JPH0211883B2 - - Google Patents

Info

Publication number
JPH0211883B2
JPH0211883B2 JP7439080A JP7439080A JPH0211883B2 JP H0211883 B2 JPH0211883 B2 JP H0211883B2 JP 7439080 A JP7439080 A JP 7439080A JP 7439080 A JP7439080 A JP 7439080A JP H0211883 B2 JPH0211883 B2 JP H0211883B2
Authority
JP
Japan
Prior art keywords
lens
object side
spherical aberration
becomes
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7439080A
Other languages
Japanese (ja)
Other versions
JPS572012A (en
Inventor
Shozo Ishama
Ryoko Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP7439080A priority Critical patent/JPS572012A/en
Publication of JPS572012A publication Critical patent/JPS572012A/en
Publication of JPH0211883B2 publication Critical patent/JPH0211883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、小型レンズシヤツタカメラ用の後
置絞りを持つ写真レンズ、特に普及機用の構成が
簡単でコンパクトな広角レンズに関する。 普及型の小型レンズシヤツタカメラにおいて
は、カメラへの装着を容易にするためと、レンズ
を含むカメラ全体およびレンズ自体をコンパクト
にするため、後置絞りを持つ広角レンズを使用す
るのが有利である。この種のレンズとして、普及
機用の簡単な構成を持つものとしてトリプレツト
型レンズがあり、その幾つかは公知である。(例
えば特公昭48−5494号、特公昭50−2807号等) しかし、これら公知のトリプレツト・レンズ
は、半画角27゜程度であり、より一層カメラのコ
ンパクト化を計るためには半画角を32゜程度に大
きくする必要がある。ところが、後置絞りを持つ
トリプレツト型レンズでこのように広角化した場
合、最大画角付近でのビネツテイングを小さく
し、最小開口においてケリを生じないようにする
ことは一般に困難である。 ビネツテイングを小さくする手段の1つは第1
レンズの口径を大きくすることであるが、これは
レンズのコンパクト化の目的に反するだけでな
く、トリプレツト型レンズのような簡単な構成の
光学系においては、拡大された第1レンズの周辺
部を通過する光線によつて発生する著しいコマフ
レアを除去することは不可能である。 この発明はトリプレツト型レンズを改良して、
上述のような困難を伴なわずに口径比F4.0程度の
明るさで、半画角32゜程度のビネツテイングの小
さいレンズを得ようとするものである。 すなわち、物体側から順に物体側に凸面を向け
た正のメニスカス単レンズ、負の両凹単レンズお
よび正の両凸単レンズを、互いに僅かの空気間隔
をおいて配置し、その像側に両凸レンズに近接し
て絞りを置いた光学系において、 f:全系の焦点距離 fi:物体側から第i番目のレンズの焦点距離 f1.2:物体側の2枚のレンズの合成焦点距離 di:物体側から第i番目の面間隔 Σd:第1面と第6面の面間隔 とするとき 0.005f<d4<0.015f (1) 0.23f<Σd<0.26f (2) 0.88f<f1<1.10f (3) −0.29f<f2<−0.25f (4) −0.61f<f1.2<−0.44f (5) の条件を満すことによつてビネツテイングの小さ
いトリプレツト型の広角レンズを得ることが出来
たものである。 ビネツテイングを小にするためには、レンズ系
の合計厚みΣdとd4が小さいことが必要であり、
条件(1)(2)はこれに関するものである。d4が条件(1)
の上限より大となれば、周辺画角でのビネツテイ
ングが大きくなり、更にレンズバツクが長くなつ
てレンズがコンパクトにならなくなる。d4は出来
るだけ小さいことが望ましいが、有効なFナンバ
ーに相当する光束が通過するだけのレンズ面積は
必要であることは云うまでもない。F4程度の明
るさに対応する光束のために下限値の制限が生ず
る。 Σdが条件(2)の上限値より大となると周辺面角
でのビネツテイングが大きくなり、更にレンズが
コンパクトでなくなる。一方、下限より小となれ
ばビネツテイングは小さくなり、レンズ系はコン
パクトになるが、ペツバール和及び3次と高次の
補正過剰の球面収差が増加し、球面収差曲線の曲
りが著しく大きくなり、他の条件によつて補正す
ることが出来なくなる。 この発明のレンズでは、半画角が32゜にも及ぶ
広角レンズであるため、条件(1)(2)を満足するだけ
で周辺画角のビネツテイングを小にすることは出
来ない。このため、第1レンズの屈折力を弱く
し、第2レンズの屈折力を強くし、第1レンズと
第2レンズの合成系の負の屈折力を強くすること
で、周辺画角の外側光線を負の屈折力で大きく曲
げ、周辺画角でのビネツテイングを小さくしてい
る。 すなわち、f1が条件(3)の下限値より小となる
か、f2が条件(4)の下限値より小となるか、または
f1.2が条件(5)の下限値より小となると、負の屈折
力が小となりすぎ周辺画角のビネツテイングを小
とすることが出来ない。更に全系のペツバール和
が増大し、像面湾曲が著しく大きくなる。逆に
f1、f2、f1.2がそれぞれ条件(3)(4)(5)の上限値より大
となると、負の屈折力が強まり、周辺画角でのビ
ネツテイングを非常に小さくすることが出来る
が、バツクフオーカスが長くなり、レンズをコン
パクトにすることが出来なくなる。更にペツバー
ル和が小さくなりすぎ、補正過剰の球面収差が著
しく増大する。 上記の条件を満しながら、全体としてバランス
のとれた収差補正を行うためには、更に次の条件
を満すことが望ましい。 ri:物体側から第i番目のレンズ面の曲率半径 ni:物体側から第i番目のレンズ材料の屈折率 とするとき 0.25f<r1<0.31f (6) −0.70f<r3<−0.50f (7) 0.25f<r4<0.34f (8) −0.58f<r6<−0.42f (9) 0.09f<d1<0.13f (10) 0.26f<f3<0.32f (11) 1.7<n1 (12) 1.65<n2 (13) 1.7<n3 (14) 条件(6)(7)(8)(9)は球面収差とペツバール和を良好
に保つために必要な条件である。 r1が条件(6)の上限値より大となるか、r6が条件
(9)の下限値より小となると、補正不足の高次の球
面収差の発生量が小となり、全系の球面収差曲線
は補正過剰の高次の球面収差のため、大きな曲り
を残すようになる。逆にr1が条件(6)の下限値より
小となるかr6が条件(9)の上限値より大となると、
球面収差が著しく補正不足になり、全系として球
面収差の補正が困難になる。 r3が条件(7)の上限値より大となると、他の手段
で補正不可能な補正過剰の高次球面収差が発生す
る。逆に下限値より小となると、負の非点収差が
減つて像面が補正不足になる。 r4が条件(8)の上限値より大となると、球面収差
が補正不足になり、逆に下限値より小となると周
辺画角において著しいコマフレアが発生する。 d1が条件(10)の上限値より大となると周辺画角で
のビネツテイングが大となり、更に著しいコマフ
レアが発生する。逆に下限値より小となるとペツ
バール和が小になりすぎるとともに球面収差曲線
の曲がりが大となる。 f3が条件(11)の上限値より大となると球面収差曲
線の曲がりが大となり、下限値より小となると必
然的に前述のr6が大きくなるので球面収差が補正
不足になり、更に大きなコマフレアーが発生す
る。 条件(12)(13)(14)はペツバール和、球面収差を良
好に保つとともにコマフレアの発生を押さえるの
に必要な条件である。n1、n3が条件(12)(14)の下限
値より小となると、前述のr1、r6が強くなり、球
面収差は補正不足になるとともにペツバール和が
増大する。ペツバール和を減少させるためにn2
条件(13)の下限値より小とすると前述のr4が小と
なる結果を招き、周辺画角で大きなコマフレアが
発生する。 以下、この発明の実施例を示す。 表中の記号は下記の通りとする。 fB:バツクフオーカス L:最終レンズ面から絞りまでの距離 W:半画角 実施例 1
The present invention relates to a photographic lens with a rear aperture for small lens shutter cameras, and particularly to a wide-angle lens with a simple and compact configuration for use in popular cameras. For popular compact lens shutter cameras, it is advantageous to use a wide-angle lens with a rear diaphragm in order to make it easier to attach to the camera and to make the entire camera including the lens and the lens itself more compact. be. As this type of lens, there is a triplet type lens which has a simple structure for use in popular machines, and some of these lenses are well known. (For example, Japanese Patent Publication No. 48-5494, Japanese Patent Publication No. 50-2807, etc.) However, these known triplet lenses have a half angle of view of about 27 degrees, and in order to make the camera even more compact, it is necessary to It is necessary to increase the angle to about 32°. However, when a triplet lens with a rear diaphragm is used to widen the angle of view, it is generally difficult to reduce vignetting near the maximum angle of view and prevent sharpening at the minimum aperture. One of the ways to reduce vignetting is to
Increasing the aperture of the lens not only goes against the objective of making the lens more compact, but also makes it difficult to increase the periphery of the enlarged first lens in an optical system with a simple configuration such as a triplet lens. It is impossible to eliminate the significant coma flare caused by the passing light rays. This invention improves the triplet type lens,
The objective is to obtain a lens with a brightness of an aperture ratio of about F4.0, a half angle of view of about 32 degrees, and small vignetting without the above-mentioned difficulties. In other words, a positive meniscus single lens, a negative double-concave single lens, and a positive double-convex single lens with their convex surfaces facing the object side are arranged in order from the object side, with a slight air gap between them, and both lenses are placed on the image side. In an optical system with an aperture placed close to a convex lens, f: Focal length of the entire system f i : Focal length of the i-th lens from the object side f 1.2 : Combined focal length of the two lenses on the object side d i : Distance between the i-th surface from the object side Σd: Distance between the first and sixth surfaces 0.005f<d 4 <0.015f (1) 0.23f<Σd<0.26f (2) 0.88f<f 1 <1.10f (3) −0.29f<f 2 <−0.25f (4) −0.61f<f 1.2 <−0.44f (5) A triplet wide-angle lens with small vignetting This is what I was able to obtain. In order to reduce vignetting, the total thickness of the lens system Σd and d4 must be small,
Conditions (1) and (2) relate to this. d 4 is the condition (1)
If the value is larger than the upper limit, vignetting at the peripheral angle of view will increase, and the lens back will become longer, making it difficult to make the lens compact. Although it is desirable that d 4 be as small as possible, it goes without saying that the lens area must be large enough for the light beam corresponding to the effective F-number to pass through. The lower limit value arises because of the luminous flux corresponding to a brightness of about F4 . If Σd is larger than the upper limit of condition (2), vignetting at the peripheral surface angle becomes large, and the lens becomes less compact. On the other hand, if it is smaller than the lower limit, the vignetting will be smaller and the lens system will be more compact, but the Petzval sum and over-corrected spherical aberration of third and higher orders will increase, the curvature of the spherical aberration curve will become significantly large, and other It becomes impossible to correct it depending on the conditions. Since the lens of this invention is a wide-angle lens with a half angle of view of as much as 32 degrees, it is not possible to reduce the vignetting of the peripheral angle of view just by satisfying conditions (1) and (2). Therefore, by weakening the refractive power of the first lens, increasing the refractive power of the second lens, and increasing the negative refractive power of the composite system of the first lens and the second lens, the outer rays of the peripheral angle of view are is bent significantly with negative refractive power to reduce vignetting at peripheral angles of view. That is, f 1 is smaller than the lower limit of condition (3), f 2 is smaller than the lower limit of condition (4), or
When f 1.2 is smaller than the lower limit of condition (5), the negative refractive power becomes too small, making it impossible to reduce the vignetting of the peripheral angle of view. Furthermore, the Petzval sum of the entire system increases, and the curvature of field becomes significantly large. vice versa
When f 1 , f 2 , and f 1.2 are each larger than the upper limit values of conditions (3), (4), and (5), the negative refractive power becomes stronger and vignetting at the peripheral angle of view can be made very small. , the back focus becomes long and it becomes impossible to make the lens compact. Furthermore, the Petzval sum becomes too small, and the overcorrected spherical aberration increases significantly. In order to perform aberration correction that is well-balanced as a whole while satisfying the above conditions, it is desirable to further satisfy the following conditions. r i : Radius of curvature of the i-th lens surface from the object side n i : Refractive index of the i-th lens material from the object side 0.25f<r 1 <0.31f (6) −0.70f<r 3 <−0.50f (7) 0.25f<r 4 <0.34f (8) −0.58f<r 6 <−0.42f (9) 0.09f<d 1 <0.13f (10) 0.26f<f 3 <0.32f (11) 1.7<n 1 (12) 1.65<n 2 (13) 1.7<n 3 (14) Conditions (6)(7)(8)(9) are necessary to maintain good spherical aberration and Petzval sum. These are the conditions. r 1 is greater than the upper limit of condition (6) or r 6 is the condition
If it is smaller than the lower limit of (9), the amount of under-corrected high-order spherical aberration will be small, and the spherical aberration curve of the entire system will remain largely curved due to over-corrected high-order spherical aberration. Become. Conversely, if r 1 becomes smaller than the lower limit of condition (6) or r 6 becomes larger than the upper limit of condition (9), then
Spherical aberration is significantly undercorrected, making it difficult to correct spherical aberration as a whole system. When r 3 becomes larger than the upper limit of condition (7), overcorrected higher-order spherical aberration that cannot be corrected by other means occurs. Conversely, when the value is smaller than the lower limit, negative astigmatism is reduced and the image plane becomes under-corrected. If r 4 is larger than the upper limit of condition (8), spherical aberration will be undercorrected, and if r 4 is smaller than the lower limit, significant coma flare will occur at the peripheral angle of view. When d 1 becomes larger than the upper limit of condition (10), vignetting at the peripheral angle of view becomes large, and even more significant coma flare occurs. Conversely, if it is smaller than the lower limit, the Petzval sum becomes too small and the curvature of the spherical aberration curve becomes large. If f 3 is larger than the upper limit of condition (11), the curve of the spherical aberration curve will become large, and if f 3 is smaller than the lower limit, the aforementioned r 6 will inevitably become larger, resulting in under-correction of spherical aberration, and even larger curves. Coma flare occurs. Conditions (12), (13), and (14) are necessary to maintain good Petzval sum and spherical aberration, and to suppress the occurrence of coma flare. When n 1 and n 3 become smaller than the lower limit values of conditions (12) and (14), the aforementioned r 1 and r 6 become strong, spherical aberration becomes insufficiently corrected, and the Petzval sum increases. If n 2 is made smaller than the lower limit of condition (13) in order to reduce the Petzval sum, the aforementioned r 4 will become small, and large coma flare will occur at the peripheral angle of view. Examples of this invention will be shown below. The symbols in the table are as follows. f B : Back focus L: Distance from the final lens surface to the aperture W: Half angle of view example 1

【表】 第1実施例の球面収差、非点収差歪曲収差及
び、横収差の曲線図を、第2図に示す。 実施例 2
[Table] A curve diagram of spherical aberration, astigmatic distortion aberration, and lateral aberration of the first example is shown in FIG. Example 2

【表】 第2実施例の球面収差、非点収差、歪曲収差、
及び横収差の曲線図を、第3図に示す。 実施例 3
[Table] Spherical aberration, astigmatism, distortion aberration of the second example,
A curve diagram of lateral aberration and lateral aberration is shown in FIG. Example 3

【表】 第3実施例の球面収差、非点収差、歪曲収差、
及び横収差の曲線図を第4図に示す。 実施例 4
[Table] Spherical aberration, astigmatism, distortion aberration of the third example,
FIG. 4 shows a curve diagram of lateral aberration and lateral aberration. Example 4

【表】【table】

【表】 第4実施例の球面収差、非点収差、歪曲収差、
及び横収差の曲線図を、第5図に示す。 実施例 5
[Table] Spherical aberration, astigmatism, distortion aberration of the fourth example,
FIG. 5 shows a curve diagram of lateral aberration and lateral aberration. Example 5

【表】【table】

【表】 第5実施例の球面収差、非点収差、歪曲収差、
及び横収差の曲線図を、第6図に示す。 第2図ないし第6図において、横収差曲線の横
軸は絞り位置における光線の入射高を示すが、総
ての実施例において周辺画角までビネツテイング
が小さいことが示されている。
[Table] Spherical aberration, astigmatism, and distortion of the fifth example,
FIG. 6 shows a curve diagram of lateral aberration and lateral aberration. In FIGS. 2 to 6, the horizontal axis of the lateral aberration curve indicates the incident height of the light ray at the aperture position, and it is shown that vignetting is small up to the peripheral angle of view in all the examples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のレンズの第1実施例の断面
図、第2図ないし第6図はそれぞれ第1実施例な
いし第5実施例の収差曲線図である。
FIG. 1 is a sectional view of a first embodiment of the lens of the present invention, and FIGS. 2 to 6 are aberration curve diagrams of the first to fifth embodiments, respectively.

Claims (1)

【特許請求の範囲】 1 物体側から順に物体側に凸面を向けた正のメ
ニスカス単レンズ、負の両凹単レンズおよび正の
両凸単レンズを、互いに僅かの空気間隔をおいて
配置し、その像側にレンズに近接して絞りを置い
た光学系において f:全系の焦点距離 fi:物体側から第i番目のレンズの焦点距離 f1.2:物体側の2枚のレンズの合成焦点距離 di:物体側から第i番目の面間隔 Σd:第1面と第6面の面間隔 とするとき 0.005f<d4<0.015f 0.23f<Σd<0.26f 0.88f<f1<1.10f −0.29f<f2<−0.25f −0.61f<f1.2<−0.44f の条件を満すことを特徴とする後置絞りを持つト
リプレツト・レンズ。
[Claims] 1. A positive meniscus single lens, a negative double-concave single lens, and a positive double-convex single lens, each having a convex surface facing the object side, are arranged in order from the object side with a slight air distance from each other, In an optical system with an aperture placed close to the lens on the image side, f: Focal length of the entire system f i : Focal length of the i-th lens from the object side f 1.2 : Combined focus of the two lenses on the object side Distance d i : Distance between the i-th surface from the object side Σd: Distance between the first and sixth surfaces 0.005f<d 4 <0.015f 0.23f<Σd<0.26f 0.88f<f 1 <1.10 A triplet lens with a rear diaphragm characterized by satisfying the following conditions: f −0.29f<f 2 <−0.25f −0.61f<f 1.2 <−0.44f.
JP7439080A 1980-06-04 1980-06-04 Triplet lens having last diaphragm Granted JPS572012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7439080A JPS572012A (en) 1980-06-04 1980-06-04 Triplet lens having last diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7439080A JPS572012A (en) 1980-06-04 1980-06-04 Triplet lens having last diaphragm

Publications (2)

Publication Number Publication Date
JPS572012A JPS572012A (en) 1982-01-07
JPH0211883B2 true JPH0211883B2 (en) 1990-03-16

Family

ID=13545795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7439080A Granted JPS572012A (en) 1980-06-04 1980-06-04 Triplet lens having last diaphragm

Country Status (1)

Country Link
JP (1) JPS572012A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933416A (en) * 1982-08-20 1984-02-23 Olympus Optical Co Ltd Adapter lens for photographing
US4542961A (en) * 1983-03-03 1985-09-24 Canon Kabushiki Kaisha Triplet type objective
JPS61134720A (en) * 1984-12-05 1986-06-21 Nitto Kogaku Kk Lens for facsimile
JPH0792542B2 (en) * 1986-02-07 1995-10-09 ミノルタ株式会社 Triplet lens system after diaphragm
JP2683895B2 (en) * 1987-01-22 1997-12-03 旭光学工業株式会社 Copying lens
JP2808628B2 (en) * 1988-11-29 1998-10-08 株式会社ニコン Triplet lens with behind aperture

Also Published As

Publication number Publication date
JPS572012A (en) 1982-01-07

Similar Documents

Publication Publication Date Title
JP2991524B2 (en) Wide-angle lens
JPH01133016A (en) Triplet lens system having stop at rear position
JP4007468B2 (en) Wide-angle lens with long back focus
JP3925748B2 (en) Small lens
JPH0412448B2 (en)
US5790324A (en) Wide-angle photographic lens system
JP3295027B2 (en) Retrofocus type large aperture ratio wide-angle lens
JP3005905B2 (en) Shooting lens
US4676607A (en) Behind stop lens
JPH0211883B2 (en)
JP3540349B2 (en) Wide angle lens with long back focus
US4606615A (en) Behind stop lens
JP2002250863A (en) Retrofocus type imaging lens
JPS5965820A (en) Telephoto lens system
JPH0677102B2 (en) Wide-angle lens
JPS6048014B2 (en) wide field eyepiece
US4210388A (en) Large-aperture wide-angle lens system for photographic cameras
JPH07333494A (en) Photographing lens
JPS58126512A (en) Large-aperture telephoto lens
US6233101B1 (en) Modified gaussian lens
US4550987A (en) Small size telephoto lens
US4836665A (en) Objective lens
JPH0718972B2 (en) Large aperture ratio photographic lens
JPH03249719A (en) Compact photographic lens
JP3281583B2 (en) Retro-focus wide-angle lens