JPH02122245A - Instrument for measuring concentration of ozone - Google Patents

Instrument for measuring concentration of ozone

Info

Publication number
JPH02122245A
JPH02122245A JP27576688A JP27576688A JPH02122245A JP H02122245 A JPH02122245 A JP H02122245A JP 27576688 A JP27576688 A JP 27576688A JP 27576688 A JP27576688 A JP 27576688A JP H02122245 A JPH02122245 A JP H02122245A
Authority
JP
Japan
Prior art keywords
gas
quartz glass
ozone
measured
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27576688A
Other languages
Japanese (ja)
Inventor
Masahiko Mochizuki
望月 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Yamanashi Ltd
Original Assignee
Tokyo Electron Yamanashi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Yamanashi Ltd filed Critical Tokyo Electron Yamanashi Ltd
Priority to JP27576688A priority Critical patent/JPH02122245A/en
Publication of JPH02122245A publication Critical patent/JPH02122245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To decrease the number of constituting parts and to improve ozone resistance and responsiveness by constituting flow passages for a gas to be measured of a quartz glass tube and joint and diverting the flow passages. CONSTITUTION:The two flow passages; the flow passages 22a and 22b for the gas to be measured are formed to substantially increase the flow rate of the gas flowing therein. A gas detecting part 19 is constituted of the quartz glass tube 20 and quartz glass rod 21 which are hermetically supported at both ends and the joint 24 for hermetically supporting a piping 23 for leading in and out of the gas. The detecting part 19 forming the flow passages 22a, 22b for the gas to be measured holds the double tubes constituted of the quartz glass 20 and the glass rod 21 by the joint 24. There are, therefore, no parts to be corroded by gaseous ozone. The leakage of the gaseous ozone by the corrosion of the parts is thus obviated and the detecting part 19 is produced in a short period of time without requiring special adjustments at the time of the production thereof.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はオゾン濃度測定装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an ozone concentration measuring device.

(従来の技術) 従来、オゾン(03)を含むガス中のオゾン濃度の測定
装置としては、オゾンが紫外線領域の254nm付近に
於て最大吸収帯が有ることを利用した紫外線吸収法によ
る装置が最も多く使用されている。この様な装置は第5
図に示すように、光源例えば紫外線ランプ(1)からの
光をガス流路部(2)のセンス用窓(3)に投光し、ガ
ス流路部(2)を流れる被測定体のガスを透過した光を
センサー(4)例えば紫外線検出用フォトダイオードで
検出し、図示しないコントローラでセンス量を演算等の
処理をし、ガス中のオゾン濃度を求めるものである。
(Prior art) Conventionally, as a device for measuring ozone concentration in a gas containing ozone (03), the most suitable device is an ultraviolet absorption method that utilizes the fact that ozone has a maximum absorption band near 254 nm in the ultraviolet region. Used a lot. Such a device is the fifth
As shown in the figure, light from a light source such as an ultraviolet lamp (1) is projected onto the sensing window (3) of the gas flow path (2), and the gas of the object to be measured flowing through the gas flow path (2) is The light transmitted through the gas is detected by a sensor (4) such as a photodiode for detecting ultraviolet rays, and the sensed amount is processed by a controller (not shown) to calculate the ozone concentration in the gas.

(発明が解決しようとする課題) しかしながら、被測定ガスの検出部を構成しているガス
流路部(2)は第6図に示すように、投光側の紫外線ラ
ンプ(1)と受光側センサー(4)との光軸方向にガス
流路を形成するための複数の部品を収納するセルブロッ
ク(5)があり、このセルブロック(5)内に設けられ
たガスを検出するだめのガス流路は非常に薄いスペーサ
ー(6)を、ガス検出用の窓となる2枚の石英ガラス(
7)て挾み、0.05〜0゜1 mmの空隙(8)を形
成する如く構成されている。即ち、この空隙(8)に被
測定ガスを流し、上記石英ガラス(7)の窓を介し紫外
線ランプ(1)からの投光を上記被測定ガス中のオゾン
により吸収された後の光を受光側センリーにて受はオゾ
ン濃度を測定するものである。上記セルブロック(5)
の上記空隙(8)への位置合わせ及び気密封止のため上
記各々の石英ガラス(7)のスペーサー(6)と反対の
面には0−リング(9)及びスリーブ(10)が設けら
れている。また、紫外線ランプ(1)の側で、上記ガス
流路を形成するスベー→ノ(6)、石英ガラス(7)、
0−リンク(9)及びスリーブ(10)等がセルブロッ
ク(5)にリンクネジ(11)により固定されている。
(Problem to be Solved by the Invention) However, as shown in FIG. There is a cell block (5) that houses a plurality of parts for forming a gas flow path in the optical axis direction with the sensor (4), and a gas detector for detecting gas provided in this cell block (5). The flow path consists of a very thin spacer (6) and two pieces of quartz glass (which serve as windows for gas detection).
7) to form a gap (8) of 0.05 to 0.1 mm. That is, the gas to be measured flows through this gap (8), and the light emitted from the ultraviolet lamp (1) is received through the window of the quartz glass (7) after being absorbed by the ozone in the gas to be measured. The sensor on the side measures the ozone concentration. Above cell block (5)
An O-ring (9) and a sleeve (10) are provided on the surface of each of the quartz glasses (7) opposite to the spacer (6) for positioning and airtight sealing in the gap (8). There is. In addition, on the side of the ultraviolet lamp (1), a glass plate (6) forming the gas flow path, a quartz glass (7),
An 0-link (9), a sleeve (10), etc. are fixed to the cell block (5) by link screws (11).

そしてセルブロック(5)内のガス導入口(12)及ぶ
ガス導出口(13)の空隙(8)側には、空隙(8)に
対応した0゜05〜0−1mm径の貫通細孔(14)に
より空隙(8)と接続されている。従って、被測定ガス
はガス導入配管(16)を通り非常に細い0.05〜0
.1mm径の貫通細孔(14)を通り、窓であり紫外光
を透過させる石英ガラス(7)で形成された空隙(8)
を流れ、出口側の上記貫通細孔(14)を通りガス導出
口(13)へと流れる。この為、間隙(8)と貫通細孔
(14)との1立置合わせは構成部品点数が多いため調
整の手間を要している。
On the side of the gap (8) between the gas inlet (12) and the gas outlet (13) in the cell block (5), there is a through hole (0.05 to 0.1 mm diameter) corresponding to the gap (8). 14) is connected to the air gap (8). Therefore, the gas to be measured passes through the gas introduction pipe (16) and has a very narrow 0.05~0.
.. A void (8) formed of quartz glass (7) that is a window and transmits ultraviolet light through a through hole (14) with a diameter of 1 mm.
The gas flows through the through hole (14) on the outlet side to the gas outlet (13). For this reason, one vertical alignment of the gap (8) and the through hole (14) requires a lot of effort and effort for adjustment because the number of component parts is large.

」二連のように構成された被測定ガスの検出部は窓とな
る石英ガラス(7)とセルブロック(5)との気密封し
にO−リング(9)か使用されているがO−リング(9
)はゴムをヘースとしているため、高濃度例えは500
0〜1 oooooppmのオゾン濃度を測定する場合
には石英ガラス(7)とセルブロック(5)の隙間から
洩れたオゾンガスにより○−リング(9)が劣化してゆ
く。
The detection section for the gas to be measured, which is configured as a double series, uses an O-ring (9) to airtightly seal the quartz glass (7) serving as a window and the cell block (5). Ring (9
) is based on rubber, so the high concentration example is 500.
When measuring an ozone concentration of 0 to 1 oooooppm, the o-ring (9) deteriorates due to ozone gas leaking from the gap between the quartz glass (7) and the cell block (5).

この○−リング(9)の劣化により周囲の耐オゾン性の
低い桐質の部品を腐食劣化させ、測定ガスの洩れ等によ
る測定誤差の発生やさらに劣化が進み洩れの量が多くな
ると人体に危険がおよぶと言う問題があった。また、高
濃度の測定になると吸収される紫外線光量が増し、リニ
アリティーを持った適正な測定をするために、紫外線光
が被測定ガス中を通過する巾を狭くする必要がある。即
ち被測定ガスの流れる空隙(8)のキャップを小さくし
なければならなく、空隙(8)を流れるガス流量は非常
に少なくなり、被測定ガスのサンプリング場所からガス
検出部までの配管等による時間的遅れが例えは10〜2
0秒と大きくなり測定の応答性が悪くなると言う問題も
ある。 (間欠的な測定はできるがリアルタイムのfl
lll定は難しい。)この発明は上記点を改善するため
になされたものて、構成部品点数が少なく耐オゾン性に
優れ、応答性の良いオゾン濃度測定装置を提供しようと
するものである。
This deterioration of the ○-ring (9) corrodes and deteriorates the surrounding paulownia wood parts with low ozone resistance, causing measurement errors due to leakage of the measurement gas, and further deterioration and the amount of leakage, which is dangerous to the human body. There was a problem that there was a problem. Furthermore, when measuring high concentrations, the amount of UV light absorbed increases, and in order to perform proper measurements with linearity, it is necessary to narrow the width through which the UV light passes through the gas to be measured. In other words, the cap of the gap (8) through which the gas to be measured flows must be made small, and the gas flow rate through the gap (8) becomes extremely small. An example of a lag is 10-2
There is also the problem that the response time becomes 0 seconds, which deteriorates the responsiveness of measurement. (Intermittent measurement is possible, but real-time fl
It is difficult to determine. ) The present invention has been made to improve the above-mentioned problems, and it is an object of the present invention to provide an ozone concentration measuring device with a small number of component parts, excellent ozone resistance, and good responsiveness.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は被測定ガス流路に紫外光を照射し、前記ガス
の紫外線の吸収によりオゾンガスの濃度を測定する装置
に於て、」二記被測定ガス流路を石英ガラス管で構成し
、前記石英ガラス管を弗素樹脂材料からなる継ぎ手によ
り保持したことを特徴とするオゾン濃度測定装置を得る
ものである。
(Means for Solving the Problems) The present invention provides an apparatus for measuring the concentration of ozone gas by irradiating ultraviolet light onto a gas flow path to be measured, and measuring the concentration of ozone gas by absorbing the ultraviolet light of the gas. An ozone concentration measuring device is obtained, characterized in that the ozone concentration measuring device is constructed of a quartz glass tube, and the quartz glass tube is held by a joint made of a fluororesin material.

(作用) 本発明によれは、被測定ガスの検出部の被測定ガス流路
を石英ガラス管と弗素樹脂材料からなる配管継ぎ手によ
り構成し、上記被測定ガス流′11)を分流させること
により、構成部品が少なく耐オゾン性に優れた、応答性
の良いオゾン濃度測定ができる。
(Function) According to the present invention, the gas to be measured flow path of the detection portion of the gas to be measured is constituted by a quartz glass tube and a piping joint made of a fluororesin material, and the gas to be measured flow '11) is divided. It has few components, has excellent ozone resistance, and can measure ozone concentration with good responsiveness.

(実施例) 以下本発明オゾン濃度測定装置の一実施例を図面を参照
して説明する。第1図はオゾン濃度測定装置の被測定ガ
スの検出部(19)の構成図である。  耐オゾン性に
優れ、透光性の良い材料から成る管状体例えば石英ガラ
ス管(20)があり、この石英ガラス管(20)の内側
に上記材料と同等な材料から成る円柱状体例えば円柱状
石英ガラス棒(21)が上記石英ガラス管(20)の内
壁と所定の間隔例えば0.05〜0.1mmの空隙(2
2)を保つが如く設けらている。そして、高濃度のオゾ
ン例えば5000〜1100000ppの濃度では紫夕
)線の吸収量が多いため、受光側でのセンス出力の対ノ
イズ比(S/N比)がとれろよう上記間隔を0.05〜
0.1mmの間に設定している。また、上記石英ガラス
棒(21)の両端部近傍(jガス流−“gの確保のため
端部に向い一部分斜めζこ削られた形状とか−っており
、被測定ガスがこの削られた比較的広い空間部分を通っ
て治れこみ、また流れ出る1111造どなっている。即
ち第1図のように横断面から観たときの被測定ガス流路
(22a)及U (221:+ )の2つの流路を形成
し実質的ここ流れるガス流量の増大をはかっている。そ
し・て、」二記石英ガラス管(20)及び石英ガラス棒
(21)を両端で気密に支持し、かつ、ガス導入・導出
の為の配管(23)を気密に支持する耐オゾン性に優れ
た弗素樹脂例えばPTFE (ポリテトラフルオルエチ
レン)やPFA (パーフロロアルコキシエチレン)等
で形成された継ぎ手(24)とからガス検出部が構成さ
れている。この継ぎ手(24)の一端側は、石英ガラス
管(20)を保持する保持部(25)で、この保持部(
25)に石英ガラス管(20)が挿入されるが如く配設
されている。また、この保持部(25)の外側に設けら
れ、継ぎ手(24)と同質の材料から成る例えは弗素樹
脂製の環状締め具(26)との螺合による押圧力て石英
ガラス管(20)の外周壁を均等に圧接し気密性を保っ
ている。また、継ぎ手(24)中央部は前記保持部(2
5)と連通し、石英ガラス管(20)の内壁と円柱状石
英ガラス棒(21)外壁とを所定の間隔例えば0.05
〜0.1mmの空隙(22)が保持てきるが如く円筒状
溝(27)が設けられ、この溝(27)に石英ガラス棒
(21)が挿入・保持されている。さらに、継ぎ手(2
4)の他端側はガス導入・導出用配管(23)を保持す
る配管保持部(28)が形成され、この保持部(28)
に配管(23)が挿入され、上記保持部(28)の外周
ζこ設けられ、継ぎ手(24)と同質の材料から成る例
えば弗素樹脂製の環状締め具(29)との螺合による押
圧力て配管〈23)の外周壁を均等に圧接し気密性を保
つ構造と成っている。このように、被測定ガス流路を形
成するガス検出部〈19)は石英ガラス管(20)と石
英ガラス棒(21)により構成される二重管を弗素樹脂
製の継ぎ手(24)で保持する3種類4点の部品から構
成されている。このため、ガス検出部(19)はオゾン
ガスにより腐蝕される部品は無く、従って、部品の腐蝕
によるオゾンガスの洩れは無く、また、検出部(19)
の製作にあたっては特別な調整等を必要とぜず短時間て
製作てきる。
(Example) An example of the ozone concentration measuring device of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a detection section (19) for a gas to be measured of an ozone concentration measuring device. There is a tubular body such as a quartz glass tube (20) made of a material with excellent ozone resistance and good translucency, and inside this quartz glass tube (20) there is a cylindrical body such as a cylindrical body made of a material equivalent to the above material. The quartz glass rod (21) is connected to the inner wall of the quartz glass tube (20) at a predetermined distance, for example, a gap (2
2). Since a high concentration of ozone (e.g., 5,000 to 1,100,000 ppp) absorbs a large amount of rays, the interval above should be set to 0.05 to ensure a good S/N ratio of the sense output on the light receiving side. ~
It is set between 0.1 mm. In addition, near both ends of the quartz glass rod (21), a portion of the quartz glass rod (21) is shaved obliquely toward the end to ensure gas flow. The 1111 structure heals and flows out through a relatively wide space.In other words, the measured gas flow path (22a) and U (221:+) when viewed from the cross section as shown in Figure 1. Two flow paths are formed to substantially increase the flow rate of the gas flowing there. Then, the quartz glass tube (20) and the quartz glass rod (21) are airtightly supported at both ends, and A joint (24) made of a fluororesin with excellent ozone resistance, such as PTFE (polytetrafluoroethylene) or PFA (perfluoroalkoxyethylene), which airtightly supports the piping (23) for introducing and discharging gas. A gas detection section is constituted by this joint (24).One end side of this joint (24) is a holding section (25) that holds the quartz glass tube (20);
25) so that the quartz glass tube (20) can be inserted therein. In addition, a quartz glass tube (20) is provided on the outside of this holding portion (25) and is made of the same material as the joint (24), for example by a pressing force due to the screw engagement with a fluororesin annular fastener (26). The outer peripheral wall of the pipe is evenly pressed to maintain airtightness. Moreover, the central part of the joint (24) is connected to the holding part (2).
5), and connects the inner wall of the quartz glass tube (20) and the outer wall of the cylindrical quartz glass rod (21) at a predetermined distance, for example, 0.05.
A cylindrical groove (27) is provided so that a gap (22) of ~0.1 mm can be maintained, and a quartz glass rod (21) is inserted and held in this groove (27). Furthermore, the joint (2
4) The other end side is formed with a pipe holding part (28) that holds the gas introduction/output pipe (23), and this holding part (28)
The piping (23) is inserted into the outer periphery of the holding portion (28), and the pressing force due to the screw engagement with an annular fastener (29) made of the same material as the joint (24), for example, made of fluororesin. The structure is such that the outer circumferential wall of the pipe (23) is evenly pressed to maintain airtightness. In this way, the gas detection unit (19) forming the gas flow path to be measured consists of a double tube made up of a quartz glass tube (20) and a quartz glass rod (21), which is held by a fluororesin joint (24). It consists of four parts of three types. Therefore, the gas detection section (19) does not have any parts that are corroded by ozone gas, so there is no leakage of ozone gas due to corrosion of the parts, and the detection section (19)
It can be manufactured in a short period of time without requiring any special adjustments.

次に動作ζこついて説明する。Next, the operation ζ will be explained.

上述したガス検出部(19)を動作させる為には第2図
示すように紫外線を投光する例えは低圧水銀ランプ(3
0)から成る投光部(31)と上記ガス検出部分(19
)および上記ガス検出部(19)を透過した紫外線光を
受光するセンサー(32)例えば紫夕)線用フォトダイ
オード等から成る受光部(33)とこの受光部(33)
からの情報を解析演算するコン)・ローラ(図示せず)
とから構成されている。投光部(31)には低圧水銀ラ
ンプ(30)からの光を制限する巾約2 mm程のスリ
ッ1−(34,)を介しガス検出部(19)に紫外線光
が投光される。投光された紫9I線光は例えば横断面被
測定ガス流路(22a)及び(22b)の流路中例えば
0.05〜0.01mm部分を流れるガス中のオゾンに
より紫外線例えば254nm近傍の波長をオゾン濃度に
対応した量が吸収されガス検出部(19)を透過して行
き受光部(33)でセンスされる。ここで石英ガラス管
(20)及び石英ガラス棒(21)は吸収スペクトル波
長が異なるため254nm近傍の波長に対して吸収等同
等影響を及ぼさない。また受光部(33)の前面には光
のゆらぎを抑える光学フィルター(35〉が設けられセ
ンス感度の向」二重はかっている。上記センサー(32
)によりセンスされたデータはコントローラ(図示せず
)内の対数増幅器等で処理された後マイクロプロセッサ
等で演算処理が行われオゾン濃度が測定される。また、
ガス検出部(19)の被測定ガスの流れは配管(23)
のガス導入に始まり石英ガラス棒(21)の斜めに削っ
た形状部分から断面が円環状の空隙(22)へと流れ、
また石英ガラス棒(21)の斜めに削った形状部分から
配管(23)へと流れ出て行く。
In order to operate the gas detection unit (19) mentioned above, a low pressure mercury lamp (3) is used as an example to emit ultraviolet light as shown in Figure 2.
0) and the gas detection portion (19).
) and a sensor (32) that receives the ultraviolet light transmitted through the gas detection section (19);
A controller (not shown) that analyzes and calculates information from
It is composed of. Ultraviolet light is projected onto the gas detection section (19) into the light projection section (31) through a slit 1-(34,) with a width of about 2 mm that restricts the light from the low-pressure mercury lamp (30). The projected violet 9I light is emitted by ozone in the gas flowing in the 0.05 to 0.01 mm portion of the cross-sectional measurement gas flow paths (22a) and (22b), for example, and has a wavelength near 254 nm. An amount corresponding to the ozone concentration is absorbed, passes through the gas detection section (19), and is sensed by the light receiving section (33). Here, since the quartz glass tube (20) and the quartz glass rod (21) have different absorption spectrum wavelengths, they do not have the same effect on wavelengths near 254 nm, such as absorption. In addition, an optical filter (35) to suppress light fluctuation is provided on the front surface of the light receiving section (33), which doubles the direction of the sense sensitivity.
) The data sensed by the controller (not shown) is processed by a logarithmic amplifier or the like in a controller (not shown), and then arithmetic processing is performed by a microprocessor or the like to measure the ozone concentration. Also,
The gas to be measured in the gas detection unit (19) flows through the pipe (23).
The gas starts flowing from the obliquely cut portion of the quartz glass rod (21) into the gap (22) which has an annular cross section.
It also flows out from the obliquely cut portion of the quartz glass rod (21) into the pipe (23).

即ち、配管(23)からガス検出部(19)への流路の
断面積が分流する事により増加し、ガス検出部(19)
が設置された部分の流路のコンダクタンスが高くなる。
That is, the cross-sectional area of the flow path from the pipe (23) to the gas detection section (19) increases due to the branching, and the gas detection section (19)
The conductance of the flow path becomes high in the part where it is installed.

このことは、横断面から観ると高濃度オゾンガス測定の
為に制約される被測定ガスの?禿路(22a )及び(
221) )の巾0. 05〜0.1mmを保持した2
つのガス流路を被測定ガスが流れ、ガス検出部(19)
へ流す事ができるガス流量は20〜30リットル/分と
従来装置での2〜3リットル/分(従来装置では配管か
らのガスは急激に細くなった細孔例えは0.05〜0.
1mmを通り測定用空隙に流していた。このためガス検
出部(19)が設置された部分て流路のコンダクタンス
が急激に低くなりガス拡散速度が遅くなっていた。)に
比べ約10倍の流量を流せる。このため、例えばアッシ
ング装置なとては被測定ガスラインに流れるガス流量は
10〜20すットル/分で有るため、従来は第3a図に
示すように被測定ガス(03を含むガス)ラインに並列
にガス検出部(19)を配置し被測定ガスラインから小
流量のガスをサンプリングしながら測定する方法がとら
れていたが、第3b図に示すように、ガス検出部(19
)の流路のコンダクタンスが高くなり、ガス検出部(1
9)のコンダクタンスに合致したガス流量を流せるため
被測定ガスラインに直列にガス検出部(19)を配置し
直接被測定ガスラインをリアルタイムに測定することが
できる。
This means that when viewed from a cross section, the gas to be measured is restricted due to the measurement of high concentration ozone gas. Bald Road (22a) and (
221) Width of )0. 05~0.1mm held 2
The gas to be measured flows through two gas flow paths, and the gas detection section (19)
The gas flow rate that can be flowed to the pipe is 20 to 30 liters/min, compared to 2 to 3 liters/min in the conventional device (in the conventional device, the gas from the piping flows through rapidly narrowed pores of 0.05 to 0.05 liters/min).
It was flowing through the measurement gap through a diameter of 1 mm. For this reason, the conductance of the flow path in the part where the gas detection section (19) was installed decreased rapidly, and the gas diffusion rate became slow. ) can flow approximately 10 times the flow rate. For this reason, for example, in an ashing device, the flow rate of gas flowing into the gas line to be measured is 10 to 20 liters/min, so conventionally, as shown in Figure 3a, the gas to be measured (gas containing 03) line was A method has been used in which gas detection units (19) are arranged in parallel and measurements are taken while sampling a small flow rate of gas from the gas line to be measured.
) becomes high, and the gas detection part (1
Since the gas flow rate matching the conductance of 9) can be flowed, the gas detection section (19) can be placed in series with the gas line to be measured, and the gas line to be measured can be directly measured in real time.

また、上述の例に限らずその要旨を逸脱しない範囲で種
々な変形が可能であることは言うまでもない。例えはガ
ス検出部(19)の二重管構造は円筒状の形状に限らず
、楕円形、正方形、長方形等の断面を持った種々の形状
に変形してもよく、また第4図のように紫外線の投光と
受光でセンスされる部分のみを所定の巾例えば0.05
〜0゜1 mmとし他の部分は多量のガスが流れる形状
にしてもよく、複数の測定流路を形成する三層構造以上
でも良い、また酸濃度のオゾンを測定するときは内管(
21)の径を非常に小さくするかあるいは取り除いて使
用してもよいことは言うまでもない。
Furthermore, it goes without saying that the present invention is not limited to the above-described example, and that various modifications can be made without departing from the gist of the present invention. For example, the double tube structure of the gas detection section (19) is not limited to a cylindrical shape, but may be deformed into various shapes with cross sections such as elliptical, square, and rectangular. Only the part that is sensed by emitting and receiving ultraviolet rays is set to a predetermined width, for example 0.05.
~0゜1 mm, and the other parts may have a shape that allows a large amount of gas to flow, or may have a three-layer structure or more that forms multiple measurement flow paths.Also, when measuring ozone with an acid concentration, the inner tube (
It goes without saying that the diameter of 21) may be made very small or removed.

以上説明したようにこの実施例によれば、ガス検出部(
19)を透光性のある石英ガラス製の二重管構造により
形成された空隙を被測定ガス流路とし上記石英ガラス管
を耐オゾン性のある弗素樹脂製の支持部で支持する構成
としたことにより、構成部品か少なく耐オゾン性に優れ
、測定ガス流量の増大した応答性の良いオゾン濃度測定
ができる。
As explained above, according to this embodiment, the gas detection unit (
19) was configured such that a gap formed by a double tube structure made of translucent quartz glass was used as a flow path for the gas to be measured, and the quartz glass tube was supported by a support made of ozone-resistant fluororesin. As a result, it is possible to measure ozone concentration with fewer components, excellent ozone resistance, increased measurement gas flow rate, and good responsiveness.

(発明の効果) 以上説明したように本発明によれは、構成部品が少なく
、耐オゾン性に優れ、測定ガス流路の増大による応答性
の良いオゾン濃度測定ができる。
(Effects of the Invention) As explained above, according to the present invention, ozone concentration can be measured with a small number of components, excellent ozone resistance, and good responsiveness due to the increased measurement gas flow path.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被測定ガス検出部の構成図、第2図は第1図ガ
ス検出部の動作説明図、第3図はガス検出部の配置のオ
ゾンアッシング装置での説明図、第4図は検出部の他の
実施例説明図、第5図は従来のガス検出部の説明図、第
6図は第4図のガス検出部の構成図である。 20  11石石英ガラス 管1  11石石英ガラス 管2  1.空隙 23 a、  b−、被測定ガス流路 24  1.継ぎ手
Figure 1 is a configuration diagram of the gas detection unit to be measured, Figure 2 is an explanatory diagram of the operation of the gas detection unit in Figure 1, Figure 3 is an illustration of the arrangement of the gas detection unit in an ozone ashing device, and Figure 4 is an illustration of the arrangement of the gas detection unit in the ozone ashing device. FIG. 5 is an explanatory diagram of another embodiment of the detection section, FIG. 5 is an explanatory diagram of a conventional gas detection section, and FIG. 6 is a configuration diagram of the gas detection section of FIG. 4. 20 11 Quartz glass tube 1 11 Quartz glass tube 2 1. Gap 23 a, b-, gas flow path 24 to be measured 1. joint

Claims (2)

【特許請求の範囲】[Claims] (1)被測定ガス流路に紫外光を照射し、前記ガスの紫
外線の吸収によりオゾンガスの濃度を測定する装置に於
て、上記被測定ガス流路を石英ガラス管で構成し、前記
石英ガラス管を弗素樹脂材料からなる継ぎ手により保持
したことを特徴とするオゾン濃度測定装置。
(1) In an apparatus for measuring the concentration of ozone gas by irradiating a gas flow path with ultraviolet light and measuring the concentration of ozone gas by absorbing the ultraviolet light of the gas, the gas flow path to be measured is configured with a quartz glass tube, An ozone concentration measuring device characterized in that a tube is held by a joint made of a fluororesin material.
(2)上記被測定ガス流路を複数の流路に分流し、この
分流された各流路を縦断する如く紫外線を照射してオゾ
ン濃度を測定することを特徴とする請求項1記載のオゾ
ン濃度測定装置。
(2) The ozone concentration according to claim 1, wherein the gas flow path to be measured is divided into a plurality of flow paths, and the ozone concentration is measured by irradiating ultraviolet rays so as to traverse each of the divided flow paths. Concentration measuring device.
JP27576688A 1988-10-31 1988-10-31 Instrument for measuring concentration of ozone Pending JPH02122245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27576688A JPH02122245A (en) 1988-10-31 1988-10-31 Instrument for measuring concentration of ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27576688A JPH02122245A (en) 1988-10-31 1988-10-31 Instrument for measuring concentration of ozone

Publications (1)

Publication Number Publication Date
JPH02122245A true JPH02122245A (en) 1990-05-09

Family

ID=17560093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27576688A Pending JPH02122245A (en) 1988-10-31 1988-10-31 Instrument for measuring concentration of ozone

Country Status (1)

Country Link
JP (1) JPH02122245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163293A (en) * 2002-11-14 2004-06-10 Iwatani Internatl Corp Method and apparatus for measuring ozone gas concentration
CN105158159A (en) * 2015-07-08 2015-12-16 安徽蓝盾光电子股份有限公司 Ozone concentration detection apparatus for ozone generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163293A (en) * 2002-11-14 2004-06-10 Iwatani Internatl Corp Method and apparatus for measuring ozone gas concentration
CN105158159A (en) * 2015-07-08 2015-12-16 安徽蓝盾光电子股份有限公司 Ozone concentration detection apparatus for ozone generator

Similar Documents

Publication Publication Date Title
TWI434036B (en) Apparatus and method for measuring a constituent of a fluid
JPH08304282A (en) Gas analyzer
Jackson et al. Direct NO2 photolysis rate monitor
JPS6217183B2 (en)
JPH02122245A (en) Instrument for measuring concentration of ozone
Bergshoeff et al. Spectrophotometric determination of ozone in air with indigo disulphonate
CN212301412U (en) Calibration system based on nitric acid chemical ionization time-of-flight mass spectrometer
CN209979488U (en) Detection of SO by ultraviolet fluorescence2Device for the preparation of
JP2001108610A (en) Cell for optical analysis and optical analysis meter
CN109781639B (en) Device and method for simultaneously detecting sulfur dioxide and nitrogen dioxide in ambient air
JPS62132130A (en) Ultraviolet ray measuring instrument
CN106483085B (en) Light absorption test light pool for photometer
US9261451B2 (en) Device and method for determining the permeation rate of barrier elements and ultra-barrier elements
JP2945050B2 (en) Method for determining performance degradation of zero gas generator in ozone concentration measurement device
JP2000046728A (en) Corrosion-resistant cell for optical analysis
KR200230292Y1 (en) The Simultaneous Measuring Sensor of High and Low Concentration Ozone
CN109358005A (en) Content of nitrogen dioxide detection device and method
EP0064980B1 (en) System and process for measuring the concentration of a gas in a flowing stream of gases
JP2001004532A (en) Optical analyzing cell
CN208239295U (en) Water quality on-line monitoring instrument and measuring unit
CN215448939U (en) Absorption pool for detecting high-concentration ozone
KR20190000627U (en) Cell measuring ozone gas
JPH1019770A (en) Gas concentration measurement device
KR20180128605A (en) Cell measuring ozone gas
JP2828367B2 (en) Method and apparatus for measuring molecular weight distribution of organic substance