JPH02120660A - Humidity sensor - Google Patents

Humidity sensor

Info

Publication number
JPH02120660A
JPH02120660A JP63274179A JP27417988A JPH02120660A JP H02120660 A JPH02120660 A JP H02120660A JP 63274179 A JP63274179 A JP 63274179A JP 27417988 A JP27417988 A JP 27417988A JP H02120660 A JPH02120660 A JP H02120660A
Authority
JP
Japan
Prior art keywords
humidity
temp
ultrasonic
absorption
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274179A
Other languages
Japanese (ja)
Inventor
Shiro Makino
牧野 士朗
Kazuya Nakadera
和哉 中寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63274179A priority Critical patent/JPH02120660A/en
Publication of JPH02120660A publication Critical patent/JPH02120660A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a humidity sensor having good accuracy and a high response speed over a long period of time by operating relative humidity on the basis of the absorption quantity of an ultrasonic wave and temp. CONSTITUTION:The ultrasonic wave from a transmitter 2a is received by a receiver 2b and absorbing quantity alpha in air is calculated on the basis of preset and inputted standard data by a microcomputer 6. Temp. data is successively applied to the microcomputer 6 in predetermined timing from a temp. detector 7 for detecting the temp. in a humidity detection region. Relative humidity is operated on the basis of this temp. data and the absorbing quantity alpha. By this method, humidity can be measured over a long period of time with good accuracy and can be also measured rapidly without exerting a measuring condition on a response speed.

Description

【発明の詳細な説明】 童1上夏肌■分国 本発明は、温、湿度によって空気中を伝播する超音波の
吸収量が変化することを利用して湿度を検出する超音波
湿度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic humidity sensor that detects humidity by utilizing the change in the amount of absorption of ultrasonic waves propagating in the air depending on temperature and humidity. .

従漣四υ支森 従来公知の湿度センサとして、電気抵抗の変化により湿
度を測定する第1のタイプと、電気容量の変化により湿
度を測定する第2のタイプがある。
As conventionally known humidity sensors, there are a first type that measures humidity by changes in electrical resistance, and a second type that measures humidity by changes in capacitance.

これらの湿度センサは、センサ検出部に対する水分子の
物理的、化学的吸着に伴なう抵抗変化或いは容量変化を
検出して、湿度を測定する構成をとる。そして、第1の
タイプの代表的なものとして、セラミックの導電性変化
を測定する湿度センサがあり、第2のタイプの代表的な
ものとして、高分子膜の容量変化を測定する湿度センサ
がある。
These humidity sensors are configured to measure humidity by detecting a change in resistance or a change in capacitance due to physical or chemical adsorption of water molecules onto a sensor detection section. A representative example of the first type is a humidity sensor that measures changes in the conductivity of ceramics, and a representative example of the second type is a humidity sensor that measures changes in the capacitance of polymer membranes. .

が”′しよ゛と る しかしながら、上記2タイプの湿度センサは、いずれも
以下に示す欠点があるため、精度のよい測定を長期間に
わたって行なう上で限界があった。
However, both of the above two types of humidity sensors have the following drawbacks, which limit their ability to perform accurate measurements over a long period of time.

■水分子の吸着によりセラミックや高分子膜等の感湿材
がイオン化を起こして変成(経時的劣化)するおそれが
あるため、煩わしいクリーニング(リフレッシュ)作業
を要する。
■Due to adsorption of water molecules, moisture-sensitive materials such as ceramics and polymer membranes may be ionized and denatured (deteriorated over time), requiring troublesome cleaning (refreshing) work.

■水分子の吸着速度によりセンサ検出部の応答速度(応
答性)が律せられるため、湿度変化が激しい、つまり吸
着速度の変化が激しい状況下においてはセンサ検出部が
この変化に追随不能となる。
■Since the response speed (responsiveness) of the sensor detection part is controlled by the adsorption speed of water molecules, the sensor detection part will be unable to follow these changes in situations where the humidity changes rapidly, that is, the adsorption speed changes rapidly. .

本発明はかかる従来技術の欠点を解消するためになされ
たものであり、センサ検出部のクリーニングを行なうこ
となく、長期間にわたって精度のよい測定が行える超音
波湿度センサを提供することを目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional technology, and an object of the present invention is to provide an ultrasonic humidity sensor that can perform accurate measurements over a long period of time without cleaning the sensor detection section. .

本発明の他の目的は、応答速度の向」二を閏ることにあ
る。
Another object of the present invention is to improve response speed.

課題上M快J二るためQ手段 本発明に係る湿度センサは、超音波送信器と、超音波送
信器に月間配置してあり、これから発せられ、空気中を
伝播する超音波を検出する超音波受信器と、この検出系
の温度を検出する温度検出器と、前記超音波受信器の検
出結果より求まる吸収量と温度検出器の検出温度とに基
づきこれらの値と一定の関係を有する相対湿度をシュミ
レーションし、シュミレーション結果により相対湿度を
演算する演算器とを具備することを特徴としている。
The humidity sensor according to the present invention includes an ultrasonic transmitter and an ultrasonic sensor disposed in the ultrasonic transmitter to detect ultrasonic waves emitted from the transmitter and propagating in the air. A sonic receiver, a temperature detector that detects the temperature of this detection system, and a relative that has a certain relationship with these values based on the absorption amount determined from the detection results of the ultrasonic receiver and the detected temperature of the temperature detector. It is characterized by comprising a calculator that simulates humidity and calculates relative humidity based on the simulation results.

作−一一一足 しかるときは、空気中を伝播する超音波を検出し、シュ
ミレーションを実行するだけで、湿度の測定が行えるこ
とになるので、水分子等をセンサ検出部に取り込むこと
がなく、これの悪影響を排除できることになる。
When necessary, humidity can be measured simply by detecting ultrasonic waves propagating in the air and running a simulation, so there is no need to introduce water molecules into the sensor detection section. , the negative effects of this can be eliminated.

L−膳一桝 以下本発明の一実施例を図面に基づき具体的に説明する
。第1図は本発明に係る湿度センサの全体構成を示すブ
ロック図、第2図は検出温度をパラメータとする、吸収
量と相対湿度との関係を示すグラフである。
L-Zen One embodiment of the present invention will now be described in detail based on the drawings. FIG. 1 is a block diagram showing the overall configuration of a humidity sensor according to the present invention, and FIG. 2 is a graph showing the relationship between absorption amount and relative humidity using detected temperature as a parameter.

湿度検出域には、超音波センサ2を設けである。An ultrasonic sensor 2 is provided in the humidity detection area.

この超音波センサ2は、発振器lに接続した送信器2a
と、送信’JH2aに対して、例えば0.5mの間隔を
設けて対向配置した受信器2bとからなり、発振器1か
ら送信器2aに所定周波数の高周波(例えば、1MHz
)を印加すると、送信器2aから超音波が発せられ、こ
れを受信器2bが検出することになる。
This ultrasonic sensor 2 includes a transmitter 2a connected to an oscillator l.
and a receiver 2b placed opposite to the transmitter JH2a with an interval of, for example, 0.5 m.
), the transmitter 2a emits an ultrasonic wave, which is detected by the receiver 2b.

ここに、対向空間を通って伝播する超音波は、空間に介
在する媒質たる空気によりそのエネルギを吸収減衰され
、吸収減衰後の超音波の音圧レベル(dB)が検出信号
として受信器2bに検出されることになる。
Here, the energy of the ultrasound propagating through the opposing space is absorbed and attenuated by air, which is a medium intervening in the space, and the sound pressure level (dB) of the ultrasound after absorption and attenuation is sent to the receiver 2b as a detection signal. It will be detected.

受信器2bには前記検出信号の波形を整形する波形整形
器3を接続してあり、波形整形器3にはローパスフィル
タ4を接続しである。ローパスフィルタ4は検出信号よ
りも音圧レベルが高いノイス成分を除去し、ノイズ成分
を含まない信号をA/ D it*2s 5を介してマ
イクロコンピュータ6に入力する。
A waveform shaper 3 for shaping the waveform of the detection signal is connected to the receiver 2b, and a low-pass filter 4 is connected to the waveform shaper 3. The low-pass filter 4 removes noise components having a higher sound pressure level than the detection signal, and inputs a signal containing no noise components to the microcomputer 6 via the A/Dit*2s 5.

マイクロコンピュータ6には人力信号により空気中の吸
収量αを算出するための標準データが予め設定入力され
ており、この標準データと入力信号により、吸収量αを
算出する。また、マイクロコンピュータ6には湿度検出
域における温度を検出する温度検出器7 (例えば、サ
ーミスタ)から温度情報が所定のタイミングで順次与え
られるようになっており、この温度情報と吸収■αとに
基づき第2図に示すようなシュミレーシコンを実行して
相対)品度り、(%〕を演算する。かくして、検出域に
おける相対湿度り、が測定されることになるのである。
Standard data for calculating the absorption amount α in the air using human input signals is preset and input into the microcomputer 6, and the absorption amount α is calculated based on this standard data and the input signal. Further, temperature information is sequentially given to the microcomputer 6 at a predetermined timing from a temperature detector 7 (for example, a thermistor) that detects the temperature in the humidity detection area, and this temperature information and the absorption Based on this, a simulation as shown in Fig. 2 is executed to calculate the relative humidity (%).In this way, the relative humidity in the detection area is measured.

そして、得られた測定結果を図外の表示器に表示し、或
いはプリンタ等の記録器に出力することになる。
The obtained measurement results are then displayed on a display (not shown) or output to a recording device such as a printer.

但し、第2図は縦軸に吸収■αを、横軸に相対湿度り、
をとって種々の検出温度(設定温度)における両者の関
係を示すグラフであり、このグラフ、即ちシュミレーシ
ョン結果により温度1゛〔0C〕と吸収量αを検出する
ことにより、相対湿度り、が求められることがわかる。
However, in Figure 2, the vertical axis shows absorption α, and the horizontal axis shows relative humidity.
This is a graph showing the relationship between the two at various detected temperatures (set temperatures), and by detecting the temperature 1゛ [0C] and the absorption amount α based on this graph, that is, the simulation result, the relative humidity can be calculated. I know that it will happen.

なお、第2図に示すンユミレーションは超音波センサ2
の発振周波数を1000KHzとし、送信器2aと受信
器2bとの離隔距離を50cn+とした場合の結果を示
している。
Note that the emission shown in FIG. 2 is based on the ultrasonic sensor 2.
The results are shown when the oscillation frequency is 1000 KHz and the separation distance between the transmitter 2a and receiver 2b is 50 cn+.

この測定原理について以下に今少し説明する。This measurement principle will be briefly explained below.

まず、吸収量αは古典吸収αe、と緩和吸収αrとの和
であり、古典吸収α、は下記0式で示される。
First, the absorption amount α is the sum of the classical absorption αe and the relaxation absorption αr, and the classical absorption α is expressed by the following equation 0.

α、t=5.578xlO−9x(T/To)/(T 
+To)x(2/(p/Pa)・・・■ 但し、TはlJ1度検出器7から人力される測定温度(
OK)であり、Toは絶対温度(= 293.15°K
〕である。Pは室温における飽和水蒸気圧(kg/ a
n” )であり、図外の圧力検出器により検出され、マ
イクロコンピュータ6に入力される。Poは標準状態に
おける飽和水蒸気圧であり、マイクロコンピュータ6に
予め設定入力されている。また、fは発振器lの発振周
波数(KHz )である。従って、古典吸収α。は温度
検出器7からの温度情報により直ちに演算されることに
なる。
α, t=5.578xlO-9x(T/To)/(T
+To)
OK), and To is the absolute temperature (= 293.15°K
]. P is the saturated water vapor pressure at room temperature (kg/a
n"), which is detected by a pressure detector (not shown) and input to the microcomputer 6. Po is the saturated water vapor pressure in the standard state, and is preset and input to the microcomputer 6. This is the oscillation frequency (KHz) of the oscillator l.Therefore, the classical absorption α is immediately calculated based on the temperature information from the temperature detector 7.

また、緩和吸収αrは酸素の緩和吸収αr0と窒素の緩
和吸収αrNとの和であり、緩和吸収αre及び緩和吸
収α、は夫々下記■、0式で示される。
Further, the relaxation absorption αr is the sum of the relaxation absorption αr0 of oxygen and the relaxation absorption αrN of nitrogen, and the relaxation absorption αre and the relaxation absorption α are expressed by the following formulas (1) and 0, respectively.

αr6二Ao f”/  (fro+ (r2/r、o
) l  ・・・■αrN=ANf”/  (frs+
(f2/frs) )  ・・・■但し、「、い f□
は緩和吸収における酸素、窒素の緩和周波数であり、ま
たAOlAMは酸素、窒素中における超音波の減衰量[
dB)であり、夫々下記■、0式で示される。
αr62Ao f”/ (fro+ (r2/r, o
) l...■αrN=ANf”/ (frs+
(f2/frs) )...■However, ",i f□
is the relaxation frequency of oxygen and nitrogen in relaxation absorption, and AOlAM is the attenuation amount of ultrasound in oxygen and nitrogen [
dB), and are shown by the following formulas (■) and 0, respectively.

Ao  =0.01278(T/To)””xexp 
 (2329/T)・ ・ ・■ AN  =0.2069(T/To)””  Xexp
  (3352/T)・ ・■ ここに、AOSANについては温度検出器7からの温度
情報に基づき■、0式により直ちに演算されるごとにな
るが、fro、frNは未知の値である。しかるに、吸
収量αが上記のようにして求められ、この値から古典吸
収αclを減算することにより、緩和吸収αrが求めら
れ、結果的に緩和吸収α「。、緩和吸収αrHとfro
、「、、8との関係が得られることにより、frQs 
 frNの値がわかることになる。
Ao =0.01278(T/To)””xexp
(2329/T)・・・■AN=0.2069(T/To)””Xexp
(3352/T)・・■ Here, AOSAN is immediately calculated based on the temperature information from the temperature detector 7 according to the formula ■ and 0, but fro and frN are unknown values. However, the absorption amount α is obtained as described above, and the relaxation absorption αr is obtained by subtracting the classical absorption αcl from this value, resulting in the relaxation absorption α′., relaxation absorption αrH and fro
, ``, 8, frQs
The value of frN can be found.

従って、上記0〜0式によりシュミレーションを実行す
ることにより、相対湿度り、を演算できることが理論的
に理解できることになる。
Therefore, it can be theoretically understood that the relative humidity can be calculated by executing a simulation using the above 0-0 formula.

以上のようなシュミレーションにより、相対湿度り、を
求める場合は、シュミレーションに要する温度情報が逐
次最新のものに更新されることになるので、温度変化に
起因する測定誤差をキャン4゜ セルでき、精度のよい湿度測定が行えることになる。
When calculating relative humidity using the above simulation, the temperature information required for the simulation is updated sequentially to the latest information, so measurement errors caused by temperature changes can be canceled by 4°, improving accuracy. This allows for good humidity measurements.

1悪1q卵果 以上の本発明による場合は、超音波受信器の検出13号
により、空気中を伝播する超音波の吸収層を求め、かつ
検出系における温度を逐次検出し、これらの検出値に基
づきシュミレーションを実行し、相対湿度を演算する構
成をとるので、上述の従来センサの如く、測定精度、応
答速度に悪影響を与える水分子等を吸着することがない
。従って、精度のよい測定を長期間にわたって維持でき
ると共に、応答速度が測定条件に左右されることがない
ので、湿度変化が急激に変化するような環境下において
も迅速、かつ精度のよい測定が行えることになる。
In the case of the present invention of 1 q or more, the ultrasonic receiver No. 13 detects the absorption layer of the ultrasonic waves propagating in the air, sequentially detects the temperature in the detection system, and calculates these detected values. Since the configuration is such that a simulation is executed based on the above and the relative humidity is calculated, unlike the above-mentioned conventional sensor, water molecules and the like that adversely affect measurement accuracy and response speed are not adsorbed. Therefore, accurate measurements can be maintained over a long period of time, and the response speed is not affected by measurement conditions, so rapid and accurate measurements can be performed even in environments where humidity changes rapidly. It turns out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る湿度センサの全体構成を示すブロ
ック図、第2図は測定温度をパラメータとする、空気中
における超音波の吸収量と相対湿度との関係を示すグラ
フである。 2・・・超音波センサ、2a・・・送信器、2b・・・
受信器、6・・・マイクロコンピュータ。 特許出願人 株式会社村[11製作所
FIG. 1 is a block diagram showing the overall configuration of a humidity sensor according to the present invention, and FIG. 2 is a graph showing the relationship between the amount of ultrasonic absorption in the air and the relative humidity using measured temperature as a parameter. 2... Ultrasonic sensor, 2a... Transmitter, 2b...
Receiver, 6... microcomputer. Patent applicant Mura Co., Ltd. [11 Seisakusho]

Claims (1)

【特許請求の範囲】[Claims] (1) 超音波送信器と、 超音波送信器に対向配置してあり、これから発せられ、
空気中を伝播する超音波を検出する超音波受信器と、 この検出系の温度を検出する温度検出器と、前記超音波
受信器の検出結果より求まる吸収量と温度検出器の検出
温度とに基づきこれらの値と一定の関係を有する相対湿
度をシュミレーションし、シュミレーション結果により
相対湿度を演算する演算器と を具備することを特徴とする超音波湿度センサ。
(1) The ultrasonic transmitter is placed opposite the ultrasonic transmitter, and the signals emitted from it,
An ultrasonic receiver that detects ultrasonic waves propagating in the air, a temperature detector that detects the temperature of this detection system, and an absorption amount determined from the detection results of the ultrasonic receiver and a detected temperature of the temperature detector. 1. An ultrasonic humidity sensor comprising: a computing unit that simulates relative humidity having a certain relationship with these values based on the above values, and calculates the relative humidity based on the simulation results.
JP63274179A 1988-10-28 1988-10-28 Humidity sensor Pending JPH02120660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274179A JPH02120660A (en) 1988-10-28 1988-10-28 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274179A JPH02120660A (en) 1988-10-28 1988-10-28 Humidity sensor

Publications (1)

Publication Number Publication Date
JPH02120660A true JPH02120660A (en) 1990-05-08

Family

ID=17538139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274179A Pending JPH02120660A (en) 1988-10-28 1988-10-28 Humidity sensor

Country Status (1)

Country Link
JP (1) JPH02120660A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219664A (en) * 1988-02-29 1989-09-01 Takasago Thermal Eng Co Ltd Humidity measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219664A (en) * 1988-02-29 1989-09-01 Takasago Thermal Eng Co Ltd Humidity measuring method

Similar Documents

Publication Publication Date Title
US6295873B1 (en) Ultrasonic sensor and method of use
US8381574B2 (en) Reduction of pressure induced temperature influence on the speed of sound in a gas
US3095872A (en) Blood pressure measurement
Rooney Determination of acoustic power outputs in the microwatt-milliwatt range
JPH06148003A (en) Ultrasonic temperature measuring equipment
CN103278561B (en) Universal ultrasonic liquid concentration detection apparatus
JP2005524063A (en) Ultrasonic Doppler effect velocity measurement method
EP1325319B1 (en) Acoustic co2-sensor
Sheen et al. Ultrasonic techniques for detecting helium leaks
JP2003337119A (en) Acoustical gas monitor
US4380167A (en) Apparatus and method for detecting a fraction of a gas
JPH02120660A (en) Humidity sensor
JPH0310157A (en) Gas-concentration measuring apparatus
RU1140571C (en) Method of measuring power of low-frequency hydroacoustic irradiator with internal air cavity
RU2375790C1 (en) Hydrogen detector with piezoelectric resonator
RU2172953C2 (en) Device measuring concentration of carbon dioxide in exhaled air
RU2210764C1 (en) Procedure determining density of liquids and device for its implementation
JPS6145480Y2 (en)
EP3045905B1 (en) Reduction of pressure induced temperature influence on the speed of sound in a gas
Zverev Modulation method for measurements of ultrasonic dispersion
SU538223A1 (en) Ultrasonic method for measuring film thickness
SU1427273A1 (en) Moisture meter for measuring moisture content of light organic liquids
Horiuchi Absorption of Sound in Humid Air at Low Frequencies
Hashimoto et al. Ultrasonic Propagation Measurements in Sea Water up to 400 kc
Mariens Sound Absorption in Wide and Capillary Tubes at Audible Frequencies