifices if there are two orifices, the temperature of the inner cylinder is uniform. It can be done. In Fig. 3, dimensions a and b determine the conditions for compressed air passing through the orifice gap, including the shape and dimensions of the combustor outer cylinder 3°, the inner cylinder 2, the temperature of the inner cylinder 2, the temperature of the compressed air, The optimum value is determined by pressure etc. The orifice angle d occurs when the compressed air passes through the gap a;

通常、45度程度が望ましい。間隙aを通過するときに
圧縮空気の流速が速くなり、熱伝達率が大きくなるので
、間隙aの箇所の内筒壁を効率良く冷却することができ
る。内筒の外表面を冷却した圧縮空気は内筒のルーバを
通って内筒の中にはいり、内筒の内表面を冷却後、燃焼
用に供給される。第5図はオリフィスの間隙aが円周上
一定の場合で、第6図はオリフィス内側円が偏心してお
り、従って間隙がa、a’のように一定ではない、燃焼
器内筒2の温度が高くなる位置で、円周方向に一定であ
れば、オリフィス形状は内側円か内筒と同心でよく、第
5図に示す間隙一定とする。
Usually, about 45 degrees is desirable. Since the flow velocity of the compressed air increases when passing through the gap a, and the heat transfer coefficient increases, the inner cylinder wall at the gap a can be efficiently cooled. The compressed air that has cooled the outer surface of the inner cylinder passes through the louvers of the inner cylinder, enters the inner cylinder, cools the inner surface of the inner cylinder, and then is supplied for combustion. Fig. 5 shows the case where the orifice gap a is constant on the circumference, and Fig. 6 shows the case where the orifice inner circle is eccentric, so the gap is not constant like a and a', and the temperature of the combustor inner cylinder 2. As long as the orifice shape is constant in the circumferential direction at a high position, the orifice shape may be an inner circle or concentric with the inner cylinder, and the gap shown in FIG. 5 is constant.

しかし、円周方向に温度が変化する場合は、もっとも温
度が高い位置の間隙を最小a′とし、温度が高くない位
置の間隙を最大a′となるような形状のオリフィス(第
6図参照)を設置する。こうすることにより、燃焼器内
筒2の温度は長手方向、円周方向共、はぼ均一にするこ
とができる。燃焼器内筒2の温度は、前述のように、ガ
スタービンの機種、容量、構造、運転方式、燃焼温度、
圧力等により変わり、特に、その温度分布を設計の段階
で正確に推定することは困難である。最小の圧力損失で
、燃焼器内筒2を冷却するオリフィスの形状を見出すに
は、どうしても試行錯誤的に実験を繰返さねばならない
。そのため、オリフィスの形状はある程度、選択可能な
構造とすることが望ましい。内筒2の温度が円周方向に
一定なら、オリフィスの間隙aは一定でよく、従ってオ
リフィス内径は内筒2に対して同心の構造となるが、内
筒2の温度が円周方向に変化している場合は、前述のよ
うに、オリフィス間隙aはa’(a’のようにオリフィ
ス内径を内筒2に対して偏心させて製作する。オリフィ
スの外径は外筒3と同心とし、取付ボルト孔ピッチを一
定とすることにより、オリフィス間隙a′、a′の位置
と内筒2の温度が最高と最低になる位置とが合うようオ
リフィスを回わしで取付位置を設定することができる。
However, if the temperature changes in the circumferential direction, the orifice should be shaped so that the gap at the point where the temperature is highest is the minimum a', and the gap at the location where the temperature is not high is the maximum a' (see Figure 6). Set up. By doing so, the temperature of the combustor inner cylinder 2 can be made almost uniform in both the longitudinal direction and the circumferential direction. As mentioned above, the temperature of the combustor inner cylinder 2 depends on the gas turbine model, capacity, structure, operation method, combustion temperature,
The temperature distribution varies depending on the pressure, etc., and it is particularly difficult to accurately estimate the temperature distribution at the design stage. In order to find the shape of the orifice that cools the combustor inner cylinder 2 with the minimum pressure loss, it is necessary to repeat experiments by trial and error. Therefore, it is desirable to have a structure in which the shape of the orifice can be selected to some extent. If the temperature of the inner cylinder 2 is constant in the circumferential direction, the orifice gap a may be constant, and therefore the orifice inner diameter has a concentric structure with respect to the inner cylinder 2, but if the temperature of the inner cylinder 2 changes in the circumferential direction. If, as mentioned above, the orifice gap a is made by making the inner diameter of the orifice eccentric to the inner cylinder 2 as shown in a'(a').The outer diameter of the orifice is made concentric with the outer cylinder 3, By keeping the mounting bolt hole pitch constant, the mounting position can be set by turning the orifice so that the positions of the orifice gaps a' and a' match the positions where the temperature of the inner cylinder 2 is the highest and lowest. .

長手方向の位置に対しては、第3図に示すように、フー
プを複数筒、外筒3に適当な間隔を置いて溶接し、オリ
フィス取付位置を選択できるようにする。
As for the longitudinal position, as shown in FIG. 3, a plurality of hoops are welded to the outer cylinder 3 at appropriate intervals so that the orifice mounting position can be selected.

このようにして、内筒2の温度が最高となる位置′を選
んでオリフィス1を設置することができる。
In this way, the orifice 1 can be installed by selecting the position 'where the temperature of the inner cylinder 2 is the highest.

第4図は従来の燃焼器で、フロースリーブ付の場合と不
付の場合、及び本発明の場合の代表例として内筒温度分
布を示す。従来の燃焼器のフロースリーブ子材の例では
、内筒温度が高くなるので内筒材料設計温度を(イ)に
示すように高くし、高温耐熱材料を内筒用に選ぶか、燃
焼温度を下げてガスタービンの出力を下げるかしなけれ
ばならない。フロースリーブ付の例では、内筒温度が■
がるので、内筒材料設計温度を(ロ)に示すように低く
し、−股下の材料を選ぶことができる。あるいは高温耐
熱材料を選んで燃焼温度を上げ、ガスタービン出力を上
げることができる。しかし、フロースリーブ付の場合、
圧縮機の吐出から燃焼器内筒までの空気圧力損失が比較
的大きいため、出力」二昇がある程度阻害されるので、
フロースリーブ設置の総合的効果は少ない。
FIG. 4 shows the inner cylinder temperature distribution as a typical example of a conventional combustor, with and without a flow sleeve, and in the case of the present invention. In the example of a flow sleeve sub-material for a conventional combustor, the inner cylinder temperature increases, so the design temperature of the inner cylinder material should be increased as shown in (a), and a high temperature heat resistant material should be selected for the inner cylinder, or the combustion temperature should be lowered. It is necessary to reduce the output of the gas turbine by lowering it. In the example with a flow sleeve, the inner cylinder temperature is
Therefore, the design temperature of the inner cylinder material can be lowered as shown in (b), and the material for the inseam can be selected. Alternatively, high-temperature resistant materials can be selected to increase combustion temperatures and increase gas turbine output. However, in the case of a flow sleeve,
Since the air pressure loss from the compressor discharge to the combustor inner cylinder is relatively large, the increase in output is inhibited to some extent.
The overall effect of flow sleeve installation is small.

第7図と第8図は従来の燃焼器の代表例で、第7図はフ
ロースリーブ付の場合、第8図はフロースリーブ子材の
場合である。第7図において、内筒2と外筒3の間にあ
る円筒形状のものがフロースリーブと呼ばれるもので、
孔がおいていないため、圧縮空気はフロースリーブの内
側に沿って内筒に流れる。このフロースリーブが長い場
合は、その内側を通る圧縮空気の抵抗も大きくなり、出
力と効率の低下の原因になっている。このフロースリー
ブと第1図、第2図のオリフィス1を除けば、燃焼器の
構造は基本的には従来形も本発明も同じであり、第8図
のフロースリーブ子材の例の燃焼器とも同じである。
FIGS. 7 and 8 are representative examples of conventional combustors, with FIG. 7 showing a case with a flow sleeve and FIG. 8 showing a case with a flow sleeve child member. In Fig. 7, the cylindrical part between the inner cylinder 2 and the outer cylinder 3 is called a flow sleeve.
Since there are no holes, compressed air flows along the inside of the flow sleeve into the inner cylinder. If the flow sleeve is long, the resistance to the compressed air passing through it increases, causing a reduction in output and efficiency. Except for this flow sleeve and the orifice 1 shown in FIGS. 1 and 2, the structure of the combustor is basically the same for both the conventional type and the present invention. It is the same as

本実施例によれば、従来の内筒材料を踏襲してフロース
リーブ付と同一燃焼温度と仮定すれば、圧力損失が絶対
値で約0.5〜1.0%減少するのでガスタービン出力
と効率は相対値で約0.5〜1.0%上昇する。フロー
スリーブからオリフィスに変えることによる原価低減ば
かりでなく、出力上昇によるm位出力当りの建設費低;
威の効果がある。
According to this example, if the conventional inner cylinder material is followed and the combustion temperature is assumed to be the same as with a flow sleeve, the pressure loss will be reduced by about 0.5 to 1.0% in absolute value, so the gas turbine output will be reduced. Efficiency increases by about 0.5-1.0% in relative terms. Not only is the cost reduced by changing from a flow sleeve to an orifice, but the construction cost per m output is also lower due to an increase in output;
It has a powerful effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃焼器内筒の温度がほぼ均一になるよ
う冷却することができ、圧縮空気の抵抗を最少限に抑え
ることができるので、ガスタービン出力及び効率の低下
を伴うことなく経済的な内筒材料の選択ができる。
According to the present invention, it is possible to cool the combustor inner cylinder so that the temperature is almost uniform, and the resistance of compressed air can be minimized. It is possible to select the material of the inner cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例の断面図、第3図は
第1図のオリフィス取付部の詳細図、第4図は内筒温度
が内筒長手方向に変化する様子を従来と本発明とで比較
した図、第5図と第6図はオリフィス取付部の横断面図
、第7図と第8図は従来の燃焼器の縦断面図である。 1・・・オリフィス、5・・・ラッパー、7・・・バー
レル、9・・・第一段サポートリング。 ゛くニノ 某 図 竿 ヤシ 千 図 ル−ツ\ 茅 図 上置側−内V 玉4力勾−丁ダ先イリ11第 竿 ら 図 竿 図 第 図
1 and 2 are cross-sectional views of the embodiment of the present invention, FIG. 3 is a detailed view of the orifice mounting part of FIG. 1, and FIG. 4 shows how the inner cylinder temperature changes in the longitudinal direction of the inner cylinder. FIGS. 5 and 6 are cross-sectional views of the orifice mounting portion, and FIGS. 7 and 8 are longitudinal cross-sectional views of a conventional combustor. 1... Orifice, 5... Wrapper, 7... Barrel, 9... First stage support ring.゛Kunino certain figure 1000-figure roots of a rod \ Mazu figure upper side - inside V ball 4 force gradient - tip of the 11th rod et al.

Claims (1)

【特許請求の範囲】 1、内筒、外筒、尾筒、燃料ノズル、空気室より成るガ
スタービン燃焼器において、 前記内筒と前記外筒の間の冷却空気用通路に、前記、内
筒と同心、あるいは、偏心の円形あるいは楕円形のオリ
フィスを一箇あるいは複数箇設置することを特徴とする
ガスタービン燃焼器。
[Scope of Claims] 1. In a gas turbine combustor comprising an inner cylinder, an outer cylinder, a transition piece, a fuel nozzle, and an air chamber, the inner cylinder is provided in a cooling air passage between the inner cylinder and the outer cylinder. A gas turbine combustor characterized by having one or more circular or elliptical orifices concentrically or eccentrically installed.
JP27724188A 1988-11-04 1988-11-04 Gas turbine combustor Pending JPH02126023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27724188A JPH02126023A (en) 1988-11-04 1988-11-04 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27724188A JPH02126023A (en) 1988-11-04 1988-11-04 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH02126023A true JPH02126023A (en) 1990-05-15

Family

ID=17580787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27724188A Pending JPH02126023A (en) 1988-11-04 1988-11-04 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH02126023A (en)

Similar Documents

Publication Publication Date Title
US4302941A (en) Combuster liner construction for gas turbine engine
JP4498720B2 (en) Combustor liner with inverted turbulator
US4875339A (en) Combustion chamber liner insert
US6640547B2 (en) Effusion cooled transition duct with shaped cooling holes
US6568187B1 (en) Effusion cooled transition duct
US6237344B1 (en) Dimpled impingement baffle
KR880002469B1 (en) Combustion liner cooling scheme
US5117624A (en) Fuel injector nozzle support
CA2421802C (en) Hollow structure with flange
US20090120093A1 (en) Turbulated aft-end liner assembly and cooling method
JP4677086B2 (en) Film cooled combustor liner and method of manufacturing the same
US20070271930A1 (en) Gas turbine having cooling-air transfer system
JP2010249500A (en) Turbine engine including liner
US5181826A (en) Attenuating shroud support
JP2003083088A (en) Sealing structure of combustor liner
US5267831A (en) Axial flow gas turbines
EP2957832B1 (en) Heat-transfer device and gas turbine combustor with same
JP5614971B2 (en) Externally adjustable impingement cooling manifold mount and thermocouple housing
US4859142A (en) Turbine clearance control duct arrangement
JP2008180220A (en) Predictive model type control system for high horsepower gas turbine
KR950013206B1 (en) Cooling means for augmentor liner
US9988942B2 (en) Air exhaust tube holder in a turbomachine
US20030005705A1 (en) Industrial gas turbine multi-axial thermal isolator
US5639209A (en) Rotor for thermal turbomachines
CA1129776A (en) Full hoop bleed manifolds for longitudinally split compressor cases