JPH02120693A - Natural convection type boiling water nuclear reactor - Google Patents

Natural convection type boiling water nuclear reactor

Info

Publication number
JPH02120693A
JPH02120693A JP63273100A JP27310088A JPH02120693A JP H02120693 A JPH02120693 A JP H02120693A JP 63273100 A JP63273100 A JP 63273100A JP 27310088 A JP27310088 A JP 27310088A JP H02120693 A JPH02120693 A JP H02120693A
Authority
JP
Japan
Prior art keywords
steam
water
flows
reactor
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63273100A
Other languages
Japanese (ja)
Inventor
Toshimi Tobimatsu
敏美 飛松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63273100A priority Critical patent/JPH02120693A/en
Publication of JPH02120693A publication Critical patent/JPH02120693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To eliminate a conventional steam separator, to improve an operational characteristics of natural convection in a boiling water nuclear reactor and to improve its reliability as well by providing a plurality of domed porous plates which are placed above a riser. CONSTITUTION:During an normal operation of a nuclear reactor, cooling water being boiled at a reactor core 2 goes upwardly in a riser 3 and steam containing water drips is separated into steam and water respectively by porous plates 23 laminated manifoldly. The separated steam flows in a main steam pipe 10, flows into a turbine and works there. On the other hand, the separated water at a steam dryer 24 is introduced along the porous plates 23 to a drain pipe 26. This separated water and residual cooling water are mixed with cooling water which flows in through a feed water pipe 11, flows down in a down comer 4 and flows into the reactor core 2 again from a lower plenum. In this case, for the reason that a conventional steam separator is eliminated and steam separation is conducted by a steam dryer made of a manifoldly laminated porous plates having the same shape of a dome as a shape of an upper lid of a nuclear reactor pressure vessel, a pressure loss can be well diminished.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は軽水冷却材を自然循環によって駆動する型式の
沸騰水型原子炉(以下、BWRと記す)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a type of boiling water nuclear reactor (hereinafter referred to as BWR) in which a light water coolant is driven by natural circulation.

(従来の技術) BWRは炉心で軽水冷却材を沸騰させ、その発生蒸気を
炉外のタービンに送って発電を行うものである。従来、
商用となっている高出力の型式のものはこの軽水冷却材
を原子炉圧力容器内で、複数の循環ポンプを使用して強
制駆動することによって循環させている。
(Prior Art) A BWR boils light water coolant in a reactor core and sends the generated steam to a turbine outside the reactor to generate electricity. Conventionally,
Commercially available high-power types circulate this light water coolant within the reactor pressure vessel by force-driving multiple circulation pumps.

最近、発電但が比較的小さい、いわゆる中小型BWRが
注目されるようになってきている。また、この中小型B
WRの属性には固有の安全性を有することが期待されて
いる。その際、動的n器である循環ポンプなどを使用し
ないで、沸騰現象で発生する気泡の浮力だけによって炉
心内に冷却材を自然循環させることが考えられている。
Recently, so-called small and medium-sized BWRs, which have relatively small power generating capacity, have been attracting attention. Also, this medium and small B
The attributes of WR are expected to have inherent security. At this time, it is considered that the coolant is naturally circulated within the reactor core only by the buoyancy of the bubbles generated by the boiling phenomenon, without using a circulation pump or the like, which is a dynamic device.

第4図は従来の自然循環型BWRを概略的に断面図で示
したものであり、この第4図を参照しながら従来例を説
明する。第4図中符号1は原子炉圧力容器であり、この
原子炉圧力容器1内に炉心2が配設されている。炉心2
を取り囲んで長尺のライザ(シュラウドともいう)3が
設けられ、このライザ3と原子炉圧力容器1との間に円
環状ダウンカマ4が形成されている。炉心2の上方には
上部プレナム5が形成され、この上部プレナム5に位置
してシュラウドヘッド6が設けられている。
FIG. 4 is a schematic cross-sectional view of a conventional natural circulation type BWR, and the conventional example will be explained with reference to FIG. Reference numeral 1 in FIG. 4 is a reactor pressure vessel, and a reactor core 2 is disposed within this reactor pressure vessel 1. reactor core 2
An elongated riser (also referred to as a shroud) 3 is provided surrounding the reactor pressure vessel 1, and an annular downcomer 4 is formed between the riser 3 and the reactor pressure vessel 1. An upper plenum 5 is formed above the core 2, and a shroud head 6 is provided in the upper plenum 5.

このシュラウドヘッド6にはスタンドパイプ7が接続さ
れ、このスタンドパイプ7に第5図に示した気水分離器
8が接続されている。気水分離器8の上方には空間を有
して蒸気乾燥器(ドライヤ)9が設けられている。蒸気
乾燥器9が位置する原子炉圧力容器1の側面には主蒸気
管10が接続されており、またスタンドパイプ7が位置
する側面に冷却材を流入する給水管11が接続されてい
る。なお、炉心2の下方には図示してないが制御棒と制
御棒駆動機構が配設されている。また図中符号12は炉
心2で沸騰した気液二相界面、13は液体中の気泡つま
りボイドを示している。
A stand pipe 7 is connected to the shroud head 6, and a steam separator 8 shown in FIG. 5 is connected to the stand pipe 7. A steam dryer (dryer) 9 is provided above the steam separator 8 with a space provided therein. A main steam pipe 10 is connected to the side surface of the reactor pressure vessel 1 where the steam dryer 9 is located, and a water supply pipe 11 through which coolant flows is connected to the side surface where the stand pipe 7 is located. Although not shown, control rods and a control rod drive mechanism are provided below the core 2. Further, in the figure, reference numeral 12 indicates a gas-liquid two-phase interface boiled in the reactor core 2, and reference numeral 13 indicates bubbles or voids in the liquid.

ここで、冷却材を炉心2でS*させ、シュラウドヘッド
6、スタンドパイプ7で気液二相流をより多く集め、円
筒状ライザ3で包囲、することによって上方に気液二相
流が導かれ、気液分離器8の所定の位置で二相界面12
を形成する。その二相界面12より上方に蒸気流の領域
が発生することになるが、液面内の上端に位置する気液
分離器8で気液を分離したのち、蒸気乾燥器9で蒸気を
さらに乾燥させる。このようにして乾燥した高乾き度の
蒸気を主蒸気管10を通してタービン系に導き、発電さ
せたのち、復水器で凝縮させて復水し、この復水を給水
管11から原子炉圧力容器1内へ戻す。
Here, the coolant is caused to S* in the core 2, more gas-liquid two-phase flow is collected in the shroud head 6 and stand pipe 7, and the gas-liquid two-phase flow is guided upward by surrounding it with the cylindrical riser 3. The two-phase interface 12 is formed at a predetermined position of the gas-liquid separator 8.
form. A region of vapor flow will be generated above the two-phase interface 12, but after separating the gas and liquid in the gas-liquid separator 8 located at the upper end of the liquid level, the vapor is further dried in the steam dryer 9. let The highly dry steam thus dried is led to the turbine system through the main steam pipe 10 to generate electricity, and then condensed in the condenser, and this condensate is sent from the water supply pipe 11 to the reactor pressure vessel. Return to within 1.

他方、気水分離器8で分離された液体は循環流量として
円環状のダウンカマ4を流下される。炉心2内に二相流
、ライザ3内は単相流で界面12を共有しているため、
このようにすれば炉心2の内外のボイド(気泡)13量
の違いによってそれだけ駆動力がつき、自然循環によっ
て冷却材を駆動させることができる。気水分離器8は第
5図に示すような構造を有している。すなわち、スタン
ドパイプ7から流入する蒸気と水の混合流は、スタンド
パイプ7と同軸同径で接続するライザ14がら旋回羽根
15に至り、この旋回羽根15によって旋回力が与えら
れ、螺旋状に旋回しながら旋回胴16の内部を上昇して
いく。この際、比重の大きい液体は遠心力のため、旋回
WA1Bの内壁に押しつけられ、比重の小さい蒸気は旋
回#A16の中心部(コア)を流れるために気水分離が
行なわれる。旋回胴16の上方には分離した水を排出す
るための排水口1γが設けられている。旋回W416の
内壁を伝って流れてくる液体は排水口17に流入し、旋
回胴16と外筒18との間に形成されている環状流路1
9の下方に流れ排水される。
On the other hand, the liquid separated by the steam/water separator 8 flows down the annular downcomer 4 as a circulating flow rate. Since the core 2 has a two-phase flow and the riser 3 has a single-phase flow, sharing the interface 12,
In this way, the difference in the amount of voids (bubbles) 13 inside and outside the core 2 increases the driving force accordingly, and the coolant can be driven by natural circulation. The steam/water separator 8 has a structure as shown in FIG. That is, the mixed flow of steam and water flowing from the standpipe 7 reaches the swirling blade 15 through the riser 14 connected coaxially and with the same diameter as the standpipe 7, and is given a swirling force by the swirling blade 15, causing it to spiral in a spiral pattern. At the same time, it ascends inside the rotating trunk 16. At this time, the liquid with a high specific gravity is pressed against the inner wall of the whirlpool WA1B due to centrifugal force, and the steam with a low specific gravity flows through the center (core) of the whirlpool #A16, so that steam and water separation is performed. A drain port 1γ for discharging separated water is provided above the rotating body 16. The liquid flowing along the inner wall of the whirlpool W416 flows into the drain port 17, and flows through the annular flow path 1 formed between the whirlpool barrel 16 and the outer cylinder 18.
9 and is drained.

一方、旋回胴16の中心部を流れる蒸気は旋回胴16の
上方の蒸気排出口20に入り、蒸気排出管21を経て蒸
気ドーム(図示せず)に流入する。
On the other hand, steam flowing through the center of the swirling shell 16 enters a steam outlet 20 above the swirling shell 16, passes through a steam exhaust pipe 21, and flows into a steam dome (not shown).

(発明が解決しようとする課題) 以上説明した過程において蒸気と水の混合流は大きな流
動抵抗を受ける。特に上部プレナム5からスタンドパイ
プ7に流入する際の流最配分に起因する圧力損失および
縮流に起因する圧力損失。
(Problems to be Solved by the Invention) In the process described above, the mixed flow of steam and water is subjected to large flow resistance. In particular, pressure losses due to flow redistribution and pressure losses due to contractions when entering the standpipe 7 from the upper plenum 5.

スタンドパイプ7を通過する際の圧力損失および旋回羽
根を通過する際の圧力損失が大きい。圧力損失が大きい
と自然循環流量が減少するため沸騰水型原子炉の熱水力
学的安定性が悪くなる課題がある。
The pressure loss when passing through the stand pipe 7 and the pressure loss when passing through the swirl vanes are large. When the pressure drop is large, the natural circulation flow rate decreases, which poses the problem of worsening the thermal-hydraulic stability of boiling water reactors.

本発明は上記課題を解決するためになされたもので、気
水分離器と、蒸気乾燥器を兼ね、圧力損失の低減を図っ
て自然循環流量の低減を極力小さくするとともに、運転
の安定性を向上せしめるようにした自然循環形沸騰水型
原子炉を提供することにおる。
The present invention has been made to solve the above problems, and serves as both a steam separator and a steam dryer to reduce pressure loss, minimize the reduction in natural circulation flow rate, and improve operational stability. The object of the present invention is to provide an improved natural circulation boiling water reactor.

[発明の構成] (課題を解決するための手段) 本発明は上部鏡板に主蒸気管が、側面に給水管が接続さ
れた原子炉圧力容器と、この原子炉圧力容器内に配置さ
れた炉心と、この炉心を包囲しかつ前記給水管が接続さ
れた位置の近傍まで延在するライザと、このライザの上
方に設けられた複数のドーム状多孔板が積層されてなる
蒸気乾燥器と、この蒸気乾燥器で分離された水分を前記
原子炉圧力容器とライザとの間に形成されるダウンカマ
に流下するドレンパイプとを具備したことを特徴とする
特 (作 用) 炉心で加熱された冷却水は沸騰し、ボイドを含む気液二
相流となってライザ内を上昇し、気液二相界面から液滴
を含んだ水蒸気は放出して多孔板からなる蒸気乾燥器に
流入して気液分離される。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a reactor pressure vessel in which a main steam pipe is connected to an upper end plate and a water supply pipe is connected to a side surface, and a reactor core disposed within this reactor pressure vessel. a riser surrounding the reactor core and extending to the vicinity of the location where the water supply pipes are connected; a steam dryer formed by stacking a plurality of dome-shaped perforated plates provided above the riser; Features: Cooling water heated in the reactor core, characterized in that it is equipped with a drain pipe that allows moisture separated in the steam dryer to flow down to a downcomer formed between the reactor pressure vessel and the riser. The water boils and rises in the riser as a gas-liquid two-phase flow containing voids, and the water vapor containing droplets is released from the gas-liquid two-phase interface and flows into a steam dryer made of a perforated plate where it becomes a gas-liquid two-phase flow. Separated.

分離された乾き蒸気は蒸気乾燥器の多数の孔を通過して
主蒸気管を通流しタービンへ流れ込む。蒸気乾燥器で気
液分離され凝縮した液滴はドレンパイプを流下し、ダウ
ンカマを流れて炉心の下部に流入する。炉心に流入した
液体は炉心で再び加熱され、上記と同様に気液流を形成
し、蒸気乾燥器で気液分離される。
The separated dry steam passes through a number of holes in the steam dryer and flows through the main steam pipe to the turbine. The vapor and liquid are separated in the steam dryer, and the condensed droplets flow down the drain pipe, flow through the downcomer, and flow into the lower part of the reactor core. The liquid that has entered the core is heated again in the core, forms a gas-liquid flow in the same manner as above, and is separated into gas and liquid in a steam dryer.

このようにして炉心で加熱された蒸気は蒸気乾燥器の多
孔板を通過して主蒸気管からタービンへ、一方分離され
た液滴は多孔板に沿って自然にダウンカマを流れ、再度
炉心に流入させ自然循環させることができる。
The steam heated in the core in this way passes through the perforated plate of the steam dryer and from the main steam pipe to the turbine, while the separated droplets naturally flow along the perforated plate through the downcomer and flow back into the core. It can be allowed to circulate naturally.

(実施例) 第1図から第2図を参照しながら本発明の一実施例を説
明する。
(Example) An example of the present invention will be described with reference to FIGS. 1 and 2.

第1図において、原子炉圧力容器1内には炉心2が配置
されており、この炉心2を包囲して長尺の筒状ライザ3
が配設されている。ライザ3と原子炉圧力容器1の内壁
との間には環状ダウンカマ4が形成されている。原子炉
圧力容器1の上蓋(鏡板)laはドーム状曲面に形成さ
れており、この上蓋1aの上端に主蒸気管10が接続さ
れている。また、原子炉圧力容器1の上部側面に給水管
11が接続されている。さらに原子炉圧力容器1内の上
部には第2図に示したように上M1aとほぼ同様にドー
ム状に形成された複数の孔22を有する多孔板23が複
数段積層された蒸気乾燥器24が配設されている。多孔
板23は端部が支持板25に固定されており、支持板2
5にはドレンパイプ26が接続されている。ドレンパイ
プ26の開口端はダウンカマ4内に位置している。
In FIG. 1, a reactor core 2 is disposed within a reactor pressure vessel 1, and a long cylindrical riser 3 surrounds the reactor core 2.
is installed. An annular downcomer 4 is formed between the riser 3 and the inner wall of the reactor pressure vessel 1. The upper cover (end plate) la of the reactor pressure vessel 1 is formed into a dome-shaped curved surface, and the main steam pipe 10 is connected to the upper end of the upper cover 1a. Further, a water supply pipe 11 is connected to the upper side surface of the reactor pressure vessel 1 . Furthermore, at the upper part of the reactor pressure vessel 1, as shown in FIG. is installed. The end of the perforated plate 23 is fixed to the support plate 25.
5 is connected to a drain pipe 26. The open end of the drain pipe 26 is located inside the downcomer 4.

なお、本実施例では第4図および第5図に従来例で示し
た気水分離器8が削除されており、ライザ3内の空間が
大きくとられて気液二相界面12h)ら蒸気乾燥器24
までの高さがほぼ気液分離され冑る程度に確保されてい
る。
In addition, in this embodiment, the steam/water separator 8 shown in the conventional example shown in FIGS. vessel 24
The height is maintained to the extent that almost gas-liquid separation is achieved.

しかして、原子炉の通常運転時においては炉心2で沸騰
した冷却水はライザ3内を上昇し、液滴を含んだ水蒸気
は複数段に積層された多孔板23によってそれぞれ蒸気
と水に分離される。分離された蒸気は主蒸気管10を流
れタービンへ流入し仕事する。一方、蒸気乾燥器24で
分離された水は多孔板23に沿ってドレンパイプ26に
導かれる。この分離された水と残った冷却水は給水管1
1を通って流入してきた冷却水と混合されダウンカマ4
内を下降し、下部プレナムから再び炉心2内に流入する
During normal operation of the reactor, cooling water boiled in the reactor core 2 rises in the riser 3, and water vapor containing droplets is separated into steam and water by the perforated plates 23 stacked in multiple stages. Ru. The separated steam flows through the main steam pipe 10 and flows into the turbine to perform work. On the other hand, the water separated in the steam dryer 24 is led to the drain pipe 26 along the perforated plate 23. This separated water and remaining cooling water are transferred to water supply pipe 1
Downcomer 4 mixes with the cooling water that has flowed in through 1.
It descends inside the reactor core 2 and flows into the core 2 again from the lower plenum.

本実施例によれば従来の気水分!を器を削除して原子炉
圧力容器の上蓋と同様のドーム状の多孔板を複数段v1
層した蒸気乾燥器で気水分離するため、気液二相界面か
ら蒸気乾燥器までの高さを大きく確保できる。
According to this embodiment, conventional air and moisture! Remove the container and install a multi-stage dome-shaped perforated plate similar to the top cover of the reactor pressure vessel V1
Since steam and water are separated in a layered steam dryer, a large height can be secured from the gas-liquid two-phase interface to the steam dryer.

第3図は蒸気乾燥器24の他の例を示したもので、多孔
板23に複数のポケット27を設けて遠心効果を附勢し
たことにある。なお、水蒸気の流れは中心附近に集中し
易いため、中心附近を抵抗が大となるように多孔の分布
を変えることもできる。
FIG. 3 shows another example of the steam dryer 24, in which a plurality of pockets 27 are provided in the perforated plate 23 to enhance the centrifugal effect. Note that, since the flow of water vapor tends to concentrate near the center, the distribution of pores can be changed so that the resistance is greater near the center.

[発明の効果] 本発明によれば蒸気乾燥の性質を損うことなく、従来の
気水分離器を削除することによって圧力損失を低減させ
ることができる。よって、沸騰水型原子炉の自然循環運
転特性の向上が図れ、信頼性を向上させることができる
[Effects of the Invention] According to the present invention, pressure loss can be reduced by omitting the conventional steam/water separator without impairing the properties of steam drying. Therefore, it is possible to improve the natural circulation operation characteristics of the boiling water reactor and improve its reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る沸騰水型原子炉の一実施例を線図
的に示す縦断面図、第2図は第1図の要部を拡大して示
す縦断面図、第3図は第2図の他の例を概略的に示す[
断面図、第4図は従来のこの種の沸騰水型原子炉を線図
的に示す縦断面図、第5図は第4図における気水分離器
を示す縦断面図である。 1・・・原子炉圧力容器 2・・・炉心 3・・・ライザ 4・・・ダウンカマ 5・・・上部プレナム 6・・・シュラウドヘッド 7・・・スタンドパイプ 8・・・気水分離器 9・・・蒸気乾燥器 10・・・主蒸気管 11・・・給水管 12・・・気液二相界面 13・・・ボイド。 15・・・旋回羽根。 17・・・排水口。 19・・・環状流路。 21・・・蒸気排出管 22・・・孔。 24・・・蒸気乾燥器。 26・・・ドレンパイプ 27・・・ポケット 14・・・ライザ 16・・・旋回胴 18・・・外筒 20・・・蒸気排出口 23・・・多孔板 25・・・支持板 (8733)代理人
FIG. 1 is a longitudinal cross-sectional view diagrammatically showing an embodiment of the boiling water nuclear reactor according to the present invention, FIG. 2 is a vertical cross-sectional view showing an enlarged main part of FIG. 1, and FIG. Another example of FIG. 2 is schematically shown [
4 is a longitudinal sectional view diagrammatically showing a conventional boiling water reactor of this type, and FIG. 5 is a longitudinal sectional view showing the steam-water separator in FIG. 4. 1...Reactor pressure vessel 2...Reactor core 3...Riser 4...Downcomer 5...Upper plenum 6...Shroud head 7...Stand pipe 8...Steam water separator 9 ... Steam dryer 10 ... Main steam pipe 11 ... Water supply pipe 12 ... Gas-liquid two-phase interface 13 ... Void. 15...Swirl blade. 17... Drain port. 19... Annular channel. 21... Steam exhaust pipe 22... Hole. 24...Steam dryer. 26...Drain pipe 27...Pocket 14...Riser 16...Swivel trunk 18...Outer cylinder 20...Steam outlet 23...Perforated plate 25...Support plate (8733) agent

Claims (1)

【特許請求の範囲】[Claims] 上部鏡板に主蒸気管が、側面に給水管が接続された原子
炉圧力容器と、この原子炉圧力容器内に配置された炉心
と、この炉心を包囲しかつ前記給水管が接続された位置
の近傍まで延在するライザと、このライザの上方に設け
られた複数のドーム状多孔板が積層されてなる蒸気乾燥
器と、この蒸気乾燥器で分離された水分を前記原子炉圧
力容器とライザとの間に形成されるダウンカマに流下す
るドレンパイプとを具備したことを特徴とする自然循環
形沸騰水型原子炉。
A reactor pressure vessel with a main steam pipe connected to the upper end plate and a water supply pipe connected to the side, a reactor core disposed within this reactor pressure vessel, and a position surrounding this reactor core and connected to the water supply pipe. A riser that extends to the vicinity, a steam dryer that is formed by laminating a plurality of dome-shaped perforated plates provided above the riser, and a steam dryer that separates moisture from the reactor pressure vessel and the riser. A natural circulation boiling water nuclear reactor characterized by comprising a drain pipe that flows down to a downcomer formed between the two.
JP63273100A 1988-10-31 1988-10-31 Natural convection type boiling water nuclear reactor Pending JPH02120693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63273100A JPH02120693A (en) 1988-10-31 1988-10-31 Natural convection type boiling water nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63273100A JPH02120693A (en) 1988-10-31 1988-10-31 Natural convection type boiling water nuclear reactor

Publications (1)

Publication Number Publication Date
JPH02120693A true JPH02120693A (en) 1990-05-08

Family

ID=17523141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273100A Pending JPH02120693A (en) 1988-10-31 1988-10-31 Natural convection type boiling water nuclear reactor

Country Status (1)

Country Link
JP (1) JPH02120693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509466A (en) * 2008-11-18 2012-04-19 ニュースケール パワー インコーポレイテッド Reactor vessel coolant deflection shield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509466A (en) * 2008-11-18 2012-04-19 ニュースケール パワー インコーポレイテッド Reactor vessel coolant deflection shield
US8744035B1 (en) 2008-11-18 2014-06-03 Nuscale Power, Llc Reactor vessel coolant deflector shield

Similar Documents

Publication Publication Date Title
KR101056010B1 (en) Water separator
KR101366218B1 (en) Nuclear reactor and method of cooling reactor core of a nuclear reactor
KR101437481B1 (en) Nuclear reactor and method of cooling nuclear reactor
CN104885160B (en) Nuclear reactor with liquid metals cooling agent
JP3142931B2 (en) Gas / liquid separator
US4912733A (en) Steam-water separating system for boiling water nuclear reactors
EP0493900A1 (en) Steam dryer
JPH06201890A (en) Module type drier-unified steam separator
JPH02120693A (en) Natural convection type boiling water nuclear reactor
CN201936630U (en) Saturated steam generator
JPH0727051B2 (en) Boiling water reactor system with staggered chimney
US5075074A (en) Steam-water separating system for boiling water nuclear reactors
JP3971146B2 (en) Steam separator and boiling water reactor
WO1992015994A1 (en) Bwr natural steam separator
JPH06174206A (en) Steam separator
JPH037841B2 (en)
US5180546A (en) Boiling water reactor with downcomer steam release channel
JPH02251797A (en) Boiling water nuclear reactor
US3068629A (en) Cyclone separators in tiers
JP4078057B2 (en) Natural circulation boiling water reactor
JPS59100894A (en) Bwr type reactor
JPH02251796A (en) Boiling water nuclear reactor
JPH04230896A (en) Output adjustable natural-circulation type boiling water reactor
RU2020617C1 (en) Boiling shell-type water-moderated reactor
JPS61134693A (en) Boiling water type reactor