JPH021191A - Laser oscillating device - Google Patents

Laser oscillating device

Info

Publication number
JPH021191A
JPH021191A JP63050150A JP5015088A JPH021191A JP H021191 A JPH021191 A JP H021191A JP 63050150 A JP63050150 A JP 63050150A JP 5015088 A JP5015088 A JP 5015088A JP H021191 A JPH021191 A JP H021191A
Authority
JP
Japan
Prior art keywords
distribution
resonator
output coupling
gaussian
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63050150A
Other languages
Japanese (ja)
Inventor
Norio Karube
規夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP63050150A priority Critical patent/JPH021191A/en
Publication of JPH021191A publication Critical patent/JPH021191A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain a high power TEMOO mode beam from a resonator of simple structure by a method wherein an output coupling coefficient on an output coupling mirror is made to have a distribution identical to a Gaussian distribution of a laser beam intensity distribution outside the resonator. CONSTITUTION:Electrodes 13 and 14 are provided outside a dielectric discharge tube 1, and a high frequency high voltage is applied onto them from a high frequency power source 15. And, when a transmittance distribution Tb of an output coupling mirror 3 is identical to a Gaussian distribution, a beam profile Pb becomes a Gaussian distribution. The Gaussian beam is formed as mentioned above, whose propagation characteristic is identical to that of a Gaussian beam formed inside a resonator, so that the merit of a usual TEMOO laser beam is left as it is. By these processes, as a coupling coefficient of an output coupling mirror is made to conform to a Gaussian distribution, a high power laser beam equivalent to a TEMOO mode can the obtained from a single stage resonator small in resonator length.

Description

【発明の詳細な説明】 ザ用の共振器に関する。より詳細には簡単な共振器構造
から高出力TEM00モードビームを得られるようにし
たレーザ発振装置 〔従来の技術〕 第4図に従来技術による高出力TEM00レーザ発振器
の構造を示す。図においては、モードを規定する共振器
と放電管構造のみを示し、周知の高速軸流CO□レーザ
装置が適用できるので、ガス循環装置については省略し
である。図は放電管l、2の2本からなる2段折り返し
型共振器であって3は出力結合鏡、4は全反射鏡、5.
6は折り返し鏡である。電極7.8.9.10などには
直流高電圧が印加されて放電管内にグロー放電が発生し
、レーザ励起が行われる。その結果共振器にレーザビー
ム11が、共振器外にレーザビームI2が発生する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resonator for a laser. More specifically, a laser oscillator capable of obtaining a high-output TEM00 mode beam from a simple resonator structure [Prior art] FIG. 4 shows the structure of a high-output TEM00 laser oscillator according to the prior art. In the figure, only the resonator and discharge tube structure that define the mode are shown, and the gas circulation device is omitted because a well-known high-speed axial flow CO□ laser device can be applied. The figure shows a two-stage folded resonator consisting of two discharge tubes 1 and 2, in which 3 is an output coupling mirror, 4 is a total reflection mirror, and 5.
6 is a folding mirror. A high direct current voltage is applied to the electrodes 7, 8, 9, 10, etc., and a glow discharge is generated within the discharge tube, and laser excitation is performed. As a result, a laser beam 11 is generated in the resonator, and a laser beam I2 is generated outside the resonator.

〔産業上の利用分野〕[Industrial application field]

本発明は加工用COz レーザなどの高山カレー〔発明
が解決しようとする課題〕 従来技術には下記に挙げる欠点がある。第一は放電管も
共振器も極めて長大になることである。
The present invention relates to high mountain curry processing such as a COz laser for processing [Problems to be Solved by the Invention] The prior art has the following drawbacks. First, both the discharge tube and the resonator are extremely long.

出力IKWをTEM00で得る場合を考察する。Consider the case where the output IKW is obtained with TEM00.

我々の実験によると放電管径を制限してTEM00モー
ドを得るには通常のR=10〜30(凹)の光学部品を
用いる時には放電管内径は16+n+nφ以下でなけれ
ばならない。出力IKWを得るためには通常の高速軸流
型CO□レーザの場合の単位体積出力比を2W/ccと
すると500ccの放電体積を必要とするのでを効放電
長は2.5m必要である。実際には共振器長はこれより
も大分長いものになる。
According to our experiments, in order to limit the diameter of the discharge tube and obtain the TEM00 mode, the inner diameter of the discharge tube must be 16+n+nφ or less when using a normal optical component with R=10 to 30 (concave). In order to obtain the output IKW, a discharge volume of 500 cc is required, assuming a unit volume output ratio of 2 W/cc in the case of a normal high-speed axial CO□ laser, and an effective discharge length of 2.5 m is required. In reality, the resonator length will be much longer than this.

装置の長さを短くするためには図に示すように何段かに
折り返し構造にする。この時レーザのアラインメントが
敏感になり、装置は精密袋[〃になってしまい取扱いに
困難をきたす。
In order to shorten the length of the device, it should be folded in several stages as shown in the figure. At this time, the laser alignment becomes sensitive and the device becomes a precision bag, making it difficult to handle.

これを防止するには500ccの放電体積を大断面短管
放電管で得ることが考えられる。例えば、下記の長さL
と内径りの組合せが考えられる。
To prevent this, it is conceivable to obtain a discharge volume of 500 cc with a large-section short tube discharge tube. For example, the following length L
A combination of this and the inner diameter is possible.

L       D 300 tmn     46 mmφ500    
     3に れらのり、Dは共振器構成上では理想的と云える。しか
しながらこれらのり、Dを採用すると第一に直流放電で
は−様な放電が得られない。
L D 300 tmn 46 mmφ500
3 and D can be said to be ideal in terms of the resonator configuration. However, when these glues and D are employed, firstly, -like discharge cannot be obtained in direct current discharge.

第二にTEM00は得られず、極端なマルチモードにな
ってしまう。
Second, TEM00 cannot be obtained, resulting in extreme multi-mode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では上記課題を解決するために、高周波放電でレ
ーザ励起を行う単管放電菅からなる気体レーザ装置にお
いて、 出力結合鏡上の出力結合係数が、共振器外のレーザビー
ム強度分布のガウシャン(Gaussian)分布と等
しくなるような分布を有することを特1r1.とするガ
スレーザ装置が、提供される。
In order to solve the above problems, the present invention provides a gas laser device consisting of a single-tube discharge tube that performs laser excitation using high-frequency discharge. Gaussian) distribution. A gas laser device is provided.

〔作用] 出力結合鏡の出力結合係数がガウシャン分布となってい
るので、レーザ発振器の出力ビームの分布がガウシャン
分布となり、そのまま加工用ビームとして使用できる。
[Operation] Since the output coupling coefficient of the output coupling mirror has a Gaussian distribution, the distribution of the output beam of the laser oscillator has a Gaussian distribution, and can be used as a processing beam as is.

〔実施例] 以下、本発明の一実施例を図面に基づいて説明する。〔Example] Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1回に本発明のガスレーザ装置の実施例を示す。図に
示すように、長さが短く断面が大きな単管放電菅1から
構成される。3は出力結合鏡、4は全反射鏡11は共振
器内レーザビーム、12は共振器外レーザビームである
In the first part, an embodiment of the gas laser device of the present invention will be shown. As shown in the figure, it is composed of a single tube discharge tube 1 that is short in length and large in cross section. 3 is an output coupling mirror, 4 is a total reflection mirror 11 for an intracavity laser beam, and 12 is an extracavity laser beam.

図に示したように誘電体放電管1の外部に電極13.1
4が設置されており、それらに高周波型rX15から高
周波高電圧が印加される。直流放電の場合と異なり、大
断面放電管であっても一様放電が得られる。
As shown in the figure, an electrode 13.1 is provided on the outside of the dielectric discharge tube 1.
4 are installed, and a high frequency high voltage is applied to them from a high frequency type rX15. Unlike the case of DC discharge, uniform discharge can be obtained even with a large-section discharge tube.

第2図に出力結合鏡の透過分布率が−様な場合のビーム
プロファイルの例を示す。図に打いて、Paはビームプ
ロファイル、3は出力結合鏡、Taは透過率分布である
。すなわち、透過率分布Taが−様な場合はビームプロ
ファイルPaは図に示すような極端なマルチモードで発
振する。
FIG. 2 shows an example of a beam profile when the output coupling mirror has a -like transmission distribution. In the figure, Pa is the beam profile, 3 is the output coupling mirror, and Ta is the transmittance distribution. That is, when the transmittance distribution Ta is -like, the beam profile Pa oscillates in an extreme multimode as shown in the figure.

第3図に出力結合鏡の透過分布率がガウシャン(Gau
ssian)分布の場合のビームプロファイルの例を示
す。図において、Pbはビームプロファイル、3は出力
結合鏡、Tbは透過率分布である。すなわち、透過率分
布Tbが図のようにガウシャン分布になっていると、ビ
ームプロファイルPbは図に示すようなガウシャン分布
となる。
Figure 3 shows that the transmission distribution rate of the output coupling mirror is Gaussian (Gausian).
An example of a beam profile in the case of a ssian) distribution is shown. In the figure, Pb is a beam profile, 3 is an output coupling mirror, and Tb is a transmittance distribution. That is, if the transmittance distribution Tb has a Gaussian distribution as shown in the figure, the beam profile Pb has a Gaussian distribution as shown in the figure.

このようにして作られたガウシャンビームであっても伝
搬特性は共振器内で作られたガウシャンビームと変わる
ことがないので通常のTEM00レーザビームの長所は
そのまま残る。
Even with the Gaussian beam created in this way, the propagation characteristics are the same as those of the Gaussian beam created within a resonator, so the advantages of the normal TEM00 laser beam remain.

ただし、このままではビーム径が大きすぎる場合には縮
小光学系でビーム径だけを任意の値まで縮小して使用す
ることができる。
However, if the beam diameter is too large as it is, the beam diameter can be reduced to an arbitrary value using a reduction optical system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、出力結合鏡の結合係数
をガウシャン分布としたので、共振器長の短い中段共振
器からTEM00モードに等価的な高出力レーザビーム
が得られる。また、装置形状が小さくなり、機構構造が
簡略化され、アラインメントが緩和される。
As explained above, in the present invention, since the coupling coefficient of the output coupling mirror is Gaussian distributed, a high-power laser beam equivalent to the TEM00 mode can be obtained from the middle stage resonator with a short resonator length. Additionally, the device size is reduced, the mechanical structure is simplified, and alignment is relaxed.

5. 7〜1 ■ 13、1 折り返し鏡 ・−−−−−・−電極 一共振器内レーザビーム光軸 ・−同外光軸 電極 ・・−・高周波電源5. 7-1 ■ 13, 1 folding mirror ・-----・-Electrode Laser beam optical axis within one cavity ・−External optical axis electrode ・・・−・High frequency power supply

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガスレーザ装置の構成図、第2図は出
力結合鏡の透過分布率が−様な場合のビームプロファイ
ルの例f示を図、 第3図は出力結合鏡の透過分布率がガウシャン分布であ
る場合のビームプロファイルの例を示す図、 第4図は従来技術による高出力TEM00レーザ発振器
の構造を示す図である。 上記出願人 ファナンク株式会社 代理人   弁理士  服部毅巖 ■、2・−一−−−−−−−−−・・−放電管3−−−
−−−−−−・−出力結合鏡 4−−−−−・−一−−−−−−−全反射鏡Paビー4
70口ファイル 3出力鮎今4免 Ta透帽)千 第2図 第1図 pbヒームプロフ?イル 3出力叶今鏡 Tb透過千分千
Fig. 1 is a configuration diagram of the gas laser device of the present invention, Fig. 2 shows an example of a beam profile when the transmission distribution ratio of the output coupling mirror is -, and Fig. 3 shows the transmission distribution ratio of the output coupling mirror. FIG. 4 is a diagram showing an example of a beam profile when is a Gaussian distribution. FIG. 4 is a diagram showing the structure of a high-power TEM00 laser oscillator according to the prior art. The above applicant Fananku Co., Ltd. Agent Patent attorney Takeshi Hattori■, 2・-1------------Discharge tube 3---
---------・- Output coupling mirror 4 --------・-1 --------- Total reflection mirror Pa Bee 4
70 mouth file 3 output Ayu now 4men Ta transparent hat) 1000th figure 2nd figure 1 pb heem profile? Il 3 output Kano now mirror Tb transmission 1000 minutes

Claims (2)

【特許請求の範囲】[Claims] (1)高周波放電でレーザ励起を行う単管放電菅からな
る気体レーザ装置において、 出力結合鏡上の出力結合係数に関しては、共振器外のレ
ーザビーム強度分布がガウシャン(Gaussian)
分布と等しくなるような分布を有することを特徴とする
ガスレーザ装置。
(1) In a gas laser device consisting of a single-tube discharge tube that excites the laser with high-frequency discharge, the output coupling coefficient on the output coupling mirror is such that the laser beam intensity distribution outside the resonator is Gaussian.
A gas laser device characterized by having a distribution equal to the distribution.
(2)外部にビーム系を縮小する縮小光学系を設けたこ
とを特徴とする特許請求の範囲第1項記載のレーザ発振
装置。
(2) The laser oscillation device according to claim 1, further comprising an external reduction optical system for reducing the beam system.
JP63050150A 1988-03-03 1988-03-03 Laser oscillating device Pending JPH021191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050150A JPH021191A (en) 1988-03-03 1988-03-03 Laser oscillating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050150A JPH021191A (en) 1988-03-03 1988-03-03 Laser oscillating device

Publications (1)

Publication Number Publication Date
JPH021191A true JPH021191A (en) 1990-01-05

Family

ID=12851158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050150A Pending JPH021191A (en) 1988-03-03 1988-03-03 Laser oscillating device

Country Status (1)

Country Link
JP (1) JPH021191A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174990A (en) * 1986-01-29 1987-07-31 Fanuc Ltd High-frequency excitation coaxial co2 laser
JPS62189781A (en) * 1986-02-17 1987-08-19 Kokuritsu Kogai Kenkyusho Laser resonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174990A (en) * 1986-01-29 1987-07-31 Fanuc Ltd High-frequency excitation coaxial co2 laser
JPS62189781A (en) * 1986-02-17 1987-08-19 Kokuritsu Kogai Kenkyusho Laser resonator

Similar Documents

Publication Publication Date Title
Alfrey Modeling of longitudinally pumped CW Ti: sapphire laser oscillators
CN105071206B (en) A kind of vortex laser based on laser medium center zero gain structure
JPH05218556A (en) Solid laser
CA2289695A1 (en) A single mode laser suitable for use in frequency multiplied applications and method
US4817096A (en) Multiple wavelength excimer laser
US5841801A (en) Double wavelength laser
JPH021191A (en) Laser oscillating device
US3641456A (en) Method and apparatus for producing high-power single-frequency radiation
JPH02267983A (en) Mode-locked solid-state laser
JPS6249683A (en) Gas laser device
JPH02281670A (en) High frequency excitation gas laser oscillation device
JPH0758379A (en) Solid laser device
JPH07235713A (en) Gas laser apparatus
Yokota et al. Relations and orthogonality properties for the generalized Gaussian beam functions
Mead et al. Single-mode operation of diode-pumped Nd: YAG lasers by pump-beam focusing
JP2000269572A (en) Fiber laser and optical amplifier
JPH06112577A (en) Solid-state laser
Kuziakov et al. A small-scale monomode carbon dioxide laser
JPH04206673A (en) Solid state laser device for exciting semiconductor laser
JP2009071203A (en) Waveguide laser oscillation apparatus
JPH05160480A (en) Laser diode pumping solid-state laser
Mani et al. Resonator mode structure
HODGES CO 2 laser-pumped Far Infrared(FIR) waveguide laser[Report for Nov. 1972- Mar. 1973]
JPH0770793B2 (en) Metal vapor laser device
JPH01166580A (en) Pulse laser device