JPH02121632A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus

Info

Publication number
JPH02121632A
JPH02121632A JP63272919A JP27291988A JPH02121632A JP H02121632 A JPH02121632 A JP H02121632A JP 63272919 A JP63272919 A JP 63272919A JP 27291988 A JP27291988 A JP 27291988A JP H02121632 A JPH02121632 A JP H02121632A
Authority
JP
Japan
Prior art keywords
magnetic field
cylindrical shell
coil
magnetic resonance
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63272919A
Other languages
Japanese (ja)
Inventor
Haruhiko Hirata
東彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63272919A priority Critical patent/JPH02121632A/en
Publication of JPH02121632A publication Critical patent/JPH02121632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To reduce the noise of a measuring space receiving an examinee by arranging a cylindrical shell, whose rigidity in the peripheral direction is lower than that in the axial direction, between an inclined magnetic field coil and the measuring space receiving the examinee. CONSTITUTION:A static magnetic field magnet 1 for generating a static magnetic field, an inclined magnetic field coil 3 for allowing an inclined magnetic field to act on the interior of the aforementioned magnetic field and a transmitting-receiving coil for detecting the output signal based on the magnetic resonance action of the examinee present in the aforementioned static magnetic field and inclined magnetic field are provided and the aforementioned output signal is processed to obtain the image data in the specific region of the examinee. A cylindrical shell 31 whose rigidity in the peripheral direction theta is lower than that in the axial direction Z is arranged between the inclined magnetic field coil 3 and a measuring space receiving the examinee. This cylindrical shell 31 is molded by a filament winding method wherein glass fibers 33 are wound around a mold to perform molding and the winding angle theta of the glass fibers 33 is made smaller than 45 deg. with respect to the axial direction Z of the cylindrical shell 31. As a result, the noise in the measuring space 15 can be reduced.

Description

【発明の詳細な説明】 し発明の目的コ (産業上の利用分野) この発明は、被検者がさらされる騒音を低減した磁気共
鳴イメージング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a magnetic resonance imaging apparatus that reduces noise to which a subject is exposed.

(従来の技術) 従来の磁気共鳴イメージング装置は第4図ないし第7図
に示すように構成されている。
(Prior Art) A conventional magnetic resonance imaging apparatus is constructed as shown in FIGS. 4 to 7.

第4図は従来の磁気共鳴イメージング装置の斜視図、第
5図は第4図のA−A断面図である。これらの図に示す
ように、従来の装置は静磁場を発生する静磁場磁石1、
傾斜磁場を発生する傾斜磁場コイル3、傾斜磁場コイル
3に取り付けられた支持部材5と支持ゴム7と支持部材
9とを介して傾斜磁場コイル3を支持する支持円筒殻1
1、支持円筒殻11を静磁場磁石1に支持する支持部祠
13、傾斜磁場コイル3と被検者の入る測定空間15と
の間に位置する円筒殻17、円筒殻17を支持円筒殻1
1に支持するリング状の端板19とからなっている。
FIG. 4 is a perspective view of a conventional magnetic resonance imaging apparatus, and FIG. 5 is a sectional view taken along line AA in FIG. As shown in these figures, the conventional device includes a static magnetic field magnet 1 that generates a static magnetic field;
A gradient magnetic field coil 3 that generates a gradient magnetic field, a support cylindrical shell 1 that supports the gradient magnetic field coil 3 via a support member 5 attached to the gradient magnetic field coil 3, a support rubber 7, and a support member 9.
1. A support part shrine 13 that supports the support cylindrical shell 11 on the static magnetic field magnet 1, a cylindrical shell 17 located between the gradient magnetic field coil 3 and the measurement space 15 into which the subject enters, and a cylindrical shell 1 that supports the cylindrical shell 17.
1 and a ring-shaped end plate 19 supported by the ring.

傾斜磁場コイル3は、第6図および第7図に示すように
、コイル巻芯21に3組のコイル巻線23.25.27
を巻くことにより形成されている。
As shown in FIGS. 6 and 7, the gradient magnetic field coil 3 includes three sets of coil windings 23, 25, 27 on a coil winding core 21.
It is formed by winding.

コイル巻線23,25.27は互いに直交するX軸、Y
軸およびZ軸の3方向に関してそれぞれ任意の傾斜磁場
を発生するように構成されている。
The coil windings 23, 25, 27 are arranged along the X-axis and Y-axis, which are orthogonal to each other.
It is configured to generate arbitrary gradient magnetic fields in three directions: the axis and the Z-axis.

各コイルは、第6図に示すようにエポキシ等の比較的剛
性の大きい樹脂2つによってモールドされコイル巻芯2
1に固定されている。各コイル巻線2B、25.27に
はそれぞれ独立した専用の電源が接続される。測定時に
は、例えばパルス状の電流が各別に通電されることによ
って励磁され、これによって静磁場内に所定の傾斜磁場
が形成されるが、各コイル巻線23.25.27は静磁
場磁石1によって発生した非常に大きな静磁場(例えば
0.22ないし1.5テスラ)内におかれるため、この
静磁場と測定時のパルス電流とによって各コイル巻線2
3,25.27には、大きな電磁力が作用する。このた
め傾斜磁場コイル3が励振されて大きな騒音が発生し、
被検者に不快感を与えている。
As shown in Fig. 6, each coil is molded with two relatively rigid resins such as epoxy.
It is fixed at 1. An independent power source for exclusive use is connected to each coil winding 2B, 25.27. During measurement, each coil winding 23, 25, 27 is excited by applying a pulsed current to each separately, thereby forming a predetermined gradient magnetic field within the static magnetic field. Because the generated static magnetic field is extremely large (for example, 0.22 to 1.5 Tesla), each coil winding 2 is
A large electromagnetic force acts on 3, 25, and 27. As a result, the gradient magnetic field coil 3 is excited and a large noise is generated.
It causes discomfort to the subject.

従って、従来の磁気共鳴イメージング装置では、円筒殻
17と端板19と支持円筒11とで騒音源である傾斜磁
場コイル3を包み込み密閉して、測定空間15内の騒音
を低減する処置が行われている。しかし、傾斜磁場コイ
ル3の振動は空気伝播によって円筒殻17や支持円筒1
1に伝わり、円筒殻17が振動して騒音が発生するので
その騒音低減効果は不充分である。
Therefore, in the conventional magnetic resonance imaging apparatus, the cylindrical shell 17, the end plate 19, and the support cylinder 11 enclose and seal the gradient magnetic field coil 3, which is the noise source, to reduce the noise in the measurement space 15. ing. However, the vibration of the gradient magnetic field coil 3 is caused by air propagation to the cylindrical shell 17 and the supporting cylinder 1.
1, the cylindrical shell 17 vibrates and noise is generated, so the noise reduction effect is insufficient.

(発明が解決しようとする課題) 上記のように、従来の磁気共鳴イメージング装置は、大
きな静磁場中におかれた傾斜磁場コイル3のコイル巻線
23,25.27にパルス電流が通電されることにより
、傾斜磁場コイル3に大きな振動が発生し、この振動が
空気伝播によって円筒殻17や支持円筒11に伝わるこ
とによって、円筒殻17が振動し騒音が発生する。
(Problem to be Solved by the Invention) As described above, in the conventional magnetic resonance imaging apparatus, a pulsed current is applied to the coil windings 23, 25, 27 of the gradient magnetic field coil 3 placed in a large static magnetic field. As a result, large vibrations occur in the gradient magnetic field coil 3, and these vibrations are transmitted to the cylindrical shell 17 and the support cylinder 11 through air propagation, causing the cylindrical shell 17 to vibrate and generate noise.

そこでこの発明は、被検者を収容する測定空間内の騒音
を低減した磁気共鳴イメージング装置の提供を目的とす
る。
Therefore, an object of the present invention is to provide a magnetic resonance imaging apparatus that reduces noise in a measurement space that accommodates a subject.

[発明の構成〕 (課題を解決するための手段) 上記目的を達成するために、この発明は、静磁場を発生
させる静磁場磁石と、前記静磁場内に傾斜磁場を作用さ
せる傾斜磁場コイルと、前記静磁場および傾斜磁場内に
ある被検者の磁場共鳴作用に基づく出力信号を検出する
ための送受信コイルとを備え、前記出力信号を処理して
前記被検者の特定部位における画像情報を得る磁気共鳴
イメージング装置であって、前記傾斜磁場コイルと被検
者の入る測定空間との間に軸方向に比べて周方向の剛性
が低い筒殻を配置したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes a static magnetic field magnet that generates a static magnetic field, and a gradient magnetic field coil that applies a gradient magnetic field to the static magnetic field. , a transmitting/receiving coil for detecting an output signal based on the magnetic field resonance effect of the subject in the static magnetic field and the gradient magnetic field, and processing the output signal to obtain image information on a specific region of the subject. The magnetic resonance imaging apparatus is characterized in that a cylindrical shell having lower rigidity in the circumferential direction than in the axial direction is disposed between the gradient magnetic field coil and the measurement space into which the subject enters.

又、この筒殻はガラスw4錐を型に巻き付けてモールド
するフィラメント・ワインディング法によって成形され
、ガラス繊維の巻き付け角度を前記筒殻の軸方向に対し
て45″より小さくした。
Further, this cylindrical shell was formed by a filament winding method in which a glass W4 cone was wound around a mold and molded, and the winding angle of the glass fiber was made smaller than 45'' with respect to the axial direction of the cylindrical shell.

更に、筒殻を前記送受信コイルの巻芯とした。Further, the cylindrical shell was used as the winding core of the transmitter/receiver coil.

(作用) 上記構成において、測定時にコイル巻線に電磁力が加わ
り、傾斜磁場コイルが振動し、この振動が空気伝播によ
って筒殻に伝わり、筒殻の振動によって、測定空間内に
音の定在波が生じる場合でも、筒殻の剛性は軸方向に比
べて周方向が低いから、筒殻の振動モードは周方向で高
次の変形を受けるものが多くなり、これらの振動モード
によって励磁される測定空間内の騒音モードにおいてそ
の音圧は被検者の耳位置となる測定空間中心軸上付近で
大きく減衰する。従って、被検者の騒音による不快感は
著しく軽減する。
(Function) In the above configuration, electromagnetic force is applied to the coil winding during measurement, the gradient magnetic field coil vibrates, this vibration is transmitted to the cylinder shell by air propagation, and the vibration of the cylinder shell causes sound to be stationary in the measurement space. Even when waves are generated, the rigidity of the cylinder shell is lower in the circumferential direction than in the axial direction, so many of the vibration modes of the cylinder shell undergo high-order deformation in the circumferential direction, and are excited by these vibration modes. In the noise mode within the measurement space, the sound pressure is greatly attenuated near the central axis of the measurement space, which is the position of the subject's ear. Therefore, the subject's discomfort due to noise is significantly reduced.

(実施例) 第1図ないし第3図によりこの発明の一実、施例を説明
する。なお、従来例と同一の部材には同一の符号を付し
た。
(Embodiment) An embodiment of the present invention will be explained with reference to FIGS. 1 to 3. Note that the same members as in the conventional example are given the same reference numerals.

第1図はこの実施例の磁気共鳴イメージング装置の円筒
殻31を示す斜視図、第2図は磁気共鳴イメージング装
置の構成を示す断面図である。
FIG. 1 is a perspective view showing a cylindrical shell 31 of the magnetic resonance imaging apparatus of this embodiment, and FIG. 2 is a sectional view showing the structure of the magnetic resonance imaging apparatus.

こノ構成では、円筒殻31は、ガラス繊維33を型に巻
き付け、エポキシ等の樹脂でモールドするフィラメント
・ワインディング法によって成形される。このときガラ
ス繊維33の巻き付け角φは、円筒殻31の軸方向Zに
対して、45°より小さな角度にする。こうすることに
よって、円筒殻31は軸方向Zと周方向θとで直交する
異方性が与えられ剛性は、軸方向Zに比べて、周方向θ
の方が低くなる。周方向の剛性の方が低いこの異方性の
ために、円筒殻31の面外の振動モードは、人間の耳に
敏感な周波数領域において周方向θで高次の変形を受け
るものが多くなる。
In this configuration, the cylindrical shell 31 is formed by a filament winding method in which glass fiber 33 is wound around a mold and molded with a resin such as epoxy. At this time, the winding angle φ of the glass fiber 33 is made smaller than 45° with respect to the axial direction Z of the cylindrical shell 31. By doing so, the cylindrical shell 31 is given orthogonal anisotropy in the axial direction Z and the circumferential direction θ, and the rigidity is greater in the circumferential direction θ than in the axial direction Z.
is lower. Due to this anisotropy in which the rigidity in the circumferential direction is lower, many of the out-of-plane vibration modes of the cylindrical shell 31 undergo high-order deformation in the circumferential direction θ in the frequency range that is sensitive to the human ear. .

実験により円筒殻31の面外の振動によって測定空間1
5には、音の定在波が発生することが認められており、
このときの円筒殻31の振動モードは次のように表され
る。
In an experiment, the measurement space 1 was
5, it is recognized that standing waves of sound are generated.
The vibration mode of the cylindrical shell 31 at this time is expressed as follows.

v (Z、  θ) =V (Z)  令cosnθこ
こで、υは面外の振動速度、nは周方向次数(=0. 
1. 2.・・・・・・)である。又、この振動モード
によって励振される測定空間内の騒音モードは次のよう
に表される。
v (Z, θ) = V (Z) cosn θ where υ is the out-of-plane vibration velocity, and n is the circumferential order (=0.
1. 2. ...). Further, the noise mode in the measurement space excited by this vibration mode is expressed as follows.

P(「、θ、2) 〈2) ただしPは音圧、k=ω/Cでωは角振動数、Cは音速
、k t、、=mπ/して、mは軸方向次数(=0. 
1. 2.・・・)、Lは円筒殻31の軸方向長さ、J
nはn次の第1種ベッセル関数、AmnはV (Z)お
よびnによって決まる励振係数である。
P(', θ, 2) <2) where P is the sound pressure, k = ω/C, ω is the angular frequency, C is the sound speed, k t, , = mπ/, m is the axial order (= 0.
1. 2. ), L is the axial length of the cylindrical shell 31, J
n is an n-th order Bessel function of the first kind, and Amn is an excitation coefficient determined by V (Z) and n.

(1)式および(2)式から、円筒殻31の振動モード
の周方向次数がn次の場合には、この振動モードによっ
て励振される測定空間15内の騒音モードは、半径r方
向にn次の第1種ベッセル関数の分布をもつことが分る
From equations (1) and (2), if the circumferential order of the vibration mode of the cylindrical shell 31 is nth order, the noise mode in the measurement space 15 excited by this vibration mode is n in the radial direction r. It can be seen that it has the following Bessel function distribution of the first kind.

第3図に第1種ベッセル関数の形を示す。同図中で、(
2)式との対応から、X=E「];「で、XはX=0を
測定空間9の中心軸とするr座標と対応づけられる。
Figure 3 shows the form of the Bessel function of the first kind. In the figure, (
From the correspondence with equation 2), X=E "];", and X is associated with the r coordinate with X=0 as the central axis of the measurement space 9.

第3図から、nが1次以上の場合には測定空間15の中
心軸上で音圧が0になり、特にnが2次回て、音圧が小
さくなることが分る。更に、周方向で振動モードが高次
の変形を受けるこの発明の装置ではnが2以上の高次の
モードが生じ易いから測定空間15のほぼ中心軸上にあ
る被検者の耳位置での音圧が低下し、騒音による被検者
の不快感は著しく軽減される。
From FIG. 3, it can be seen that when n is the first order or higher, the sound pressure becomes 0 on the central axis of the measurement space 15, and especially when n becomes the second order, the sound pressure becomes smaller. Furthermore, in the device of the present invention, where the vibration mode undergoes high-order deformation in the circumferential direction, high-order modes where n is 2 or more are likely to occur. The sound pressure is reduced, and the subject's discomfort caused by the noise is significantly reduced.

なお、円筒殻の周方向の剛性を軸方向より小さくするに
は円筒殻に軸方向のリブあるいは溝を設けてもよい。
In addition, in order to make the rigidity of the cylindrical shell in the circumferential direction smaller than that in the axial direction, ribs or grooves in the axial direction may be provided in the cylindrical shell.

又、円筒殻は送受信コイルの巻芯にしてもよい。Further, the cylindrical shell may be used as a winding core of a transmitting/receiving coil.

そうでない場合はこのコイルは例えば円筒殻の内側等に
配置する。
If this is not the case, the coil is placed, for example, inside a cylindrical shell.

[発明の効果] 以」二のように、この発明の磁気共鳴イメージング装置
は被検者の耳位置になる測定空間の中心付近で騒音が大
きく低減されるから、騒音による被検者の不快感は著し
く軽減する。
[Effects of the Invention] As mentioned in Section 2 below, the magnetic resonance imaging apparatus of the present invention greatly reduces noise near the center of the measurement space where the subject's ear is located, thereby reducing the subject's discomfort due to noise. is significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に関わる磁気共鳴イメージ
ング装置の円筒殻を示す斜視図、第2図はこの実施例の
装置の断面図、第3図は第1種ベッセル関数のグラフ、
第4図ないし第7図は従来例に関わり、第4図は装置全
体の斜視図、第5図は第4図のA−A断面図、第6図と
第7図はそれぞれ傾斜磁場コイルの斜視図である。 1・・・静磁場磁石   3・・・傾斜磁場コイル5、
 9. 13・・・支持部材 7・・・支持ゴム   15・・・測定空間17.31
・・・円筒殻 19・・・端板21・・・コイル巻芯 23.25.27・・・コイル芯線 29・・・樹脂     31・・・円筒殻33・・・
ガラス繊維
FIG. 1 is a perspective view showing a cylindrical shell of a magnetic resonance imaging device according to an embodiment of the present invention, FIG. 2 is a sectional view of the device of this embodiment, and FIG. 3 is a graph of a Bessel function of the first kind.
4 to 7 relate to the conventional example; FIG. 4 is a perspective view of the entire device, FIG. 5 is a sectional view taken along line AA in FIG. 4, and FIGS. FIG. 1... Static magnetic field magnet 3... Gradient magnetic field coil 5,
9. 13... Support member 7... Support rubber 15... Measurement space 17.31
... Cylindrical shell 19 ... End plate 21 ... Coil winding core 23.25.27 ... Coil core wire 29 ... Resin 31 ... Cylindrical shell 33 ...
glass fiber

Claims (3)

【特許請求の範囲】[Claims] (1)静磁場を発生させる静磁場磁石と、前記静磁場内
に傾斜磁場を作用させる傾斜磁場コイルと、前記静磁場
および傾斜磁場内にある被検者の磁気共鳴作用に基づく
出力信号を検出するための送受信コイルとを備え、前記
出力信号を処理して前記被検者の特定部位における画像
情報を得る磁気共鳴イメージング装置であって、前記傾
斜磁場コイルと被検者の入る測定空間との間に軸方向に
比べて周方向の剛性が低い筒殻を配置したことを特徴と
する磁気共鳴イメージング装置。
(1) A static magnetic field magnet that generates a static magnetic field, a gradient magnetic field coil that applies a gradient magnetic field within the static magnetic field, and detects an output signal based on the magnetic resonance effect of the subject within the static magnetic field and the gradient magnetic field. A magnetic resonance imaging apparatus comprising a transmitting/receiving coil for processing the output signal to obtain image information on a specific region of the subject, the gradient magnetic field coil and a measurement space in which the subject enters. A magnetic resonance imaging device characterized in that a cylindrical shell having lower rigidity in the circumferential direction than in the axial direction is disposed between the shells.
(2)前記筒殻はガラス繊維を型に巻き付けてモールド
するフィラメント・ワインディング法によって成形され
ると共に、ガラス繊維の巻き付け角度を前記円筒殻の軸
方向に対して45°より小さくした請求項1記載の磁気
共鳴イメージング装置。
(2) The cylindrical shell is formed by a filament winding method in which glass fibers are wound around a mold and molded, and the winding angle of the glass fibers is smaller than 45° with respect to the axial direction of the cylindrical shell. magnetic resonance imaging device.
(3)前記筒殻を前記送受信コイルの巻芯とした請求項
1又は2記載の磁気共鳴イメージング装置。
(3) The magnetic resonance imaging apparatus according to claim 1 or 2, wherein the cylindrical shell is a winding core of the transmitting/receiving coil.
JP63272919A 1988-10-31 1988-10-31 Magnetic resonance imaging apparatus Pending JPH02121632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272919A JPH02121632A (en) 1988-10-31 1988-10-31 Magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272919A JPH02121632A (en) 1988-10-31 1988-10-31 Magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JPH02121632A true JPH02121632A (en) 1990-05-09

Family

ID=17520584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272919A Pending JPH02121632A (en) 1988-10-31 1988-10-31 Magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JPH02121632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130864A (en) * 2009-12-24 2011-07-07 Hitachi Medical Corp Magnetic resonance imaging apparatus
CN104765010A (en) * 2015-03-24 2015-07-08 南方医科大学 Nuclear magnetic resonance noise reduction protection device
JP2018198938A (en) * 2018-07-04 2018-12-20 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device
US10962612B2 (en) 2014-01-09 2021-03-30 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus having high frequency coil isolated from gradient coils and a tapered / inclined coil support unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130864A (en) * 2009-12-24 2011-07-07 Hitachi Medical Corp Magnetic resonance imaging apparatus
US10962612B2 (en) 2014-01-09 2021-03-30 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus having high frequency coil isolated from gradient coils and a tapered / inclined coil support unit
CN104765010A (en) * 2015-03-24 2015-07-08 南方医科大学 Nuclear magnetic resonance noise reduction protection device
JP2018198938A (en) * 2018-07-04 2018-12-20 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device

Similar Documents

Publication Publication Date Title
JP3161008B2 (en) Magnetic resonance imaging equipment
JP4630600B2 (en) Acoustically attenuated gradient coil
JPH0284935A (en) Magnetic resonance imaging device
JPH0447572B2 (en)
WO2018161475A1 (en) Speaker unit, speaker, terminal and speaker control method
JP4058378B2 (en) Angular velocity sensor and angular velocity detector
JPH02121632A (en) Magnetic resonance imaging apparatus
US5450499A (en) Audio speaker for use in an external magnetic field
JPS59216045A (en) Slanting magnetic field coil
JP2982392B2 (en) Magnetic resonance imaging equipment
JP3156088B2 (en) Magnetic resonance imaging equipment
JPH03103233A (en) Magnetic resonance imaging device
JPH0473050A (en) Silencer for inclined magnetic field coil
JP2652863B2 (en) Mandrel fixing / adjustment device holding gradient coil
JPH11137535A (en) Magnetic resonance imaging device
JPH06205757A (en) Nuclear magnetic resonance inspecting system device
JPH0332643A (en) Nuclear magnetic resonance device
JP2001198101A (en) Magnetic resonance imaging system
JP3040006B2 (en) Magnetic resonance imaging equipment
JPS63189136A (en) Magnetic resonance apparatus
JP5809469B2 (en) Gradient coil assembly, magnetic resonance imaging device with gradient coil assembly, and method of forming a gradient coil assembly
JPH10216101A (en) Nuclear magnetic resonance inspecting instrument
JPS63158046A (en) Magnetic resonance imaging apparatus
JP2003510111A (en) MRI apparatus including gradient coil with vacuum insulation
JP2712494B2 (en) Nuclear magnetic resonance tomograph