【発明の詳細な説明】[Detailed description of the invention]
【産業上の利用分野】[Industrial application field]
この発明は、人体その他の被測定物体内の温度を測定す
る装置に関し、とくにハイパーサーミア(温熱療法)に
おいて人体内の温度測定に使用するのに好適な温度測定
装置に関する。The present invention relates to a device for measuring the temperature inside a human body or other measured object, and particularly to a temperature measuring device suitable for use in hyperthermia (thermia therapy) to measure the temperature inside the human body.
【従来の技術】[Conventional technology]
人体その他の物体内の温度を測定する場合、従来では通
常、熱電対やサーミスタなどのその物体内に挿入して測
定している。
ハイパーサーミアは癌組織が正常組織よりも熱に弱いこ
とを利用して行なう治療法であり、その加温部位の温度
を正確に測定することは必須のものである。そこで、こ
のハイパーサーミアにおいて人体内の温度は、従来では
、第3図のように患者2の身体中にテフロンチューブ等
の管81を経皮的に刺し入れ腫瘍部21にまで到達させ
、その中に熱電対8を挿入し、リード1i82を測定、
器83にまで導いて測定するようにしている。Conventionally, when measuring the temperature inside a human body or other object, a thermocouple or thermistor is usually inserted into the object. Hyperthermia is a treatment method that takes advantage of the fact that cancerous tissue is more sensitive to heat than normal tissue, and it is essential to accurately measure the temperature of the heated area. Therefore, in this hyperthermia, the temperature inside the human body is conventionally determined by percutaneously inserting a tube 81 such as a Teflon tube into the body of the patient 2 to reach the tumor site 21, as shown in FIG. Insert thermocouple 8 and measure lead 1i82,
The sample is guided to a device 83 for measurement.
【発明が解決しようとする課1111
しかしながら、従来のように被測定物体内に熱電対など
を挿入することは不都合な場合も多い。
たとえば、ハイパーサーミアではその加温は数回に分け
て、数日間以上にわたって行なわれるので、加温治療の
たびに腫瘍部に管を刺し入れて熱電対を挿入していたの
では、患者に苦痛を与えるばかりでなく、癌組織の中へ
の管の挿入あるいは抜去を繰り返せばそれが原因で癌の
転移が起きる可能性も大きくなる。
この発明は、−旦被測定物体内に留置してしまえば抜き
刺しする必要がなく、とくにハイパーサーミアにおいて
人体内の温度を測定する場合、−度の手術あるいはその
他の手段で感温体を体内に留置させてしまえば患者への
侵襲及び癌の転移の可能性を少なくすることができる、
温度測定装置を提供することを目的とする。
【課題を解決するための手段】
上記目的を達成するため、この発明による温度測定装置
においては、被測温物体内に留置される、温度に応じて
形状変化する感温体と、該感温体の形状変化を、該物体
外部において検出する検出装置とが備えられる。Issues to be Solved by the Invention 1111 However, it is often inconvenient to insert a thermocouple or the like into an object to be measured as in the past. For example, in hyperthermia, heating is done in several sessions over several days, so if a tube was inserted into the tumor and a thermocouple was inserted each time, it would cause pain to the patient. If the tube is not only given but also repeatedly inserted into and removed from the cancerous tissue, there is a greater possibility that the cancer will metastasize. This invention eliminates the need to remove the needle once it is placed inside the object to be measured.Especially when measuring the temperature inside the human body using hyperthermia, the thermosensor can be inserted into the body by surgery or other means. Once placed, the possibility of invasion to the patient and cancer metastasis can be reduced.
The purpose is to provide a temperature measuring device. [Means for Solving the Problems] In order to achieve the above object, a temperature measuring device according to the present invention includes a temperature sensing body that is placed in a temperature measurement object and whose shape changes depending on the temperature, and a temperature sensing body that changes shape depending on the temperature. and a detection device that detects a change in the shape of the body outside the object.
【作 用】[For production]
温度に応じて形状変化する感温体くたとえば形状記憶合
金を利用したもの〉が被測定物体くたとえば人体)内に
留置される。
他方、被測定物体外部にはたとえばX線透視装置などの
上記の感温体の形状変化を検出する装置が配置される。
そこで、被測定物体内の温度が変化して感温体の形状が
変化すると、その形状変化が被測定物体外部の検出装置
によって検出され、温度が測定される。A temperature-sensitive body that changes shape depending on temperature (eg, one using a shape memory alloy) is placed inside an object to be measured (eg, a human body). On the other hand, a device, such as an X-ray fluoroscope, for detecting a change in the shape of the temperature sensitive body is arranged outside the object to be measured. Therefore, when the temperature inside the object to be measured changes and the shape of the temperature sensitive body changes, the change in shape is detected by a detection device outside the object to be measured, and the temperature is measured.
【実 施 例】【Example】
つぎにこの発明の一実施例について図面を参照しながら
説明する。この実施例は、ハイパーサーミアなどにおい
て人体内の温度を測定するために使用するものである。
まず、第】図に示すような測温カプセル1を作る9この
測温カプセル】は、大球11と小球12とを、中球13
をスライド自在に貫通している連結棒14で連結し9、
この中球13をコイルバネ16.17で付勢するように
し、カプセル状の容器18に収納してなる。このコイル
バネ16.17の一方(たとえばコイルバネ17)は形
状記憶合金で作られており、他方(たとえばコイルバネ
16)はバイアス用のバネである。
そのため、温度によって形状記憶合金製コイルバネ17
の付勢力が変化し、中球13の連結棒14上の位置が変
化する。ハイパーサーミアでは40℃〜45℃の温度範
囲を正確に測定できることが重要であるから、温度変化
に対する変位量が大きい形状記憶合金を利用して、この
温度範囲で中球13が大球11から小球12までの間の
連結棒14の端から端まで移動するようにコイルバネ1
6.17を設定する。この実施例ではつぎに述べるよう
にX線透視システムを利用することを前提にしているの
で、大球IJ、小球12、中球13はX線非透過性の材
質(たとえば鉛やタングステン)で作られ、カプセル状
の容器18はX線透過性の材質(たとえばプラスティッ
ク)で作られる(連結棒14やコイルバネ16.17は
X線透過性でも非透過性でもよい)。
この測温カプセル1は第2図に示すように患者2の身体
内に1個または複数個留置され、X線透視システムによ
りカプセル1内の中球13の位置が検出される。このX
線透視システムでは、患者2に対してX線管3よりX線
が照射され、患者2を透過したX線がイメージインテン
シファイア4に入射し、可視光の透過像に変換され、こ
の像がTV右カメラによってビデオ信号に変換される。
このビデオ信号は、CR7表示装置6に送られて透視像
が表示されるとともに、画像認識装置7にも送られる。
そこで、CR7表示装置6の画面上に表示された測温カ
プセル1の大球11、小球12、中球13の像を、測定
者が観察すれば、大球11と小球12との間の距離に対
する大球11(あるいは小球12)から中球13までの
距離の比を計測することにより、あらかじめ計測しであ
る温度と上記の距離比との対応表などに照らし合わせて
温度を知ることができるが、ここでは、画像認識装置7
によりTV右カメラから得られた画像を処理して上記の
距離比を自動的に求め内蔵の上記の対応表との照合を行
なって温度を自動的に求め、求めた温度をCR7表示装
置6の画面上にデジタル表示するようにしている。
ここで、球11.12.13の距離比により温度を求め
ているので、カプセル1の方向がどのようなものであっ
ても、X線に対して平行になっていない限り温度測定が
可能であり、しかも画像の拡大率などにより影響を受け
ない。
さらに、上記のように画像処理によって球の距離比と求
め、自動的に温度を求める場合には、ハイパーサーミア
の場合どくに便利である9ハイパーサーミアでは実際に
は、全加温時間(たとえば40分)の間、30秒に1回
程度の間隔で温度測定を行なう必要があり、しかも測定
点も複数必要であって上記の測温カプセル1を複数個埋
め込まなければならないため、画面上で人間が距離比を
計測するのは非常に煩雑であるからである。
なお、上記の実施例ではX線透視システムを用いて球1
1.12.13の画像を得ているが、超音波診断装置な
どの他の画像診断装置な用いることらもちろん可能であ
る。その場合1球11.12.13の材質としては、使
用する検出装置がより検出し易いものを選ぶ必要がある
。
さらに上記の実施例では被測定物体は人体としたが2人
体以外の生物等の物体にも適用でき、なんらかの理由で
リード線等を内部から外部に引き出すことができない場
合に有効である。Next, an embodiment of the present invention will be described with reference to the drawings. This embodiment is used to measure the temperature inside the human body in hyperthermia and the like. First, make a thermometer capsule 1 as shown in the figure.
are connected by a connecting rod 14 which is slidably passed through 9,
This middle ball 13 is biased by coil springs 16 and 17, and is housed in a capsule-shaped container 18. One of the coil springs 16, 17 (eg, coil spring 17) is made of a shape memory alloy, and the other (eg, coil spring 16) is a bias spring. Therefore, depending on the temperature, the shape memory alloy coil spring 17
The biasing force changes, and the position of the middle ball 13 on the connecting rod 14 changes. In hyperthermia, it is important to be able to accurately measure the temperature range from 40°C to 45°C, so by using a shape memory alloy that has a large displacement due to temperature changes, the medium sphere 13 changes from the large sphere 11 to the small sphere within this temperature range. Coil spring 1 moves from end to end of connecting rod 14 between up to 12
Set 6.17. Since this embodiment assumes that an X-ray fluoroscopy system will be used as described below, the large ball IJ, small ball 12, and medium ball 13 are made of an X-ray non-transparent material (for example, lead or tungsten). The capsule-shaped container 18 is made of an X-ray transparent material (for example, plastic) (the connecting rod 14 and the coil springs 16, 17 may be X-ray transparent or non-X-ray transparent). As shown in FIG. 2, one or more temperature measuring capsules 1 are placed in the body of a patient 2, and the position of the inner bulb 13 inside the capsule 1 is detected by an X-ray fluoroscopy system. This X
In the fluoroscopy system, a patient 2 is irradiated with X-rays from an X-ray tube 3, and the X-rays that have passed through the patient 2 enter an image intensifier 4, where they are converted into a transmitted image of visible light. It is converted into a video signal by the TV right camera. This video signal is sent to the CR7 display device 6 to display a perspective image, and is also sent to the image recognition device 7. Therefore, when the measurer observes the images of the large sphere 11, small sphere 12, and medium sphere 13 of the temperature measuring capsule 1 displayed on the screen of the CR7 display device 6, the distance between the large sphere 11 and the small sphere 12 is By measuring the ratio of the distance from the large sphere 11 (or small sphere 12) to the medium sphere 13 with respect to the distance, the temperature can be determined by comparing the previously measured temperature with a correspondence table between the above distance ratio. However, here, the image recognition device 7
The above distance ratio is automatically determined by processing the image obtained from the TV right camera, and the temperature is automatically determined by comparing it with the built-in correspondence table, and the determined temperature is displayed on the CR7 display device 6. It is displayed digitally on the screen. Here, the temperature is determined by the distance ratio of the spheres 11, 12, and 13, so no matter what direction the capsule 1 is, as long as it is not parallel to the X-rays, temperature measurement is possible. Yes, and it is not affected by the image enlargement rate. Furthermore, as described above, when determining the distance ratio of the spheres through image processing and automatically determining the temperature, it is convenient in the case of hyperthermia. During this period, it is necessary to measure the temperature at intervals of about once every 30 seconds, and moreover, multiple measurement points are required, and multiple temperature measurement capsules 1 described above must be embedded. This is because measuring the ratio is extremely complicated. Note that in the above embodiment, the ball 1 is measured using an X-ray fluoroscopy system.
Although images of 1, 12, and 13 were obtained, it is of course possible to use other image diagnostic equipment such as an ultrasonic diagnostic equipment. In that case, it is necessary to select a material for each ball 11, 12, 13 that can be easily detected by the detection device used. Further, in the above embodiments, the object to be measured is a human body, but it can also be applied to objects other than human bodies, such as living things, and is effective in cases where lead wires etc. cannot be drawn out from the inside to the outside for some reason.
【発明の効果】【Effect of the invention】
この発明の温度測定装置によれば、感温体を被測定物体
に一度埋め込めば、感温体には電池等交換しなければな
らない部品を使用していないことともあって、長期間使
用でさ、測定の都度いちいち挿入したり取り出したりす
る必要がない。また、リード線を被測定物体外に引き出
す必要がないため、癌などの転移や感染等の危険も少な
い。According to the temperature measuring device of the present invention, once the temperature sensing element is embedded in the object to be measured, it can be used for a long period of time because the temperature sensing element does not contain any parts such as batteries that must be replaced. , there is no need to insert or remove it each time you make a measurement. Furthermore, since there is no need to draw the lead wire out of the object to be measured, there is less risk of metastasis or infection of cancer or the like.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図はこの発明の一実施例の測温カプセルを示す一部
切欠斜視図、第2図は全体のブロック図、第3図は従来
例の概略図である。
1・・・測温カプセル、11・・・大球、12・・・小
球、13・・・中球、1・4・・連結棒、16.17・
・・コイルバネ、18・・・カプセル状容器、2・・・
患者、21・・・腫瘍部、3・・・X線管、4・・・イ
メージインテンシファイア、5・・・TVカメラ、6・
・・CRT表示装置、7・・・画(憶認識装置、8・・
・熱電対、81・・・管、82・・・リード線、83・
・・測定器。FIG. 1 is a partially cutaway perspective view showing a temperature measuring capsule according to an embodiment of the present invention, FIG. 2 is an overall block diagram, and FIG. 3 is a schematic diagram of a conventional example. 1...Temperature measuring capsule, 11...Large ball, 12...Small ball, 13...Medium ball, 1.4.Connecting rod, 16.17.
...Coil spring, 18...Capsule-shaped container, 2...
Patient, 21... Tumor area, 3... X-ray tube, 4... Image intensifier, 5... TV camera, 6...
... CRT display device, 7... picture (memory recognition device, 8...
・Thermocouple, 81...Tube, 82...Lead wire, 83.
...Measuring instrument.