JPH02121276A - Manufacture of storage battery - Google Patents

Manufacture of storage battery

Info

Publication number
JPH02121276A
JPH02121276A JP63274781A JP27478188A JPH02121276A JP H02121276 A JPH02121276 A JP H02121276A JP 63274781 A JP63274781 A JP 63274781A JP 27478188 A JP27478188 A JP 27478188A JP H02121276 A JPH02121276 A JP H02121276A
Authority
JP
Japan
Prior art keywords
storage battery
type
silicon membrane
light
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274781A
Other languages
Japanese (ja)
Inventor
Takeshi Miyabayashi
毅 宮林
Takemi Yamamoto
山本 健美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP63274781A priority Critical patent/JPH02121276A/en
Publication of JPH02121276A publication Critical patent/JPH02121276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make it possible to form a photo-charging member simply by forming an amorphous silicon membrane on a collector at the cathode side of a sheet-form storage battery, and forming a p/n connection of a polycrystal silicon on the silicon membrane. CONSTITUTION:On the upper collector 101 of a sheet-form storage battery 100, an intrinsic amorphous silicon membrane 106 is formed by an electric plating, and over the silicon membrane 106, a light is radiated to heat while letting flow an impure gas to form a p-type semiconductor membrane, to convert from the amorphous silicon 106 to a polycrystal p-type silicon membrane 107. The light is radiated to heat again while letting flow an impure gas to form an n-type semiconductor membrane on the p-type silicon membrane 107, to convert the surface layer of the p-type silicon membrane into the n-type silicon membrane 108. By receiving the radiation of light to the photo-charging member 200 formed in the p/n connection, an electromotive force is generated. Consequently, the photo-charging member 200 can be formed in a large area by a simple wet process.

Description

【発明の詳細な説明】 [産業上の利用分野] ろ 本発明は、先光1u可能な蓄電池の製戚苅に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a storage battery capable of producing 1U of light.

[従来技術] 従来の蓄電池は充電作業を行う場合、外部電源と蓄電池
間のアダプターを用いて、外部電源により充7iを行っ
ていた。
[Prior Art] When charging a conventional storage battery, an adapter between the external power source and the storage battery was used to charge the battery using an external power source.

[発明が解決しようとする課題] しかしながら、蓄電池の使用頻度は一定ではなく、従っ
て充電の頻度も不定期となる。そこで蓄電池を備える携
帯用機器の使用時に、充電電源及びアダプターがない所
で蓄電池に対する充電が必要になる場合が生じ、このよ
うな場合それ以後、携帯用機器が使用不可となる問題点
があった。
[Problems to be Solved by the Invention] However, the frequency of use of storage batteries is not constant, and therefore the frequency of charging is also irregular. Therefore, when using a portable device equipped with a storage battery, it may be necessary to charge the storage battery in a place where a charging power source and an adapter are not available, and in such cases, there is a problem that the portable device becomes unusable from then on. .

本発明は、上述した問題点を解決するためになされたも
のであり、特別な充電設備を必要としない、自己充電可
能な蓄電池の製造方法を提供することを目的としている
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a self-chargeable storage battery that does not require special charging equipment.

[課題を解決するための手段] この目的を達成するために本発明によれば、シート状蓄
電池の陽極側の集電体に電気メッキ法によりイントリン
シックなアモルファスのシリコン被膜を形成する工程と
、上記シリコン被膜上にp型半導体被膜を形成するため
の不純物ガスを流しながら、光を照射すること及び加熱
することにより、イントリンシックなアモルファスシリ
コンから多結晶のn型シリコン被膜に変化させる工程と
、前記n型シリコン被膜上にn型半導体被膜を形成する
ための不純物ガスを流しながら、再び光を照射すること
及び加熱することにより、n型シリコン被膜の表層部を
n型シリコン被膜に変化させる工程とを含む。
[Means for Solving the Problems] In order to achieve this object, the present invention includes the steps of: forming an intrinsic amorphous silicon film on the current collector on the anode side of a sheet storage battery by electroplating; A step of changing the intrinsic amorphous silicon to a polycrystalline n-type silicon film by irradiating light and heating while flowing an impurity gas for forming a p-type semiconductor film on the silicon film; A step of changing the surface layer of the n-type silicon film into an n-type silicon film by irradiating light and heating again while flowing an impurity gas for forming an n-type semiconductor film on the n-type silicon film. including.

[作用] このような方法により陽極側の集電体上に、多結晶のシ
リコンのp/n接合が形成され、p / n接合に光が
照射されるとp / n接合に起電力が発生しその起電
力により蓄電池の充電ができる。
[Function] With this method, a polycrystalline silicon p/n junction is formed on the current collector on the anode side, and when the p/n junction is irradiated with light, an electromotive force is generated at the p/n junction. A storage battery can be charged by the electromotive force generated by the shiso.

〔実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

シート状電池100は、第2図に示されるように最下層
に下方集電体105を備え、更にその下方集電体105
の上方に配置される陰極部104と、その陰極部104
の上方に配置され電解質部103と、その電解質部10
3の上方に配置される陽極部102と、その陽極部10
2の上方に配置される上方集電体101とを備える。
As shown in FIG. 2, the sheet battery 100 includes a lower current collector 105 at the bottom layer, and further includes a lower current collector 105.
a cathode section 104 disposed above the cathode section 104;
an electrolyte section 103 disposed above the electrolyte section 103;
3 and the anode section 102 disposed above the anode section 3.
and an upper current collector 101 disposed above the current collector 2.

前記下方集電体105は、銅(Cu)の金属箔から構成
されている。前記陰極部104はリチウム(Li)又は
リチウムアルミニウム合金(Li−AI)の金属箔から
構成されている。前記電解質部103は固体状の高分子
電解質から構成されている。前記陽極部102は酸化パ
ラジウム(■60゜)等のコンポジット材(樹脂と無機
物粉とを合成したもの)から構成されている。前記下方
集電体101は、ニッケル(Ni)の金属箔より構成さ
れている。
The lower current collector 105 is made of copper (Cu) metal foil. The cathode section 104 is made of lithium (Li) or lithium aluminum alloy (Li-AI) metal foil. The electrolyte section 103 is made of a solid polymer electrolyte. The anode portion 102 is made of a composite material (synthesized resin and inorganic powder) such as palladium oxide (60°). The lower current collector 101 is made of nickel (Ni) metal foil.

上記の如く構成されたシート状電池100の上方にはそ
のシート状電池100を充電可能とする先光型部200
が形成されており、以下その形成する工程を説明する。
Above the sheet-like battery 100 configured as described above, there is a front-light type part 200 that allows the sheet-like battery 100 to be charged.
is formed, and the process of forming it will be explained below.

最初に、この先光型部200は電気メッキにより形成さ
れるため、銅(Cu)から形成されている下方集電体1
05を一時的にシールする。
First, since the first light mold part 200 is formed by electroplating, the lower current collector 1 is made of copper (Cu).
Temporarily seal 05.

次に第1図(a)に示されるシート状電池100の上方
集電体101上に第1図(b)に示される厚さ0.5[
μm]程度のイントリンシックなアモルファスのシリコ
ン(Si)被膜106を形成するために、上方集電体1
01の表面を脱脂前処理した後にTS1表に示すような
ケイ素化合物を含む有機溶媒中にシート状電池100を
浸し、シリコン(S i)の電析を行なう。すると、青
色のイントリンシックなアモルファスが析出される。
Next, on the upper current collector 101 of the sheet battery 100 shown in FIG. 1(a), a thickness of 0.5 [
In order to form an intrinsic amorphous silicon (Si) film 106 on the order of [μm], the upper current collector 1
After pre-degreasing the surface of 01, the sheet battery 100 is immersed in an organic solvent containing a silicon compound as shown in Table TS1, and silicon (Si) is electrodeposited. Then, blue intrinsic amorphous is precipitated.

第  1  表 酢酸              60 m ISi 
(OC2H6) 4   4mlテトラメチルアンモニ
ウムフロリド  2gアセトン           
  2ml温度               20℃
電流密度 0、5mA/c4 次に、第1図(b)に示されるアモルファスのシリコン
被膜106が形成されたシート状電池100を還元性雰
囲気(例えば水素ガス雰囲気)中に配置し、その還元性
雰囲気中にp型半導体被膜を形成するために臭化ボロン
(BBr3)の不純物ガスを流す。そして、そのシリコ
ン被膜106をレーザ光又はハロゲンランプで数秒間照
射し、約900℃に加熱すると臭素(B)がシリコン(
Si)中に拡散し、アニール効果(900℃から焼きな
ますこと)によりシリコン(Si)が多結晶化する。
Table 1 Acetic acid 60 m ISi
(OC2H6) 4 4ml tetramethylammonium fluoride 2g acetone
2ml temperature 20℃
Current density 0.5 mA/c4 Next, the sheet battery 100 on which the amorphous silicon film 106 shown in FIG. In order to form a p-type semiconductor film in the atmosphere, an impurity gas of boron bromide (BBr3) is passed. Then, when the silicon coating 106 is irradiated with a laser beam or a halogen lamp for several seconds and heated to about 900°C, bromine (B) is converted into silicon (
The annealing effect (annealing from 900° C.) causes silicon (Si) to become polycrystalline.

これにより、第1図(C)に示されるように、多結晶の
p型シリコン肢膜107が形成される。
As a result, a polycrystalline p-type silicon limb film 107 is formed, as shown in FIG. 1(C).

次に第1図(C)に示される多結晶のp型のシリコン(
Si)被膜107が形成されたシート状蓄電池100を
還元性雰囲気(例えば水素ガス雰囲気)に配置し、その
還元性雰囲気中にn型半導体被膜を形成するために水素
化リン(PH3)の不純物ガスを流す。そして、多結晶
化されたp型シリコン被膜107をレーザビーム又はハ
ロゲンランプ等で数秒間照射すると共に約900℃程度
に加熱し、p型シリコン被膜107の表層を加熱し、リ
ン(P)を拡散する。このようにすると、第1図(d)
に示されるようにp型シリコン披膜107の表層に多結
晶のn型シリコン層108が形成され上方集電体101
上に多結晶シリコンのp / n接合が形成される。こ
のような方法を用いると、上方集電体101上に容易に
薄膜シリコンのp/n接合が形成される。
Next, polycrystalline p-type silicon (
The sheet storage battery 100 on which the Si) coating 107 is formed is placed in a reducing atmosphere (for example, a hydrogen gas atmosphere), and an impurity gas of phosphorus hydride (PH3) is added to the reducing atmosphere to form an n-type semiconductor coating. flow. Then, the polycrystalline p-type silicon film 107 is irradiated with a laser beam or a halogen lamp for several seconds and heated to about 900°C to heat the surface layer of the p-type silicon film 107 and diffuse phosphorus (P). do. In this way, Figure 1(d)
As shown in FIG. 1, a polycrystalline n-type silicon layer 108 is formed on the surface layer of the p-type silicon layer 107, and the upper current collector 101
A polycrystalline silicon p/n junction is formed on top. When such a method is used, a p/n junction of thin film silicon is easily formed on the upper current collector 101.

最後に第1図(e)に示されるように、アルミ等の表面
電極109を形成し、反射防止膜110をアモルファス
のn型シリコン1111i108上に形成するために薄
青法又は塗布法等より厚さ600A’ 〜700A’ 
(7)酸化ニア+)−1> (S i 02 )を塗布
する。この反射防止膜110はアモルファスのn型シリ
コン彼膜108への鏡面反射を防ぎ光の入射効率をよく
するために形成される。
Finally, as shown in FIG. 1(e), a surface electrode 109 made of aluminum or the like is formed, and an anti-reflection film 110 is formed on the amorphous n-type silicon 1111i108 to a thickness of 600 Å using the pale blue method or coating method. '~700A'
(7) Apply nia oxide +)-1> (S i 02 ). This anti-reflection film 110 is formed to prevent specular reflection on the amorphous n-type silicon film 108 and improve the efficiency of light incidence.

上述のように形成された先光型部200を備えたシート
状電池100においては、第2図に示すように、上方電
極部101と下方電極部105との間に電気的質1=:
j 13oを介して電気的接続が行なわれれば負荷13
0に電流が流れ、蓄電池として使用される。更に表面電
極109と下方電極部105との間を電気的な接続が行
なわれると、p/n接合により形成されている先光型部
200は光の照射を受けると起電力を発生し、その起電
力はシート状電極100を充電する。
In the sheet battery 100 having the forward-lighting part 200 formed as described above, as shown in FIG. 2, an electrical quality 1=:
If the electrical connection is made via j 13o, the load 13
Current flows through 0 and it is used as a storage battery. Furthermore, when an electrical connection is made between the surface electrode 109 and the lower electrode part 105, the front-light type part 200 formed by the p/n junction generates an electromotive force when irradiated with light, and the electromotive force is generated. The electromotive force charges the sheet electrode 100.

尚、本発明は上述した実施例に限定される訳ではなく、
その他種々の変更が可能であり、例えば第3図に示すよ
うに絶縁膜301がスピンコード等で形成されたシート
状蓄電池300上で複数の先光型部302を形成して銀
ペースト303等で直列結合し、更に前縁膜301の一
部をエツチング等で除去して先光型部304を形成し、
先光型部302と直列結合すれば任意の起電力で蓄電池
を充電できることは言うまでもない。
Note that the present invention is not limited to the above-mentioned embodiments,
Various other modifications are possible. For example, as shown in FIG. 3, a plurality of forward-lighting parts 302 are formed on a sheet storage battery 300 in which an insulating film 301 is formed of a spin cord or the like, and a silver paste 303 or the like is formed. They are connected in series, and a part of the leading edge film 301 is removed by etching or the like to form a front light type part 304.
Needless to say, if it is connected in series with the forward light type part 302, the storage battery can be charged with any electromotive force.

またシート状蓄電池上で膜面方向に複数のアモルファス
のp / n接合を形成し、任意の起電力で蓄電池を充
電できるように構成してもよい。
Alternatively, a plurality of amorphous p/n junctions may be formed in the membrane surface direction on the sheet-like storage battery so that the storage battery can be charged with an arbitrary electromotive force.

〔発明の効果〕〔Effect of the invention〕

以上詳述したことから明らかなように、本発明によれば
、シート状蓄電池の充電源として集電体上にアモルファ
スシリコンのp / n接合ヲ有する先光型部が簡易的
な湿式方法で安価に大面積形成可能であり、携帯用機器
のアダプター及び充電機は不要となる。
As is clear from the detailed description above, according to the present invention, a forward-lighting type part having an amorphous silicon p/n junction on a current collector as a charging source for a sheet storage battery can be produced by a simple wet method at low cost. It can be formed over a large area, eliminating the need for adapters and chargers for portable devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至第1図(e)は本発明を具体化した実
施例の蓄電池を形成する工程を示す図、第2図はその実
施例の蓄電池の斜視図、第3図は他の実施例の概略断面
図である。 図中、100はシート状電池、101は下方集電体、1
02は陽極部、103は電解質部、104は陰極部、1
05は下方集電体、106はアモルファスp型シリコン
被膜、107はp型シリコン披j漠、108はn型シリ
コン層、109は表面電極である。 第2図 第 図
FIGS. 1(a) to 1(e) are diagrams showing the process of forming a storage battery according to an embodiment of the present invention, FIG. 2 is a perspective view of the storage battery according to the embodiment, and FIG. 3 is a diagram showing other steps. FIG. In the figure, 100 is a sheet battery, 101 is a lower current collector, 1
02 is an anode part, 103 is an electrolyte part, 104 is a cathode part, 1
05 is a lower current collector, 106 is an amorphous p-type silicon film, 107 is a p-type silicon layer, 108 is an n-type silicon layer, and 109 is a surface electrode. Figure 2 Figure

Claims (1)

【特許請求の範囲】 1、光照射により蓄電池を充電できる光充電部を、シー
ト状蓄電池に直接形成する方法であって、前記シート状
蓄電池の陽極側の集電体上に直接電気メッキによりイン
トリンシックなアモルファスのシリコン被膜を形成する
工程と、 前記シリコン被膜上にp型半導体被膜を形成するための
不純物ガスを流しながら、光を照射すること及び加熱す
ることにより、イントリンシックなアモルファスシリコ
ンから多結晶のp型シリコン被膜に変化させる工程と、 前記p型シリコン被膜上にn型半導体被膜を形成するた
めの不純物ガスを流しながら、再び光を照射すること及
び加熱することにより、p型シリコン被膜の表層部をn
型シリコン被膜に変化させる工程とを含むことを特徴と
する蓄電池の製造方法。
[Scope of Claims] 1. A method for directly forming a photocharging part on a sheet storage battery that can charge the storage battery by irradiating light, the method comprising: directly forming a photocharging part on a current collector on the anode side of the sheet storage battery by electroplating; A step of forming an intrinsic amorphous silicon film, and a step of forming a multilayer film from the intrinsic amorphous silicon by irradiating light and heating while flowing an impurity gas to form a p-type semiconductor film on the silicon film. A step of converting the p-type silicon film into a crystalline p-type silicon film, and irradiating the p-type silicon film with light and heating while flowing an impurity gas to form an n-type semiconductor film on the p-type silicon film. The surface layer of n
1. A method for manufacturing a storage battery, comprising the step of converting it into a molded silicon film.
JP63274781A 1988-10-31 1988-10-31 Manufacture of storage battery Pending JPH02121276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274781A JPH02121276A (en) 1988-10-31 1988-10-31 Manufacture of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274781A JPH02121276A (en) 1988-10-31 1988-10-31 Manufacture of storage battery

Publications (1)

Publication Number Publication Date
JPH02121276A true JPH02121276A (en) 1990-05-09

Family

ID=17546473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274781A Pending JPH02121276A (en) 1988-10-31 1988-10-31 Manufacture of storage battery

Country Status (1)

Country Link
JP (1) JPH02121276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040923A1 (en) * 1997-03-10 1998-09-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery and charging method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040923A1 (en) * 1997-03-10 1998-09-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery and charging method therefor
US6316145B1 (en) 1997-03-10 2001-11-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and charging method therefor

Similar Documents

Publication Publication Date Title
EP3000143B1 (en) Rechargeable battery with wafer current collector and assembly method
JP3066338B2 (en) Battery
KR102441625B1 (en) Hybrid cell of self-charging using solar energy and method for the same
KR100322098B1 (en) Secondary battery
CN110620238A (en) Current collector and preparation method thereof, negative electrode and secondary battery
KR100673616B1 (en) Silicon wafer for semiconductor with powersupply system on the backside of wafer
JP3176340B2 (en) Method of manufacturing solar cell module
US4064522A (en) High efficiency selenium heterojunction solar cells
US10403901B2 (en) Silicon current collector for lead acid battery
JPH02121276A (en) Manufacture of storage battery
US20100294342A1 (en) Solar cell module and electronics device including the solar cell module
Kim et al. Integrated energy conversion and storage device for stable fast charging power systems
WO2022097710A1 (en) Lithium ion battery manufacturing device and manufacturing method
JPH11303325A (en) Solar battery module
JP3523506B2 (en) Rechargeable air battery
JP2006128156A (en) Embedded electrode type solar battery and its manufacturing method
JPH08330616A (en) Photoelectric converter
JPH02121277A (en) Manufacture of storage battery
CN111192929A (en) Flexible packaging film with photovoltaic characteristic and secondary battery
JPH02121275A (en) Manufacture of storage battery
CN111092597A (en) Energy storage type solar cell and energy storage type photovoltaic module
JPH02121278A (en) Manufacture of storage battery
TWI420782B (en) A electronic device with self power generation
CN211266857U (en) Energy storage type solar cell and energy storage type photovoltaic module
JPH02121274A (en) Manufacture of storage battery