JPH02122224A - Color consecutively measuring device - Google Patents

Color consecutively measuring device

Info

Publication number
JPH02122224A
JPH02122224A JP27656688A JP27656688A JPH02122224A JP H02122224 A JPH02122224 A JP H02122224A JP 27656688 A JP27656688 A JP 27656688A JP 27656688 A JP27656688 A JP 27656688A JP H02122224 A JPH02122224 A JP H02122224A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical system
color
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27656688A
Other languages
Japanese (ja)
Inventor
Yuzo Mori
森 雄造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP27656688A priority Critical patent/JPH02122224A/en
Publication of JPH02122224A publication Critical patent/JPH02122224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To eliminate limit in designing an optical system and to attain spectrometry with high accuracy by respectively guiding the light of multiwavelength from a sample body which is dispersed by a diffraction grating to a photodetector by an image guide. CONSTITUTION:A sheet-like object 1 is successively moved in a y-direction. The part to be measured 1a of the object 1 is irradiated with light from a light source and the reflected light from the object 1 is condensed by an image- formation lens 2 and made incident on a spectrum part 3. The light condensed by the lens 2 is extracted in a belt shape by a slit 4 and made incident on the diffraction grating 5. The light receiving surface of the grating 5 is formed to be concave and the spectrum of the incident light is performed in a wavelength direction shown by an arrow lambda every wavelength. The spectral light of every wavelength is made incident on a plate-like fiber bundle optical system 6. the light of every wavelength which is made incident on the optical system 6 is guided to a photodiode array 8 by the image guide 7.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は色彩連続71111定装置に関し、特に、連
続的または瞬時に変化もしくは移動する試料物体の色を
測定する。Lうな色彩連続Δ1り定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a color continuous measurement device, particularly for measuring the color of a sample object that changes or moves continuously or instantaneously. This invention relates to a device for determining continuous color Δ1.

[従来の技術] 布や紙や鉄IQな古のようなン−!・状になって連続的
に製造される物体の表面の色を/11す定する装置の一
例として、特開昭54− I C1786号公報に記載
された表面の色彩連続検査装置がある。この装置は、白
色光を線状に照射し、その乱反n・Jを分光上二次元撮
像装置を用いて反射光の強度を測定することにより、線
状の各位置での色度を求めるものである。
[Conventional technology] Cloth, paper, and iron IQ, like the old days! - An example of a device for determining the surface color of objects continuously produced in the form of 11 is a continuous surface color inspection device described in Japanese Patent Application Laid-open No. 54-IC1786. This device irradiates white light in a linear manner and measures the intensity of the reflected light using a spectroscopic two-dimensional imaging device to determine the chromaticity at each position of the linear light. It is something.

また、他の例として、特開昭60−113’l’37号
公報には、少なくとも3 flAIのセンナを1組とし
て、これを直線」−に並べてカラーセンザをf:、i成
17、検査パターンの検査光をプリズムで分光し、カラ
ーセン−りに個別的に入射させてパターンを検査するよ
うにしたものかある。
As another example, Japanese Patent Application Laid-Open No. 113-1983 discloses that a set of at least 3 flAI sensors is arranged in a straight line, and a color sensor is used in f:, i, 17, and inspection patterns. There is a system in which the inspection light is split into spectra using a prism and made incident on a color sensor individually to inspect the pattern.

[発明か解決しようとする課題] 上述の特開昭54−]0786号公■に記拭きれた表面
色彩連続検査装置は、受光素子として、CCDなどから
なる一次元撮1τ鴎;了や、二次元撮像素子をui用し
た場合、素工のダイナミックレンジは2桁程度と低く、
高精度な測定をすることができない。一方、PDA (
フォトダイオードアレイ)を用いた一次元撮像素工ては
、り′イナミックレンジは4桁以上とることができ、高
粘度なdll+定がi+5能になる反曲、市販のPDA
は形状か大きく、光学系設計時に制約を伴うという欠点
かある。
[Problem to be solved by the invention] The surface color continuous inspection device described in the above-mentioned Japanese Patent Application Laid-Open No. 54-0786 is a one-dimensional imaging system consisting of a CCD or the like as a light receiving element. When a two-dimensional image sensor is used for UI, the dynamic range of the raw material is as low as about two digits.
It is not possible to perform highly accurate measurements. On the other hand, PDA (
A one-dimensional imaging device using a photodiode array (photodiode array) can have a dynamic range of more than 4 orders of magnitude, and has a high viscosity dll+ constant that can be turned into an i+5 function.
The disadvantage is that it is large in size and imposes restrictions when designing the optical system.

また、」−述の特開昭60−11:う9′37号公報に
記載された装置のように、分光部j′−としてプリズム
を使用した場合、スペクトル分解能か低くなる。また、
カラーセンザについては、現状では現感度によくマツチ
した性能のものが人手不可能なため、満是な測定をする
ことができない。また、分光素子に回折格子を使用した
場合、スペクトル分解能は高くなるが、可視域を一度に
分光しよ・)とすると、光学系の非直線性から分光波長
間隔が一様にならず、スペクトル結像面が曲面になるた
め、像の中心から外れるほどリニアリティが減少すると
いう欠点がある。
Furthermore, when a prism is used as the spectroscopic section j', as in the apparatus described in Japanese Unexamined Patent Publication No. 60-11-9'37, the spectral resolution becomes low. Also,
Regarding color sensors, it is currently impossible to make accurate measurements because it is currently impossible to manually create a color sensor with performance that closely matches the current sensitivity. In addition, if a diffraction grating is used as a spectroscopic element, the spectral resolution will be high, but if you try to analyze the visible range at once, the spectral wavelength interval will not be uniform due to the nonlinearity of the optical system, and the spectral resolution will increase. Since the imaging surface is a curved surface, there is a drawback that linearity decreases as the distance from the center of the image increases.

さらに、−次元あるいは二次元のCCD、PCD(プラ
ズマカップルドデバイス)、PDAのような固体受光素
」′−を使用した場合、隣接する洛」づ間のクロスト−
りにより素」′ごとの分解能か低ドするという問題点か
あった。
Furthermore, if a -dimensional or two-dimensional solid-state photodetector such as a CCD, PCD (plasma coupled device), or PDA is used, crosstalk between adjacent cells may occur.
There was a problem in that the resolution of each element was low due to this.

それゆえに、この発明の主たる目的は、光学系設置、1
の制約をなくして高精度に分光測定を行なって、連続的
に色彩を/l1ll定できるような色彩連続A+1定装
置を提供することである。
Therefore, the main purpose of this invention is to install an optical system.
It is an object of the present invention to provide a color continuous A+1 determination device that can perform spectroscopic measurements with high precision and continuously determine colors by eliminating the limitations of .

[課題を解決するための手段] この発明は連続的または瞬時に変化もしくは移動する試
オ′1物体の色をAll+定する色彩連続測定装置であ
−)で、試料物体からの光を多波長の光に同時に分散さ
せる回折格子と、多数の光ファイバの束からなり、回折
格子によ−)で分散された多波長の光をその一端に受け
、他端に導くためのイメージガー「ドと、イメージガイ
ドを構成する多数の光ファイバのそれぞれの他端に対応
して設けられ、導かれた各波長の光を電気信号に変換す
る受光素子とを備えて+1111成される。
[Means for Solving the Problems] The present invention is a continuous color measuring device that determines the color of a sample object that changes or moves continuously or instantaneously, and uses light from a sample object at multiple wavelengths. It consists of a diffraction grating that simultaneously disperses the light of several wavelengths, and a bundle of many optical fibers. , and a light-receiving element that is provided corresponding to the other end of each of the many optical fibers constituting the image guide and converts the guided light of each wavelength into an electrical signal.

[イ′1団月 この発明に係る色彩連続A1す定装置は、回折格子にj
−って分散された試料物体からの多波長の光をイメージ
ガイドにより受光素子にそれぞれ導くようにしたので、
受光素子としてPDAを用いることにより、光学系設計
の制約をなくすことができ、高精度の分光測定か可能と
なる。
[A'1 The color continuous A1 measuring device according to this invention has a j
- Since the multi-wavelength light from the dispersed sample object is guided to the light receiving element by the image guide,
By using a PDA as a light receiving element, restrictions on optical system design can be eliminated and highly accurate spectroscopic measurements can be performed.

[発明の実施例] 第1図はこの発明の一実施例の構成を示す図であり、第
2図は分光部とイメージガイドとPDAとを概略的に示
す斜視図であり、第3図はイメジガイドを構成する先フ
ァイバを示す図であり、第4図はファイバ固定具の外観
斜視図であり、第5図は光ファイバとPDAとの取付構
造を示す図であり、第6図は板状繊維束光学系とファイ
バ固定具と光ファイバを示す側面図である。
[Embodiment of the Invention] Fig. 1 is a diagram showing the configuration of an embodiment of the invention, Fig. 2 is a perspective view schematically showing a spectroscopic unit, an image guide, and a PDA, and Fig. 3 is a diagram showing a configuration of an embodiment of the invention. FIG. 4 is an external perspective view of the fiber fixing device; FIG. 5 is a diagram showing the mounting structure of the optical fiber and PDA; and FIG. 6 is a plate-shaped FIG. 2 is a side view showing a fiber bundle optical system, a fiber fixture, and an optical fiber.

まず、第1図ないし第6図を参照して、この発明の一実
施例の光学系の構成について説明する。
First, the configuration of an optical system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.

第1図に示すように、シーI・状物体1はy方向に順次
移動する。このシート状物体1の彼A11定部位1aに
は、図示しない光源から光か照射され、その反射光は結
像レンズ2によって集光されて分光部3に人11・Iさ
れる。分光部3はスリット4と回折格子5と板状謀維束
光学系6とを含む。集光レンズ2によって集光された光
はスリット4によって帯状に抽出されて回折格子5に入
射される。回折格子5はその受光面が凹面になっており
、入射された光を各波長ごとに、矢印λて示す波長方向
に分光する。この分光は、たとえば380 n m〜7
20n ITIの波長の光を波長1[Llnmごとに行
なわれる。分光された各波長ごとの光は板状繊維束光学
系6に入射される。この板状繊維束光学系6はスペクI
・ル結像面を形成しており、各波長ごとに分光された光
に是づく像か板状繊維束光学系6に写し出される。この
板状繊維束光学系6は光繊維を束ねて、その受光面が凹
面となるように構成される。そして、板状繊維束光学系
6に入射された各波長ごとの光はイメージガ・「ドアに
よってPDA8に導かれる。
As shown in FIG. 1, the sea I-shaped object 1 sequentially moves in the y direction. Light is irradiated from a light source (not shown) to the fixed area 1a of the sheet-like object 1, and the reflected light is focused by the imaging lens 2 and sent to the spectroscopic unit 3. The spectroscopic section 3 includes a slit 4, a diffraction grating 5, and a plate-like fiber optic system 6. The light condensed by the condenser lens 2 is extracted into a band shape by the slit 4 and is incident on the diffraction grating 5. The diffraction grating 5 has a concave light-receiving surface, and separates the incident light into wavelengths for each wavelength in the wavelength direction indicated by the arrow λ. This spectrum is, for example, 380 nm to 7
Light with a wavelength of 20n ITI is applied every wavelength of 1 [Llnm. The separated light of each wavelength is incident on the plate fiber bundle optical system 6. This plate-like fiber bundle optical system 6 is spec I
- An image formed by the light separated for each wavelength is projected onto the plate fiber bundle optical system 6. This plate-like fiber bundle optical system 6 is constructed by bundling optical fibers and having a concave light-receiving surface. The light of each wavelength incident on the plate-shaped fiber bundle optical system 6 is guided to the PDA 8 by the image camera door.

イメージガイド7はたとえば直径40μmの石英光ファ
イバ71を625本束ねて形成され、第3図に示すよう
に、一端の直径がl ITI ITIの円形をなしてお
り、他端はその断面か3 、 9 m m x 02 
m mのtri形をなしている。そし7て、光ファーr
ハフ1の一端は第4図に示すようなファイバ固定具72
によって板状繊維束光学系6に固定される。
The image guide 7 is formed by bundling 625 quartz optical fibers 71 with a diameter of 40 μm, for example, and as shown in FIG. 3, one end has a circular shape with a diameter l ITI ITI and the other end has a cross section of 3 9mm x 02
It has a tri-shape. And 7, light fur r
One end of the huff 1 is connected to a fiber fixture 72 as shown in FIG.
is fixed to the plate-shaped fiber bundle optical system 6 by.

すなわち、ファイバ固定具72には縦方向35本横方向
に16本の光ファイ/\71を挿入するための孔か形成
されている。また、先ファイハフ1の他端は取付金具9
によってP D A 8に取(−1けられる。
That is, holes are formed in the fiber fixture 72 for inserting 35 optical fibers in the vertical direction and 16 optical fibers in the horizontal direction. In addition, the other end of the tip end 1 is attached to the mounting bracket 9.
Therefore, it is removed by PDA 8 (-1 is removed).

P I) A 8はたとえば1−15個の素rからなる
アレイか16個配列されたものであって、それぞれか先
ファイバ7]の他端側に対応している。取(−1金具9
は光ファ・rハフ]からの光か隣接する領域にもれて人
avシないように遅閉する機能も兼ねている。
P I) A 8 is, for example, an array consisting of 1 to 15 elements r, or an array of 16 elements, each of which corresponds to the other end of the tip fiber 7. Take (-1 metal fittings 9
It also has the function of closing late so that the light from the optical fa/r huff does not leak into the adjacent area and harm people.

第7図はこの発明の一実施例の電気的構成を示すブロッ
ク図である。第7図において、PDA8の各アレイ81
,82・・8nの出力はトライバ101.102・・・
]0[lに1jえられ、増幅されてマルチプレク」)“
11に7−Jえられる。マルチブレクリ。
FIG. 7 is a block diagram showing the electrical configuration of an embodiment of the present invention. In FIG. 7, each array 81 of the PDA 8
, 82...8n outputs are the driver 101, 102...
]0[1j is added to l, amplified and multiplexed.
I got 7-J on 11th. Multibrekli.

11はドライバ101 102−1Onによって増幅さ
れたアレイ81.82−8nのそれぞれの出力を順次選
択するものであり、選択されたアレイの出力はA / 
Dコンバータ12によってデジタル信号に変換されて出
力される。デンタル信号に変換されたデータは図示しな
いマイクロンピュタに人力されて処理される。
11 sequentially selects the respective outputs of the arrays 81, 82-8n amplified by the drivers 101 102-1On, and the outputs of the selected arrays are A/
The D converter 12 converts it into a digital signal and outputs it. The data converted into dental signals is manually processed by a microcomputer (not shown).

上述のことく色彩連続測子装置をh’lj成したことに
よって、・12面状物体lの被測定部位1]からの反n
・J光は集光L/レンズによって集光され、スリット4
を介して回折格子5に入射され、回折格−Ji5によっ
て波長h″向に分光され、各波長ことの光は板状繊維束
光学系6に入射される。そして、各波長ごとの光は・r
メージガ・rドアによってPDA8に導かれ、PDA8
の各アレイ81. 82−8 nの出力かトラ−rハ1
01,102・]Onによって駆動される。そし、−r
、l・ライム1(11,1+111 (1nのそれぞれ
の出力はマルチプレクサ1]によ−、て選択され、A/
1〕コンバータ]2によってデジタル信号とし、て出力
される。
By constructing the color continuous measuring device as described above, we can obtain
・J light is condensed by condensing L/lens and passes through slit 4
The light is incident on the diffraction grating 5 through the diffraction grating Ji5, and is separated in the wavelength h'' direction by the diffraction grating Ji5, and the light of each wavelength is incident on the plate fiber bundle optical system 6.The light of each wavelength is r
Guided to PDA8 by Mejiga r door, PDA8
Each array 81. 82-8 output of n or tra-rha 1
01,102.]On. Then, -r
, l · lime 1 (11, 1 + 111 (respective outputs of 1n are selected by multiplexer 1), and A/
1] Converter] 2 converts the signal into a digital signal and outputs it as a digital signal.

第8図は波長方向のスペクトル11!i像而の歪を説明
するための図である。
Figure 8 shows spectrum 11 in the wavelength direction! It is a figure for explaining the distortion of i image.

第8図に示すように、入射スリット4からの光を回折格
子5て分光し、回折格子5のローランド円51上に曲面
でないl) D A 8を配置したような場合に、受光
面上に波長に対してリニアな分散1象か結1象ぜず、受
光面の端に行くに従って波長間隔の拡がりか大きくなっ
てしまう。これに対して、この発明の一実施例では、回
折格子5で分光された各波長ごとの光を板状繊維束光学
系6に結像さぜ、結像されたそれぞれの1象を・rメー
ジガイド7によってPDA8に導くようにしているため
、第8図に示した例に比べて、波長方向の歪を少なくで
きるという特Hの効果を奏する。
As shown in FIG. 8, when the light from the entrance slit 4 is separated by the diffraction grating 5 and a non-curved surface 8 is placed on the Rowland circle 51 of the diffraction grating 5, In all cases, the dispersion is linear with respect to the wavelength, but the wavelength spacing becomes wider toward the edge of the light-receiving surface. In contrast, in one embodiment of the present invention, the light of each wavelength separated by the diffraction grating 5 is imaged on the plate fiber bundle optical system 6, and each imaged image is Since the light is guided to the PDA 8 by the image guide 7, a special effect is achieved in that distortion in the wavelength direction can be reduced compared to the example shown in FIG.

[発明の効果] 以上のように、この発明によれば、試料物体からの光を
多波長の光に同時に波長方向および空間方向に分散させ
、多数の光ファイバの束からなるイメージガ・rドによ
って、回tJi )?5丁によって分散された多波長の
光を受光素〕胃こ専くようにしたので、布1紙、鋼板な
とのシート状物体表面での直線」二に並んだ各位置の反
」1.1スペクトルを同時的かつ連続的に粘度良くΔ1
り定することかできる。
[Effects of the Invention] As described above, according to the present invention, light from a sample object is dispersed into multi-wavelength light at the same time in the wavelength direction and in the spatial direction, and an image guide consisting of a bundle of many optical fibers is produced. By, timestJi)? Since the multi-wavelength light dispersed by the five lenses was made to be absorbed into the photodetector's stomach, it was possible to detect the angle of each position lined up in a straight line on the surface of a sheet-like object such as cloth, paper, or steel plate. 1 spectrum simultaneously and continuously with good viscosity Δ1
It is possible to set

4、図面の口3’1lltな説明 第1図はこの発明の一実施例の構成を示す図である。第
2図は・rメージガイドとPDAとを示す斜視図である
。第3図は・rメージノf−rI:を47.j成す集光
ファー(ハを示ず図−Cある。9゛34図はファイバ固
定具の外観斜視図である。−)5図は光ファイバとPD
Aとの取(tI構造を示す図である。第6図は板状繊維
束光学系とファーrハ固疋具と光ファイバを示す側面図
である。第7図はこの発明の一実施例のiは気的措成を
示すブロック図である。第8図は波長b−向のスペクト
ルi;l: ig、面の歪を説明するための図である。
4. Explanation of the Drawings FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a perspective view showing the image guide and the PDA. Figure 3 shows 47. Figure 5 shows the optical fiber and PD.
FIG. 6 is a side view showing a plate-like fiber bundle optical system, a fiber optic, and an optical fiber. FIG. 7 is a diagram showing an embodiment of the present invention. FIG. 8 is a diagram for explaining the distortion of the spectrum i; l: ig in the wavelength b direction.

図において、1はシー!・状物体、2は集光レンス、3
は分光部、4はスリット、5は回伍洛r、6は板状繊維
束光学系、7はイメージガイド、8はPI)A、9は取
イ・j金具、]1はマルチプレクサ、12はA/Dコン
バータ、7]は光ファイバ、7]0 2はファイバ取イ・j具、 81゜ 82 =−8nはPDA。
In the diagram, 1 is Sea! - shaped object, 2 is a condensing lens, 3
is a spectroscopic section, 4 is a slit, 5 is a rotor, 6 is a plate-like fiber bundle optical system, 7 is an image guide, 8 is a PI) A, 9 is a metal fitting,] 1 is a multiplexer, 12 is a A/D converter, 7] is an optical fiber, 7]02 is a fiber handle, 81°82 = -8n is a PDA.

102゜ 102・・ ]、 Onはドラ・rハを示す。102° 102... ], On indicates Dora/Rha.

Claims (1)

【特許請求の範囲】 連続的または瞬時に変化もしくは移動する試料物体の色
を測定する色彩連続測定装置であって、前記試料物体か
らの光を多波長の光に同時に分散させる回折格子、 多数の光ファイバの束からなり、前記回折格子によって
分散された多波長の光をその一端に受け、他端に導くた
めのイメージガイド、および 前記イメージガイドを構成する多数の光ファイバのそれ
ぞれの他端に対応して設けられ、前記導かれた各波長の
光を電気信号に変換する受光素子を備えた、色彩連続測
定装置。
[Scope of Claims] A continuous color measuring device for measuring the color of a sample object that changes or moves continuously or instantaneously, comprising a diffraction grating that simultaneously disperses light from the sample object into light of multiple wavelengths; an image guide consisting of a bundle of optical fibers, which receives multi-wavelength light dispersed by the diffraction grating at one end and guides it to the other end; A color continuous measuring device, comprising a correspondingly provided light receiving element that converts the guided light of each wavelength into an electrical signal.
JP27656688A 1988-10-31 1988-10-31 Color consecutively measuring device Pending JPH02122224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27656688A JPH02122224A (en) 1988-10-31 1988-10-31 Color consecutively measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27656688A JPH02122224A (en) 1988-10-31 1988-10-31 Color consecutively measuring device

Publications (1)

Publication Number Publication Date
JPH02122224A true JPH02122224A (en) 1990-05-09

Family

ID=17571269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27656688A Pending JPH02122224A (en) 1988-10-31 1988-10-31 Color consecutively measuring device

Country Status (1)

Country Link
JP (1) JPH02122224A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256984A (en) * 1975-11-06 1977-05-10 Dainippon Screen Mfg Method of decomposing color
JPS5640804A (en) * 1979-09-13 1981-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical branching filter
JPS6114004U (en) * 1984-06-30 1986-01-27 株式会社島津製作所 X-ray imaging device for rounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256984A (en) * 1975-11-06 1977-05-10 Dainippon Screen Mfg Method of decomposing color
JPS5640804A (en) * 1979-09-13 1981-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical branching filter
JPS6114004U (en) * 1984-06-30 1986-01-27 株式会社島津製作所 X-ray imaging device for rounds

Similar Documents

Publication Publication Date Title
US4932779A (en) Color measuring instrument with integrating sphere
JPS628729B2 (en)
US5675411A (en) Broad-band spectrometer with high resolution
US4936684A (en) Spectrometer with photodetector array detecting uniform bandwidth intervals
JPH09145477A (en) Spectroscope
WO2017007024A1 (en) Spectroscope
US7321423B2 (en) Real-time goniospectrophotometer
JPS61292043A (en) Photodetecting probe for spectocolorimeter
JPH09105673A (en) Spectral apparatus
JPS6038644B2 (en) spectrophotometer
JPH0431720A (en) Spectroscope for two-dimensional object
JP2511902B2 (en) Spectrophotometer
JPH02122224A (en) Color consecutively measuring device
KR20110017272A (en) Spectrometer of multi-channel connecting a plural of optical
US20230168123A1 (en) Multichannel spectrophotometer using linear variable filter sensor
KR101927664B1 (en) Multi-Device Spectrophotometer
US20070222993A1 (en) Filter Unit Having a Tunable Wavelength, and an Arrangement with the Filter Unit
JPH0626930A (en) Spectrophotometer
JP3740571B2 (en) Two-dimensional image spectroscopic method and apparatus
JPS63120230A (en) Spectrophotometer
US20040160612A1 (en) Device and method for local resolution measurement of the thickeness of a layer
US5118926A (en) Device for separating a beam of white light into a plurality of elementary beams of particular color
SU953892A1 (en) Device for measuring transverse velocity of rotation of plasma cord
JPS594258Y2 (en) double beam spectrophotometer
KR20100031933A (en) Simplified spectrometers and its calibration method