JPH02125221A - Cryogenic fiber scope - Google Patents

Cryogenic fiber scope

Info

Publication number
JPH02125221A
JPH02125221A JP27832088A JP27832088A JPH02125221A JP H02125221 A JPH02125221 A JP H02125221A JP 27832088 A JP27832088 A JP 27832088A JP 27832088 A JP27832088 A JP 27832088A JP H02125221 A JPH02125221 A JP H02125221A
Authority
JP
Japan
Prior art keywords
objective lens
lens barrel
cryogenic
optical path
objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27832088A
Other languages
Japanese (ja)
Other versions
JPH0571923B2 (en
Inventor
Sadao Chigira
定雄 千吉良
Tatsuyuki Oohashi
大橋 立行
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP27832088A priority Critical patent/JPH02125221A/en
Publication of JPH02125221A publication Critical patent/JPH02125221A/en
Publication of JPH0571923B2 publication Critical patent/JPH0571923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/325Optical coupling means having lens focusing means positioned between opposed fibre ends comprising a transparent member, e.g. window, protective plate

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To improve the handling operativity and reliability by reducing the pressure in an objective lens barrel, sealing both its ends with transparent windows, and connecting an optical path to one window in an abutting state. CONSTITUTION:This fiber scope consists of an ocular lens barrel 2 provided with an ocular 4, the objective lens barrel 9 provided with an objective lens 7, and the optical path 1 which transmits an image obtained by the objective lens barrel 9 to the ocular lens barrel 2. Then the pressure in the objective lens barrel 9 is reduced, its both ends are sealed with the transparent windows 8, and the optical path 1 is connected to one window 8 in the abutting state. Therefore, even when the objective lens barrel 9 is dipped in a cryogenic medium, the objective lens 7 is never dewed. Consequently, the stable image is obtained at all times and no suction device is required, so the operativity at the time of observation is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、液化ガス等の極低温媒体中ての観察に使用
される極低温用ファイバスコープに関セるらのであり、
特に極低温用ファイバスコープの取りl及い操作性およ
び信頼性を向」二せしめたしのである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cryogenic fiberscope used for observation in a cryogenic medium such as liquefied gas, and
In particular, it has improved the handling capacity, operability, and reliability of cryogenic fiberscopes.

[従来の技術] 液化天然ガス、液体窒素等の極低温媒体中ての材料の振
舞い等は直接観察することかできないので、従来からフ
ァイバスコープによる観察が行なわれている。
[Prior Art] Since the behavior of materials in cryogenic media such as liquefied natural gas and liquid nitrogen cannot be directly observed, observation using a fiberscope has conventionally been performed.

第2図は極低温媒体り中で使用される従来の極低温用フ
ァイバスコープを示したもので、図中符号lは極低温媒
体り中に浸漬された試料Sの画像を伝送する光路である
。この光路lは先ファイバを集束させたイメージファイ
バ等からなり光路1の両端にはそれぞれ接眼鏡筒2とセ
ンサブローブ3とが取り付けられており、センサプロー
ブ3を液体窒素等の極低温媒体し中に浸漬して試料Sを
観察できるようになっている。接眼鏡筒2内には凸レン
ズ等からなる接眼レンズ4が設けられており、光路1に
よって伝送された試料Sの画像が視認iJ能なようにな
っている。センサプローブ3は、その内部に収納する光
路1等を極低温や外部応力等から保護可能なようにステ
ンレススチール等からなる概略円筒体であって、その側
部にはセンサプローブ3内を減圧状態にするたぬの吸引
管5が取り付けられている。光路1に接続されているセ
ンサプローブ3の一端はフランジ6によって封止されて
いると共に、他端にはその内部に対物レンズ7.7を収
納し、透明な窓8によって封止された対物鏡筒9が取り
付けられおり、センサプローブ3内の気密が保たれるよ
うになっている。さらにセンサプローブ3の側部から分
岐された吸引管5には吸引ポンプ等の吸引装置10が接
続されており、センサプローブ3内を10刊〜I O−
’torrの減圧状態にできるようになっている。これ
によリセンサブローブ3を極低温媒体り中に浸漬した際
にもその内部に収納された光路!および対物レンズ7.
7等の結露を防止することかできるようになっている。
Figure 2 shows a conventional cryogenic fiberscope used in a cryogenic medium, and the symbol l in the figure is an optical path that transmits the image of the sample S immersed in the cryogenic medium. . This optical path 1 consists of an image fiber with a focused fiber, etc., and an eyepiece tube 2 and a sensor probe 3 are attached to both ends of the optical path 1, respectively. The sample S can be observed by immersing it in the water. An eyepiece lens 4 made of a convex lens or the like is provided inside the eyepiece tube 2, so that the image of the sample S transmitted through the optical path 1 can be visually recognized. The sensor probe 3 is a generally cylindrical body made of stainless steel or the like so that the optical path 1 etc. housed inside can be protected from extremely low temperatures and external stress, etc., and the inside of the sensor probe 3 is in a reduced pressure state on the side thereof. A suction tube 5 is attached. One end of the sensor probe 3 connected to the optical path 1 is sealed by a flange 6, and the other end houses an objective lens 7.7 therein and is sealed by a transparent window 8. A tube 9 is attached to keep the interior of the sensor probe 3 airtight. Furthermore, a suction device 10 such as a suction pump is connected to a suction pipe 5 branched from the side of the sensor probe 3.
It is possible to create a reduced pressure state of 'torr. This allows the optical path to be stored inside the sensor probe 3 even when it is immersed in a cryogenic medium! and objective lens 7.
It is possible to prevent condensation on 7 etc.

[発明が解決しようとする課題] ところが第2図に示したような極低温用ファイバスコー
プにあっては、試料Sの観察中、結露を防止するために
常に吸引装置lOを稼動させ・てセンザブローブ3内を
減圧状態に保つ必要があるので吸引装置IOか不可欠と
なり、観察の際の操作性が低いという問題があった。さ
らに観察が長期間に亙る場合には、極低温で減圧状態と
なったセンサプローブ3内に吸引装置IOから外気が逆
流することがあり、これにより対物レンズ7.7等が結
露して、得られる画像の信頼性が低下し、さらには観察
不能となることがあった。
[Problems to be Solved by the Invention] However, in a cryogenic fiberscope as shown in FIG. Since it is necessary to maintain the inside of the apparatus 3 in a reduced pressure state, a suction device IO is indispensable, which poses the problem of low operability during observation. Furthermore, when observation is carried out over a long period of time, outside air may flow back from the suction device IO into the sensor probe 3, which is in a reduced pressure state at an extremely low temperature, resulting in condensation on the objective lens 7.7, etc. The reliability of the images obtained was reduced, and even became unobservable.

この発明は−F記課題を解決するためになされたらので
あって、操作性と信頼性とが良好な極低温用ファイバス
コープを提供することを目的としている。
This invention has been made to solve the problems listed in item -F, and its purpose is to provide a cryogenic fiberscope with good operability and reliability.

[課題を解決するための手段] この発明の極低温用ファイバスコープは、接眼レンズが
設けられた接眼鏡筒と、対物レンズが設けられた対物鏡
筒と、この対物鏡筒で得られた画像を上記接眼鏡筒へ伝
送する光路とからなる極低温用ファイバスコープであっ
て、上記対物鏡筒内を減圧状態とし、その両端を透明な
窓で封正し、この窓の一方に上記光路を突き合わせ状態
で接続したこと、あるいは上記対物鏡筒内部を、対物鏡
筒が浸漬される極低温媒体よりら低い沸点の気体で充填
し、その両端を透明な窓で封止し、この窓の一方に上記
光路を突き合わせ状態で接続したことを解決手段とした
[Means for Solving the Problems] The cryogenic fiber scope of the present invention includes an eyepiece tube provided with an eyepiece, an objective tube provided with an objective lens, and an image obtained with the objective tube. A fiberscope for cryogenic use, which comprises an optical path for transmitting the light to the eyepiece tube, the inside of the objective tube is in a reduced pressure state, both ends of which are sealed with transparent windows, and the optical path is connected to one of the windows. The inside of the objective lens barrel is filled with a gas having a boiling point lower than that of the cryogenic medium in which the objective lens barrel is immersed, and both ends of the objective lens barrel are sealed with transparent windows, and one side of this window is sealed. The solution was to connect the optical paths in a butt-to-edge manner.

[作用 ] 請求項1記載の極低温用ファイバスコープでは、対物鏡
筒内を減圧状態としたので、対物鏡筒を液体ヘリウム等
の極低温媒体中に浸漬しても対物レンズが結露すること
がない。
[Function] In the cryogenic fiberscope according to claim 1, since the inside of the objective lens barrel is in a reduced pressure state, dew condensation does not occur on the objective lens even if the objective lens barrel is immersed in a cryogenic medium such as liquid helium. do not have.

請求項2記戦の極低温用ファイバスコープでは、極低温
用ファイバスコープを浸漬する極低温媒体よりも低い沸
点を示す気体で対物鏡筒内を充填したので、対物レンズ
が結露することがない。
In the cryogenic fiber scope according to claim 2, the objective lens barrel is filled with a gas having a lower boiling point than the cryogenic medium in which the cryogenic fiber scope is immersed, so there is no condensation on the objective lens.

さらに請求項1および請求項2記載のいずれの極低温用
ファイバスコープにあ・)てら、対物鏡筒と光路とを突
き合わ仕状懸で接続したので、対物鏡筒と光路との間で
結露が起きないと共に、対物鏡筒と光路間に極低温媒体
が介入しても均一な薄膜層となるので測定に悪影響を及
ぼさない。
Furthermore, in any of the cryogenic fiber scopes according to claims 1 and 2, since the objective lens barrel and the optical path are connected by a butt-type suspension, dew condensation occurs between the objective lens barrel and the optical path. In addition, even if a cryogenic medium intervenes between the objective lens barrel and the optical path, a uniform thin film layer is formed, so that measurement is not adversely affected.

[実施例] 以下、この発明の詳細な説明する。[Example] The present invention will be explained in detail below.

第1図はこの発明の請求項1記載の極低温用ファイバス
コープの一実施例を示したもので、第2図に示した従来
のものと異なるところは、センサプローブ3と吸引装置
lOとを不要とし、光路1を対物鏡筒9に突き合わせ状
態で直接接続したところである。
FIG. 1 shows an embodiment of a cryogenic fiber scope according to claim 1 of the present invention, and the difference from the conventional one shown in FIG. 2 is that a sensor probe 3 and a suction device 10 are This is unnecessary, and the optical path 1 is directly connected to the objective lens barrel 9 in an abutted state.

対物鏡筒9は、極低温や外部応力に対して耐久性の良好
なステンレススチールや石英ガラス、サファイヤ等から
なる円筒体であって、その内部には極低温媒体I7中に
浸漬された試料Sを観察可能なようにする凸レンズ等か
らなる対物レンズ7.7が設けられている。また対物鏡
筒9は、いずれも極低温および外部応力に対して耐久性
を有し、かつ光路1内を伝送される測定光に対して透明
な材料の石英ガラス、サファイヤ等からなる窓8.8に
よってその両端を真空封止されている。対物鏡n9の内
圧は、対物鏡筒9を極低温用媒体■7中に浸漬し、た際
に対物レンズ7.7が結露しない程度の減圧状態であれ
ば良く、極低温媒体りの種類によって適宜選択すること
ができろが、10−1〜10 ”torrの減圧状態か
好適である。また対物鏡筒9の一方の窓8の外部には、
他端か接眼鏡筒2に接続された光路lの一端が突き合わ
せ状態で直接接続されており、対物鏡筒9で得られた試
料Sの画像を接眼鏡筒2へ伝送できるようになっている
The objective lens barrel 9 is a cylindrical body made of stainless steel, quartz glass, sapphire, etc. that has good durability against extremely low temperatures and external stress, and inside the objective lens barrel 9 is a cylindrical body made of stainless steel, quartz glass, sapphire, etc., which has good durability against extremely low temperatures and external stress. An objective lens 7.7 consisting of a convex lens or the like is provided to enable observation of the image. The objective lens barrel 9 has a window 8. made of quartz glass, sapphire, or the like, which is durable against extremely low temperatures and external stress, and is transparent to the measurement light transmitted through the optical path 1. 8, both ends of which are vacuum sealed. The internal pressure of the objective lens n9 may be such a reduced pressure that the objective lens 7.7 does not condense when the objective lens barrel 9 is immersed in the cryogenic medium ■7, and it depends on the type of cryogenic medium. Although it can be selected as appropriate, a reduced pressure of 10-1 to 10" torr is preferable. Also, on the outside of one window 8 of the objective lens barrel 9,
One end of the optical path l connected to the other end or the eyepiece tube 2 is directly connected in a butting state, so that the image of the sample S obtained by the objective lens tube 9 can be transmitted to the eyepiece tube 2. .

このようにすると、試料Sを観察する際に対物鏡筒9と
光路1とを極低温媒体り中に浸漬した際に乙、対物鏡筒
9内は減圧状態に保たれ、かつ対物鏡筒9と光路1どは
突き合わけ状態で接続されているので、対物レンズ7.
7や光路1の端面で結露することがない。さらに光路l
と対物鏡筒9との間に極低温媒体りが侵入したとしても
、極低温媒体りは均一な薄膜層となるので、この発明の
極低温用ファイバスコープで得られる画像に悪影響を及
ぼすことがない。また対物鏡筒9の両端は窓8.8によ
って真空封止されているので、従来の極低温用ファイバ
スコープのように吸引装置を必要としないので、試料S
の観察の際の操作性か向上するばかりでなく、長期間に
亙る観察し容易となる。さらには極低温用ファイバスコ
ープを小型化することができ、幅広い応用が可能となる
In this way, when the objective lens barrel 9 and the optical path 1 are immersed in the cryogenic medium when observing the sample S, the inside of the objective lens barrel 9 is maintained at a reduced pressure state, and the objective lens barrel 9 and optical path 1 are connected in a butting manner, so objective lens 7.
7 or the end face of the optical path 1. Furthermore, the optical path l
Even if a cryogenic medium enters between the fiberscope and the objective lens barrel 9, the cryogenic medium forms a uniform thin film layer, so that it will not adversely affect the images obtained with the cryogenic fiberscope of the present invention. do not have. In addition, since both ends of the objective lens barrel 9 are vacuum-sealed by the windows 8.8, there is no need for a suction device unlike in conventional cryogenic fiberscopes.
This not only improves the operability during observation, but also facilitates observation over a long period of time. Furthermore, cryogenic fiberscopes can be made smaller, enabling a wide range of applications.

またこの発明の極低温用ファイバスコープでは対物鏡筒
9のみの交換が容易であるので、(呆守性ら向上する。
In addition, in the cryogenic fiberscope of the present invention, only the objective lens barrel 9 can be easily replaced, which improves the ease of maintenance.

この発明の請求項2記載の極低温用ファイバスコープは
、第1図に示した請求項1記載の極低温用ファイバスコ
ープの対物鏡筒9内に極低温媒体I7の温度よりも低い
露点を何する気体を封11−シたしのであり、たとえば
液体窒素中での観察を行う際には、液体窒素の液温90
によりも低い沸点4Kを示すヘリウムを対物鏡筒9内に
封止しノニものである。このようにすると対物鏡筒9を
液体窒素中に浸漬しても、−\リウムの沸点以上である
ためレンズ7.7や光路lの端面は結露しない。また対
物鏡筒9内に気体を充填すると、請求項1記載の極低、
量用ファイバスコープと異なり、対物鏡筒9内の圧と極
低温媒体I7の圧とを等しくするごとができるので、対
物鏡筒9の両端に取り付けられた窓8.8の破損を防1
卜することができるようになり、強度の向上か図れるの
で好適である。
The cryogenic fiber scope according to claim 2 of the present invention has a dew point lower than the temperature of the cryogenic medium I7 in the objective lens barrel 9 of the cryogenic fiber scope according to claim 1 shown in FIG. For example, when observing in liquid nitrogen, the temperature of the liquid nitrogen is 90°C.
Helium, which has a boiling point of 4K lower than that of the conventional lens, is sealed in the objective lens barrel 9. In this way, even if the objective lens barrel 9 is immersed in liquid nitrogen, there will be no condensation on the lens 7.7 or the end face of the optical path 1, since the temperature is above the boiling point of -\lium. Furthermore, when the objective lens barrel 9 is filled with gas, the extremely low
Unlike optical fiberscopes, it is possible to equalize the pressure inside the objective lens barrel 9 and the pressure of the cryogenic medium I7, which prevents damage to the windows 8.8 attached to both ends of the objective lens barrel 9.
This is preferable because it allows for improved strength.

また請求項1および請求項2記載のいずれの極低温用フ
ァイバスコープも、光路lとしてイメージファイバを用
いるほかにも、画像伝送用のファイバやロッド等を用い
ろことができ、特に屈折率が中心軸から外周面へ向って
放物線状に分布している像(云送体であるセルフォック
ロッドレンズの両端にカバーガラスを接合したものを用
いると、焦点深度が深く、鮮明な画像が得られるので好
適である。
In addition to using an image fiber as the optical path l, the cryogenic fiber scope according to any of claims 1 and 2 can also use a fiber, rod, etc. for image transmission, and in particular, the refractive index can be Images distributed parabolically from the axis to the outer circumferential surface (using a selfoc rod lens with cover glasses bonded to both ends of the transmission body provides a deep depth of focus and clear images. suitable.

また第1図に示した極低温用ファイバスコープでは、試
料Sを観察するための光学系として2枚の対物レンズ7
.7と、(枚の接眼レンズ・1を用いたが、これらの光
学系はこの例に限られるしのではなく、複数枚の接眼レ
ンズ4.4を接眼鏡筒2内に設けてもその効果作用に全
く変化はない。
Furthermore, in the cryogenic fiber scope shown in FIG. 1, two objective lenses 7 are used as an optical system for observing the sample S.
.. 7 and (2) eyepiece lenses 1 are used, but these optical systems are not limited to this example, and even if multiple eyepiece lenses 4.4 are provided in the eyepiece tube 2, the effect can be obtained. There is no change in the effect at all.

[発明の効果] 以」ユ説明したように、この発明の極低l語用−7フィ
バスコープは、対物鏡筒内を減圧状態とし、その両端を
透明な窓で封止し、この窓の−・方にL記先路を突き合
わせ状態で接続したしの、あるいは対物鏡筒内部を、対
物鏡筒が浸漬される極低温媒体よりも低い沸点の気体で
充填し、その両端を透明な窓で封止し、この窓の一方に
上記光路を突き合わせ状態で接続したものであるので、
い「れム極低温媒体中に浸漬して使用する際に、対物し
・ンズや光路の端面で結露4−ることがなくなり、安定
した画像を常にi見ることができる。さらに従来のらの
のように吸引装置を必要としないので、B盛時の操作性
が向上すると共に、長期間に亙って安定した画像を得る
ことができるようになり、信頼性が向上する。また吸引
装置が不要となるので小型化が可能となる。また対物鏡
筒9のみの交換が容易であるので、保守性ら向上する。
[Effects of the Invention] As explained below, the ultra-low L-7 fiberscope of the present invention has the objective lens barrel in a reduced pressure state, both ends of which are sealed with transparent windows, and the - Fill the cylinder or the inside of the objective lens barrel with the L end connected in a butting state with a gas having a boiling point lower than the cryogenic medium in which the objective lens barrel is immersed, and fill both ends with a transparent window. The above optical path is connected to one side of this window in a butting state.
When using the lens immersed in a cryogenic medium, there is no condensation on the objective lens or the end face of the optical path, and a stable image can always be viewed. Since there is no need for a suction device as in the case of Since it is not necessary, it is possible to downsize the lens.Also, since only the objective lens barrel 9 can be easily replaced, maintainability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の極低温用ファイバスコープの一実施
例の概略構成図、第2図は従来の極低温用ファイバスコ
ープの一例を示した概略構成図である。 光路、 2・・・接眼鏡筒、 4・接眼レンズ、 7・・対物レンズ、 8・、巴、 9・・対物鏡筒、 17・極低温媒体。゛
FIG. 1 is a schematic configuration diagram of an embodiment of a cryogenic fiber scope according to the present invention, and FIG. 2 is a schematic configuration diagram showing an example of a conventional cryogenic fiber scope. Optical path, 2. Eyepiece tube, 4. Eyepiece lens, 7. Objective lens, 8. Tomoe, 9. Objective lens barrel, 17. Cryogenic medium.゛

Claims (2)

【特許請求の範囲】[Claims] (1)接眼レンズが設けられた接眼鏡筒と、対物レンズ
が設けられた対物鏡筒と、この対物鏡筒で得られた画像
を上記接眼鏡筒へ伝送する光路とからなる極低温用ファ
イバスコープであって、 上記対物鏡筒内を減圧状態とし、その両端を透明な窓で
封止し、この窓の一方に上記光路を突き合わせ状態で接
続したことを特徴とする極低温用ファイバスコープ
(1) A cryogenic fiber consisting of an eyepiece tube equipped with an eyepiece, an objective tube equipped with an objective lens, and an optical path that transmits the image obtained with this objective tube to the eyepiece tube. A cryogenic fiber scope, characterized in that the inside of the objective lens barrel is in a reduced pressure state, both ends of which are sealed with transparent windows, and the optical path is connected to one of the windows in an abutting state.
(2)接眼レンズが設けられた接眼部と、対物レンズが
設けられた対物鏡筒と、この対物鏡筒で得られた画像を
上記接眼鏡筒へ伝送する光路とからなる極低温用ファイ
バスコープであって、 上記対物鏡筒内部を、対物鏡筒が浸漬される極低温媒体
よりも低い沸点の気体で充填し、その両端を透明な窓で
封止し、この窓の一方に上記光路を突き合わせ状態で接
続したことを特徴とする極低温用ファイバスコープ
(2) A cryogenic fiber consisting of an eyepiece section equipped with an eyepiece, an objective barrel equipped with an objective lens, and an optical path that transmits the image obtained with this objective barrel to the eyepiece barrel. The scope is characterized in that the inside of the objective barrel is filled with a gas having a boiling point lower than the cryogenic medium in which the objective barrel is immersed, both ends of which are sealed with transparent windows, and one of the windows is provided with the optical path. A cryogenic fiberscope characterized by connecting the two in a butt-butt state.
JP27832088A 1988-11-02 1988-11-02 Cryogenic fiber scope Granted JPH02125221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27832088A JPH02125221A (en) 1988-11-02 1988-11-02 Cryogenic fiber scope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27832088A JPH02125221A (en) 1988-11-02 1988-11-02 Cryogenic fiber scope

Publications (2)

Publication Number Publication Date
JPH02125221A true JPH02125221A (en) 1990-05-14
JPH0571923B2 JPH0571923B2 (en) 1993-10-08

Family

ID=17595690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27832088A Granted JPH02125221A (en) 1988-11-02 1988-11-02 Cryogenic fiber scope

Country Status (1)

Country Link
JP (1) JPH02125221A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267015A (en) * 1985-05-21 1986-11-26 Toshiba Corp Cryogenic fiber scope
JPS62260116A (en) * 1986-05-06 1987-11-12 Toshiba Corp Fiber scope for low temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267015A (en) * 1985-05-21 1986-11-26 Toshiba Corp Cryogenic fiber scope
JPS62260116A (en) * 1986-05-06 1987-11-12 Toshiba Corp Fiber scope for low temperature

Also Published As

Publication number Publication date
JPH0571923B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US5093719A (en) Endoscopic gradient index optical systems
US4515444A (en) Optical system
US5377047A (en) Disposable endoscope employing positive and negative gradient index of refraction optical materials
US5341240A (en) Disposable endoscope
US4958919A (en) Color-corrected optical systems with liquid lens elements
AU758286B2 (en) Sapphire objective system
US5210815A (en) Hermetically sealed optical fiber feedthrough
JPH07111500B2 (en) Endoscope objective lens
JP2000262461A (en) Optical imaging device
US5818644A (en) Gradient index optical element and method for making the same
JP2018198929A (en) Fiber optic correction of astigmatism
US6932760B1 (en) Autoclavable coupler for endoscopic camera system
Chan et al. Iodine absorption filters for Doppler global velocimetry
JPH02125221A (en) Cryogenic fiber scope
JPH10170794A (en) Lens device of endoscope
CN109443629A (en) A kind of differential pressure fibre-optical probe structure and its differential pressure fibre optical sensor
US3532409A (en) Hydrostatically-supported optical stabilizer
US4707075A (en) Very-low-temperature fiberscope
EP0528880B1 (en) Apparatus for analysing optical properties of transparent objects
US20180059400A1 (en) Endoscope and Relay Lens System for Transmitting an image
CN208421387U (en) Image space telecentric imaging camera lens based on calcium fluoride crystal
JP2798724B2 (en) Cryogenic fiberscope
Matsushita et al. Newly developed glass devices for image transmission
JPH10148744A (en) Lens device
JPS62260116A (en) Fiber scope for low temperature

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees