JPH02120704A - Method for forming equivalent refractive index distribution - Google Patents

Method for forming equivalent refractive index distribution

Info

Publication number
JPH02120704A
JPH02120704A JP27478488A JP27478488A JPH02120704A JP H02120704 A JPH02120704 A JP H02120704A JP 27478488 A JP27478488 A JP 27478488A JP 27478488 A JP27478488 A JP 27478488A JP H02120704 A JPH02120704 A JP H02120704A
Authority
JP
Japan
Prior art keywords
refractive index
light
substrate
curing
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27478488A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
誠 鈴木
Yoshinori Bessho
別所 芳則
Akihisa Suzuki
鈴木 昭央
Yutaka Hattori
豊 服部
Kazuya Taki
和也 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP27478488A priority Critical patent/JPH02120704A/en
Publication of JPH02120704A publication Critical patent/JPH02120704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To attain the highly efficient incidence and emission of a light guide by sticking a UV curing resin having the refractive index slightly different from the refractive index of a substrate material to a substrate material so as to have a thickness distribution to form the distribution region of equiv. refractive indices at the time of curing. CONSTITUTION:The glass substrate 100 is placed on a base 125 movable in a vertical direction (Z direction) and immersed into the liquid UV curing resin 110 in such a manner that the surface of the substrate 100 is slightly below the liquid surface. The light of a laser 115 is then focused onto the surface of the substrate 100 by a lens 105. The light is focused by a rectangular aperture 135 to the rectangular beam which is equal to the waveguide width in the Y direction. A thin cured layer 130 is formed by scanning the laser 120 in the X direction. The base 125 is then lowered and the curing is started at a distance from the end part of the substrate according to a taper shape. The uncured resin 110 is removed by an org. solvent after the production by repeating the above-mentioned operations, by which the waveguide and the equiv. refractive index distribution region are formed. The efficient emission of light is enabled by adequately selecting the distribution shape of the equiv. refractive indices.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光素子の高効率な光入出射部を形成する等偏
屈折率を生成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for generating equipolarized refractive indexes that form highly efficient light input/output portions of optical devices.

[従来技術] 従来、光素子への光の入出射には、第4図に示すように
使用波長で透過率の高い光学材料で部分的に屈折率の高
い領域を作り、これによって周辺の基板510より屈折
率の高い部分に光を閉じ込める光導波路500として利
用する。図中ではこれを破線で示すがこの端面を研磨し
て光導波路500に直接レンズ等集光手段520によっ
て光を絞り込んで入射する端面結合、第5図に示すよう
なルチルプリズム等の導波路より屈折率の高い材料のプ
リズム530を用いて結合を行うプリズム結合、第6図
のように導波路の厚さを徐々に変化させて導波路550
と基板540の境界で光が一部透過し、基板に放射し、
この透過量がテーバ560先端に進むにつれで増すこと
を利用するテーパ結合が用いられた。
[Prior art] Conventionally, in order to input and output light to and from an optical element, as shown in Figure 4, a region with a high refractive index is made partially using an optical material that has high transmittance at the wavelength used, and thereby the surrounding substrate is It is used as an optical waveguide 500 that confines light in a portion having a higher refractive index than 510. In the figure, this is shown by a broken line, and the end face is polished and the light is focused and incident directly on the optical waveguide 500 using a condensing means 520 such as a lens. Prism coupling is performed using a prism 530 made of a material with a high refractive index, and a waveguide 550 is formed by gradually changing the thickness of the waveguide as shown in FIG.
A portion of the light is transmitted through the boundary between the substrate 540 and the substrate 540, and is emitted to the substrate.
A taper coupling was used that utilizes the fact that the amount of transmission increases as it advances toward the tip of the taper 560.

[発明が解決しようとする課8] しかしながら、端面結合は2〜5μm程度の大きさの光
導波路にμmホーダで外部で位置調整を行っ−でビーム
の位置合わせをしなくてはならず、また端面研磨という
工程を要した。また、プリズム結合は比較的容易に結合
が実現できるものの、プリズムという余分な部品を必要
としてコストアップとなった。さらに導波路を厚さをテ
ーパ状に減少させ、伝搬する境分布の変化分の放射およ
び光を導波路で閉じ込められなくなるカットオフを利用
して基板側へ光を放射するテーパカブラにおいては、精
度良くテーパを作製することが難しかった。
[Issue 8 to be solved by the invention] However, in end-face coupling, it is necessary to externally adjust the position of the optical waveguide with a size of about 2 to 5 μm using a μm hoarder, and also to align the beam. A process called edge polishing was required. Furthermore, although prism coupling can be achieved relatively easily, it requires an extra component called a prism, which increases costs. Furthermore, in a taper coupler, the thickness of the waveguide is reduced in a tapered manner, and the light is emitted to the substrate side using a cutoff that prevents the waveguide from confining the radiation and light due to changes in the propagating boundary distribution. It was difficult to create a taper.

[発明の目的] 本発明は、上述した問題点を解決するためになされたも
のであり、光を導波する光導波路を材料として紫外線硬
化樹脂を用い、それを厚さの分布を持つように付着させ
て等偏屈折率の分布領域を持つように構成したことを特
徴とし、これによって光導波路の高効率な光の入出射を
実現するものである。
[Object of the Invention] The present invention has been made to solve the above-mentioned problems, and uses an ultraviolet curing resin as a material for an optical waveguide that guides light, and it is made to have a thickness distribution. It is characterized by being attached so that it has a distribution region of equipolarized refractive index, thereby realizing highly efficient light input and output from the optical waveguide.

[課題を解決するための手段] この目的を達成するためには本発明の等偏屈折率分布生
成法は基板材料と硬化時にこれよりわずかに屈折率の異
った紫外線硬化樹脂と、この紫外線硬化樹脂の任意部分
を積層的に硬化するように集束できる紫外線光源を必要
とする。
[Means for Solving the Problems] In order to achieve this objective, the method for generating an equal polarized refractive index distribution of the present invention is to use a substrate material, an ultraviolet curable resin whose refractive index is slightly different from the ultraviolet curable resin at the time of curing, It requires a source of ultraviolet light that can be focused to layer-cure arbitrary portions of the cured resin.

[作用] 上記の構成を有する本発明において基板を液体状の紫外
線硬化樹脂にひたし、導波路および等値開折率分布領域
を紫外線光源によって硬化し、残りの液状の紫外線硬化
樹脂を除去する。これによってこの等値開折率分布領域
を伝搬する導波光は伝搬定数が伝搬方向に減少するため
基板側へ光が放射される。この時、等偏屈折率の分布形
状を適切に選ぶことで効率良く光を出射できる。また光
の可塑性により光の入射が可能であることは言うまでも
ない。
[Operation] In the present invention having the above configuration, the substrate is immersed in a liquid ultraviolet curable resin, the waveguide and the equivalent open refractive index distribution region are cured by an ultraviolet light source, and the remaining liquid ultraviolet curable resin is removed. As a result, the propagation constant of the guided light propagating through this equivalent open refractive index distribution region decreases in the propagation direction, so that the light is radiated toward the substrate side. At this time, light can be efficiently emitted by appropriately selecting the distribution shape of the equipolarized refractive index. It goes without saying that light can be incident due to the plasticity of light.

[実施例] 以下に図面を参照してその詳細を説明する。[Example] The details will be explained below with reference to the drawings.

第1図(a)は本発明の一実施例の構成図である。−例
として屈折率1.457のガラス基板100を上下方向
(Z方向)に移動可能な台125に乗せ、全体を150
 mW/c−のパワー、300−400nmの波長で2
0sec紫外光を照射すると1.46の屈折率で硬化す
る紫外線硬化樹脂110(以下樹脂と略す)中に基板1
00表面がわずかに液面下になるように配置する。32
5nmのHe−Cdレーザ115の光はレンズ105に
よって基板100表面に集束される。この時、光は矩形
状のアパーチャ135によってy方向が導波路幅に等し
い矩形のビームとなる。以上の構成から等偏屈折率を生
成する方法を第1図(b)−(e)で示す。第1図(b
)、(C)において基板100をわずかに樹脂110表
面下に配置して集束させたHe−Cdレーザ光120を
X方向に走査することでy方向がビームの幅の薄い硬化
層130が形成される。次に台125を下げ第1図(d
)のようにテーパ部140ではテーパ形状に応じて基板
端部から距離をもって硬化を開始し、これを繰り返し、
作製後、未硬化の樹脂110を有機溶剤で除去して第1
図(e)のような導波路および等値開折率分布領域が形
成できる。
FIG. 1(a) is a block diagram of an embodiment of the present invention. - As an example, a glass substrate 100 with a refractive index of 1.457 is placed on a table 125 that is movable in the vertical direction (Z direction), and the whole is 150
Power of mW/c-2 at wavelength of 300-400 nm
A substrate 1 is placed in an ultraviolet curing resin 110 (hereinafter abbreviated as resin) that hardens with a refractive index of 1.46 when irradiated with ultraviolet light for 0 seconds.
Place it so that the 00 surface is slightly below the liquid level. 32
The light from the 5 nm He-Cd laser 115 is focused onto the surface of the substrate 100 by the lens 105. At this time, the light becomes a rectangular beam with the y direction equal to the waveguide width due to the rectangular aperture 135. A method for generating equipolarized refractive indices from the above configuration is shown in FIGS. 1(b) to 1(e). Figure 1 (b
), (C), by placing the substrate 100 slightly below the surface of the resin 110 and scanning the focused He-Cd laser beam 120 in the X direction, a cured layer 130 with a thin beam width in the y direction is formed. Ru. Next, lower the stand 125 as shown in Figure 1 (d).
), in the tapered part 140, curing is started at a distance from the edge of the substrate according to the taper shape, and this is repeated.
After fabrication, the uncured resin 110 is removed with an organic solvent and the first
A waveguide and an equivalent open refractive index distribution region as shown in Figure (e) can be formed.

第2図は紫外線硬化樹脂の膜厚分布の一例であり、第3
図は第2図の場合の等偏屈折率の分布を示す。既に文献
(武田、宮崎、 “集積型光ディスクヘッド用テーパー
導波路の集光特製”儒学枝根MW87−112.198
8)で示されているように等偏屈折率が低下すると導波
路から基板側へ光が放射され、等偏屈折率の分布を変え
ることで出射光の強度分布を変化させられるため光ファ
イバ等との高効率の結合が可能となる。また光の性質か
らこの方式は出射のみならず光素子への入射にも利用で
きることは明らかである。
Figure 2 is an example of the film thickness distribution of ultraviolet curing resin;
The figure shows the distribution of equipolar refractive index in the case of FIG. Already in the literature (Takeda, Miyazaki, “Special light focusing of tapered waveguide for integrated optical disk head” Confucian Edane MW87-112.198
As shown in 8), when the equipolarized refractive index decreases, light is emitted from the waveguide toward the substrate side, and by changing the distribution of the equipolarized refractive index, the intensity distribution of the emitted light can be changed. This makes it possible to combine with high efficiency. Furthermore, from the nature of light, it is clear that this method can be used not only for outputting light but also for inputting light into an optical element.

また本実施例では光導波路層の厚さを変化させることで
等偏屈折率を変化させたが導波路は一定の厚さとしてそ
の上に厚さの分布を持った光学材料を同様な方法で作製
しても良いのである。また等偏屈折率の生成時に本実施
例では樹脂110に基板100を沈める方法をとったが
、スピンコード等の方法によって樹脂110を基板10
0に塗布しても良い。
In addition, in this example, the equipolarized refractive index was changed by changing the thickness of the optical waveguide layer, but the waveguide was set to have a constant thickness, and an optical material with a thickness distribution was placed on top of it in a similar manner. It is also possible to create one. In addition, when generating the equipolarized refractive index, in this embodiment, the substrate 100 was submerged in the resin 110, but the resin 110 was submerged in the substrate 100 by a method such as a spin cord.
It may be applied to 0.

[発明の効果] 以上詳述したことから明らかなように、本発明によれば
、容易な方法で等値開折率に分布を持つ光素子の入出射
結合器が構成できる。
[Effects of the Invention] As is clear from the above detailed description, according to the present invention, an input/output coupler for an optical element having a distribution in the equivalent open refractive index can be constructed by a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図までは本発明を具体化した実施例を示
すもので、第1図(a) −(e)は本発明の詳細な説
明図、第2図は厚さの分布の説明図、第3図は第2図に
対応する等値開折率の分布の説明図、第4図から第6図
までは従来例を示す図であり、第4図は端面結合の説明
図、第5図はプリズム結合の説明図、第6図はテーパ結
合器の説明図である。 図中、100は基板、110は紫外線硬化樹脂、120
は紫外光、130は紫外線硬化樹脂硬化部分である。
1 to 3 show embodiments embodying the present invention, FIGS. 1(a) to 3(e) are detailed explanatory diagrams of the present invention, and FIG. 2 is a diagram showing the thickness distribution. An explanatory diagram, FIG. 3 is an explanatory diagram of the distribution of the equivalent spread refractive index corresponding to FIG. 2, FIGS. 4 to 6 are diagrams showing conventional examples, and FIG. 4 is an explanatory diagram of end face bonding. , FIG. 5 is an explanatory diagram of a prism coupling, and FIG. 6 is an explanatory diagram of a taper coupler. In the figure, 100 is a substrate, 110 is an ultraviolet curing resin, 120 is
1 is an ultraviolet light, and 130 is an ultraviolet curing resin curing portion.

Claims (1)

【特許請求の範囲】 1、対象とする波長に対して透過率の高い光学材料上に
、光導波路を持つ光素子の入出射部で等価屈折率分布を
生成する方法において、紫外線硬化樹脂を積層硬化させ
る段階において厚さの分布を持たせ、等価屈折率に勾配
を持たせるようにしたことを特徴とする等価屈折率分布
を生成する方法。 2、第1項に記載の請求の範囲において紫外線硬化樹脂
の硬化手段にエキシマ、アルゴン等のレーザを用いるこ
とを特徴とする等価屈折率分布を生成する方法。
[Claims] 1. In a method for generating an equivalent refractive index distribution at the input/output part of an optical element having an optical waveguide, an ultraviolet curing resin is laminated on an optical material having high transmittance for a target wavelength. A method for generating an equivalent refractive index distribution characterized by providing a thickness distribution in the curing stage and giving a gradient to the equivalent refractive index. 2. A method for generating an equivalent refractive index distribution according to claim 1, characterized in that an excimer, argon, or other laser is used as a means for curing the ultraviolet curable resin.
JP27478488A 1988-10-31 1988-10-31 Method for forming equivalent refractive index distribution Pending JPH02120704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27478488A JPH02120704A (en) 1988-10-31 1988-10-31 Method for forming equivalent refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27478488A JPH02120704A (en) 1988-10-31 1988-10-31 Method for forming equivalent refractive index distribution

Publications (1)

Publication Number Publication Date
JPH02120704A true JPH02120704A (en) 1990-05-08

Family

ID=17546515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27478488A Pending JPH02120704A (en) 1988-10-31 1988-10-31 Method for forming equivalent refractive index distribution

Country Status (1)

Country Link
JP (1) JPH02120704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029637B2 (en) 2007-11-29 2011-10-04 Hitachi Global Technologies Netherlands, B.V. System, method and apparatus for ultraviolet curing of adhesives with light beam shaping in disk drive manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029637B2 (en) 2007-11-29 2011-10-04 Hitachi Global Technologies Netherlands, B.V. System, method and apparatus for ultraviolet curing of adhesives with light beam shaping in disk drive manufacturing

Similar Documents

Publication Publication Date Title
Kagami et al. Light-induced self-written three-dimensional optical waveguide
JP3836127B2 (en) Polymer microstructures that facilitate the coupling of optical fibers to waveguides
JP4732356B2 (en) Planar waveguide having patterned clad and manufacturing method thereof
JPH01287605A (en) Optical fiber connector assembly and manufacture thereof
US20060120681A1 (en) Process for producing filmy optical waveguide
Nguyen et al. Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography
CN109079318A (en) A kind of the femtosecond laser preparation system and method for silicon photonic crystal waveguide device
JP2004295066A (en) Method for manufacturing optical waveguide
US20210088728A1 (en) 3d printed fiber optic connector end face and method of manufacture
Chen et al. Vertically tapered polymer waveguide mode size transformer for improved fiber coupling
KR20050084025A (en) Polymeric optical device structures having controlled topographic and refractive index profiles
KR102644098B1 (en) Optical connection apparatus and method using the same
JPH02120704A (en) Method for forming equivalent refractive index distribution
Hirose et al. Optical solder effects of self-written waveguides in optical circuit devices coupling
JPS59223408A (en) Manufacture of high polymer photoconductive path
JP2017173358A (en) Optical waveguide component and manufacturing method thereof
Marushima et al. Direct fabrication for multimode/single-mode polymer optical waveguides on printed circuit board using the mosquito method
US7114860B2 (en) Method and device for coupling a light emitting source to an optical waveguide
JPS5929210A (en) Production of optical transmission coupler
JPH0567201B2 (en)
JP2014033044A (en) Double clad fiber, laser apparatus equipped with the same, exposure apparatus, and inspection apparatus
JPH04204720A (en) Wavelength conversion element
JP2000147291A (en) Method and device for manufacturing optical waveguide element
JP2005165133A (en) Method for manufacturing optical waveguide
JP4458328B2 (en) Optical waveguide manufacturing method