JPH0211848B2 - - Google Patents

Info

Publication number
JPH0211848B2
JPH0211848B2 JP55131956A JP13195680A JPH0211848B2 JP H0211848 B2 JPH0211848 B2 JP H0211848B2 JP 55131956 A JP55131956 A JP 55131956A JP 13195680 A JP13195680 A JP 13195680A JP H0211848 B2 JPH0211848 B2 JP H0211848B2
Authority
JP
Japan
Prior art keywords
wavelength
sample
illumination light
light
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131956A
Other languages
Japanese (ja)
Other versions
JPS5756724A (en
Inventor
Osamu Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP55131956A priority Critical patent/JPS5756724A/en
Publication of JPS5756724A publication Critical patent/JPS5756724A/en
Publication of JPH0211848B2 publication Critical patent/JPH0211848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0251Colorimeters making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 本発明は螢光を発する試料に適した測色装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color measuring device suitable for samples that emit fluorescence.

試料の色を測定するには試料の分光反射率の測
定が基本となる。分光反射率から三原色夫々の刺
激値を算出すればその試料の色彩が数字によつて
表示できる。本発明は上述した測色における分光
反射率の測定を行う部分に関するものである。
The basic method of measuring the color of a sample is to measure the spectral reflectance of the sample. By calculating the stimulation value of each of the three primary colors from the spectral reflectance, the color of the sample can be displayed numerically. The present invention relates to a part that measures spectral reflectance in the above-mentioned colorimetry.

測色における分光反射率の測定は通常、標準白
板を用い、波長λの光で標準白板(例えば
BaSO4粉末をプレスした白板)と試料とを照明
し、、標準白板の反射光強度に対する試料の反射
光強度の比Rt(λ)を波長λを変えて求めるよう
にしている。Rt(λ)を分光反射ラジアンスフア
クターと云う。このRt(λ)に標準白板の絶対分
光反射率を掛ければ試料の絶対分光反射率が求ま
る。所で試料が螢光を発する物質である場合上述
したようにして得られた分光反射率Rt(λ)は一
般的に真の分光反射ラジアンスフアクターRt
(λ)と螢光ラジアンスフアクターRf(λ)との
和、 Rt(λ)=Rr(λ)+Rf(λ) …(1) で表わされる。こゝでラジアンスフアクターと云
うのは試料から来た光の強度を標準白板から来た
光の強度で割つたものであり、標準白板は全然螢
光を発せず、標準白板から来る光は反射光のみで
あるが、他方試料から来る光は一般に反射光と螢
光とよりなつているので夫々についてラジアンス
フアクターが存在する。上式でλは照明光の波長
であり、一般に螢光は照明光と同波長かそれより
長波長側に現れる。ラマン線も測色においては螢
光と同じに扱うべきものでこれは照明光より短波
長側にも現れる。従つて照明光と同波長の光につ
いての螢光ラジアンスフアクターは必ずしも0で
はない。螢光性試料を波長λの光で照明したと
き、試料の見掛けの反射光のスペクトルを一般的
に画くと第1図のようになる。この図でλは照明
光の中心波長であり、λの所で高いピークPが出
ているのはもちろん試料による反射のためであ
る。このピークの下にλの両側に分布している低
い山Fが螢光を表わしている。この螢光の山Fを
波長λにおけるピークの所で点線のように平らに
つなぐと、これは試料を波長λの光で照明したと
きの螢光スペクトルであり、このスペクトル上に
乗つたピークPの高さHが波長λにおける真の反
射光である。しかし従来の測色では照明光波長λ
における見掛けの反射光を真の反射光成分と螢光
成分とに分けて測定することができなかつた。H
は前記(1)式で真の分光反射ラジアンスフアクター
Rr(λ)を与えるものであり、=H′−Hが螢光
ラジアンスフアクターRf(λ)を与えるものであ
る。
The measurement of spectral reflectance in colorimetry usually uses a standard white plate, and a standard white plate (e.g.
A white plate (pressed BaSO 4 powder) and the sample are illuminated, and the ratio Rt(λ) of the intensity of reflected light from the sample to the intensity of reflected light from the standard white plate is determined by changing the wavelength λ. Rt (λ) is called the spectral reflection radiance factor. By multiplying this Rt (λ) by the absolute spectral reflectance of the standard white plate, the absolute spectral reflectance of the sample can be determined. However, if the sample is a substance that emits fluorescence, the spectral reflectance Rt (λ) obtained as described above is generally the true spectral reflection radiance factor Rt.
(λ) and the fluorescence radiance factor Rf (λ), Rt (λ) = Rr (λ) + Rf (λ) (1). Here, the radiance factor is the intensity of the light coming from the sample divided by the intensity of the light coming from the standard white plate.The standard white plate does not emit any fluorescence, and the light coming from the standard white plate is reflected. However, since the light coming from the sample is generally composed of reflected light and fluorescent light, there is a radiance factor for each. In the above equation, λ is the wavelength of the illumination light, and fluorescent light generally appears at the same wavelength as the illumination light or at a longer wavelength. Raman rays should be treated in the same way as fluorescence in colorimetry, and they also appear on the shorter wavelength side than illumination light. Therefore, the fluorescence radiance factor for light having the same wavelength as the illumination light is not necessarily zero. When a fluorescent sample is illuminated with light of wavelength λ, the spectrum of the apparent reflected light from the sample is generally drawn as shown in Figure 1. In this figure, λ is the center wavelength of the illumination light, and the reason why a high peak P appears at λ is of course due to reflection by the sample. Below this peak, low peaks F distributed on both sides of λ represent fluorescence. If we connect these fluorescence peaks F flatly like a dotted line at the peak at wavelength λ, this is the fluorescence spectrum when the sample is illuminated with light at wavelength λ, and the peak P on this spectrum is The height H of is the true reflected light at wavelength λ. However, in conventional colorimetry, the illumination light wavelength λ
It was not possible to measure the apparent reflected light separately into the true reflected light component and the fluorescent light component. H
is the true spectral reflection radiance factor in equation (1) above.
Rr(λ), and =H'-H gives the fluorescence radiance factor Rf(λ).

本発明は試料の見掛けの分光反射光を真の分光
反射光と螢光とに分けて測定できる測色装置を提
供することを目的としてなされた。試料の色はそ
の試料の分光反射率と照明光のスペクトル分布と
を対応波長同士掛けることによつて得られる反射
光のスペクトル分布として求められるが、試料が
螢光を発する場合、螢光は照明光のスペクトル分
布によつて異なるから、見掛けの分光反射率と照
明光源のスペクトル分布とを対応波長同士掛算し
ても試料の色の正しいスペクトル分布は求まら
ず、実際の色と見掛けの分光反射率特性から予想
した色とが異なる場合が生ずる。本発明によれば
試料が螢光を発する物か否かが明らかになると共
に見掛けの反射光が真の反射光と螢光とに分離さ
れるので、螢光を発する試料に対して任意の照明
光の下での実際の色を予測可能とするデータが得
られる。
The object of the present invention is to provide a colorimeter that can separate and measure the apparent spectral reflection of a sample into the true spectral reflection and fluorescence. The color of a sample can be determined as the spectral distribution of reflected light obtained by multiplying the spectral reflectance of the sample and the spectral distribution of illumination light by the corresponding wavelengths, but if the sample emits fluorescence, the fluorescence is Since it depends on the spectral distribution of light, multiplying the apparent spectral reflectance and the spectral distribution of the illumination light source by the corresponding wavelengths will not yield the correct spectral distribution of the sample color, but rather the actual color and apparent spectral distribution. There may be cases where the color is different from the color expected from the reflectance characteristics. According to the present invention, it becomes clear whether a sample emits fluorescent light or not, and the apparent reflected light is separated into true reflected light and fluorescent light. This provides data that allows us to predict the actual color under light.

第2図は本発明の一実施例装置を示す。M1は
試料に任意波長の単色光を照射するための照明光
分光器、M2は試料からの反射光を分光する反射
光分光器、Iは積分球である。照明光分光器M1
から出た光は積分球Iの内面に入射せしめられ
る。積分球の上記照明光入射点と異なる位置に窓
wがあつてそこに標準白板W或は試料Smが置か
れる。積分球の窓wと対向する位置に光取出し孔
hがあり、そこから出た光が反射光分光器M2に
入射せしめられる。反射光分光器M2においてS
2は入射スリツトであり、Dはフオトダイオード
アレーのような多チヤンネル測光素子、G2は凹
面回折格子で、入口スリツトS2から入射した光
束はG2で反射回折したのち測光素子Dの受光面
上にスペクトル像が形成される。照明光分光器M
1は紫外域の適当な波長例えば300nmから可視域
の長波長端800nmまで10nm飛びに波長走査が行
われる。測色は可視域だけの問題であるが、本発
明は螢光を発する試料をも対象としているので日
常的な光源例えば太陽光等に含まれていて可視域
に螢光を生ぜしめ得る紫外域の光も照明光として
無視できないから照明光分光器は紫外域から赤色
端の波長まで走査するようにしてある。多チヤン
ネル測光素子Dにおいては素子D上に形成される
スペクトル像から300nm以上10nm毎の位置の単
位素子からの出力が読出せるようになつている。
測光素子D上で300nmの光が入射している単位素
子を起点にこれを0番地とし、10nm飛びに1,
2,3…と番地付けをする。もつとも一つの番地
でも具体的には互に隣接する数個の単位素子が含
まれ、その数個の単位素子の出力を読出しそれら
の和を以てその番地の出力とする。この数個の単
位素子の合計幅が反射光分光器M2の出射スリツ
ト幅に相当する。照明光分光器M1で飛び飛びに
波長走査を行う場合の波長間隔は反射光分光器M
2の上述した出射スリツト相当幅に対する波長幅
より広い波長幅にとつてあり、更にこの出射スリ
ツト相当幅に比し照明光分光器M1の出射スリツ
トS1の波長幅は反射光分光器の一単位素子幅に
相当する波長幅より狭く設定される。多チヤンネ
ル測光素子として約500個の単位素子よりなるも
のを使用する場合、300nmから800nmまで10nm
飛びで51番地あるから番地間隔は10単位素子分で
あり、一番地を構成する単位素子数は10個より少
なくこの実施例では3個に設定してある。
FIG. 2 shows an embodiment of the present invention. M1 is an illumination light spectrometer for irradiating a sample with monochromatic light of an arbitrary wavelength, M2 is a reflected light spectrometer for separating light reflected from the sample, and I is an integrating sphere. Illumination light spectrometer M1
The light emitted from the sphere is made to enter the inner surface of the integrating sphere I. A window w is provided at a position different from the illumination light incident point on the integrating sphere, and the standard white plate W or the sample Sm is placed there. There is a light extraction hole h at a position facing the window w of the integrating sphere, and the light emitted from the hole is made to enter the reflected light spectrometer M2. S in the reflected light spectrometer M2
2 is an entrance slit, D is a multi-channel photometric element such as a photodiode array, and G2 is a concave diffraction grating.The light beam incident from the entrance slit S2 is reflected and diffracted by G2, and then a spectrum is formed on the light receiving surface of the photometric element D. An image is formed. Illumination light spectrometer M
1, wavelength scanning is performed in steps of 10 nm from an appropriate wavelength in the ultraviolet region, for example 300 nm, to the long wavelength end of 800 nm in the visible region. Color measurement is a problem only in the visible range, but since the present invention also targets samples that emit fluorescence, it is possible to measure colors in the ultraviolet range, which is contained in everyday light sources such as sunlight and can cause fluorescence in the visible range. Since this light cannot be ignored as illumination light, the illumination light spectrometer is designed to scan from the ultraviolet region to wavelengths at the red end. In the multi-channel photometric element D, outputs from unit elements at positions of 300 nm or more every 10 nm can be read from the spectral image formed on the element D.
Starting from the unit element on which 300 nm light is incident on the photometric element D, this is set as address 0, and 1,
Number them 2, 3, etc. Specifically, even one address includes several unit elements adjacent to each other, and the outputs of the several unit elements are read out and the sum thereof is used as the output of that address. The total width of these several unit elements corresponds to the output slit width of the reflected light spectrometer M2. When performing wavelength scanning intermittently with the illumination light spectrometer M1, the wavelength interval is the same as that of the reflected light spectrometer M.
The wavelength width of the output slit S1 of the illumination light spectrometer M1 is wider than the wavelength width corresponding to the output slit width described above in 2. It is set narrower than the wavelength width corresponding to the width. When using a multi-channel photometric element consisting of approximately 500 unit elements, the wavelength range is 10nm from 300nm to 800nm.
Since there are 51 consecutive addresses, the address interval is 10 unit elements, and the number of unit elements constituting the first address is less than 10, and is set to 3 in this embodiment.

Comは制御回路で次のような動作を行う。積
分球Iの窓wに試料Smをセツトして照明光分光
器M1の波長走査を行い、M1の出力波長がλの
とき、測光素子Dの波長λに対応するアドレスの
出力を第1メモリm1の波長λに対応するアドレ
スに記憶させ、更に測光素子上で波長λに対応す
るアドレスを除きすべてのアドレスにおける出力
を読出して第2のメモリm2の波長λに対応させ
たアドレスに記憶させる。この動作を照明光分光
器M1の波長走査過程で各波長毎に行う。また積
分球Iの窓wに標準白板を置いたとき、照明光分
光器M1の出力光波長λのとき測光素子Dのλに
対応するアドレスの出力を第3メモリm3に記憶
させる。この動作ももちろん照明光分光器M1の
波長走査過程の各波長毎に行われる。この動作は
試料測定の前に一度行つて第3メモリm3にデー
タを記憶させておけば光源が変化せぬ限り一試料
毎に行う必要はない。以上の動作で第1メモリm
1には第1図のH′のデータが記憶され、第2メ
モリm2には第1図の螢光の山Fの螢光強度のデ
ータが記憶されている。
Com is a control circuit that performs the following operations. A sample Sm is set in the window w of the integrating sphere I, and wavelength scanning is performed by the illumination light spectrometer M1. When the output wavelength of M1 is λ, the output of the address corresponding to the wavelength λ of the photometric element D is stored in the first memory m1. Further, the outputs at all addresses except for the address corresponding to the wavelength λ are read out on the photometric element and stored in the address corresponding to the wavelength λ of the second memory m2. This operation is performed for each wavelength in the wavelength scanning process of the illumination light spectrometer M1. Further, when a standard white plate is placed on the window w of the integrating sphere I, when the output light wavelength of the illumination light spectrometer M1 is λ, the output of the address corresponding to λ of the photometric element D is stored in the third memory m3. This operation is of course performed for each wavelength in the wavelength scanning process of the illumination light spectrometer M1. If this operation is performed once before sample measurement and the data is stored in the third memory m3, it is not necessary to perform it for each sample unless the light source changes. With the above operation, the first memory m
1 stores the data of H' in FIG. 1, and the second memory m2 stores data on the fluorescence intensity of the fluorescence peak F in FIG.

制御回路Comは次に下記の演算動作を行う。
第2メモリm2から照明光波長λにおける螢光の
データを読出し、それを3で割つた上で更に第3
メモリm3の波長λに対応するアドレスのデータ
即ち標準白板の波長λの反射光強度で割算する。
3で割るのはこの実施例では測光素子D上の3個
の単位素子を以つて一アドレスとしているので3
個の単位素子の出力の平均を採る意味であり、第
3メモリm3のデータは3で割算しないのは標準
白板は螢光がなく、反射光分光器の出射スリツト
相当波長幅が測光素子Dの単位素子3個分あつて
も、反射光の波長幅は照明光分光器M1の出力光
の波長幅と同じで測光素子D上では一単位素子分
の幅内に充分収まるようにしたからである。上述
割算結果をA(μ)とする(μは螢光の波長と照
明光波長との差で10nmを1とする)。まず内挿計
算を行う。第1図の螢光の山Fを3次式で近似す
ることにして、 A(μ)=aμ3+bμ2+cμ+d とおき、μは波長λのとき0で10nmを1として
いるからμに−2,−1,1,2を代入したとき
のF(μ)の値として波長λの前後10nm飛びの各
2点、第1図でλ−2,λ−1,λ+1,λ+2
の計4点のA(μ)の値を用い、 A(−2)=−8a+4b−2c+d A(−1)=−a+b−c+d A(+1)=a+b+c+d A(+2)=8a+4b+2c+d をa〜dについて解くと、波長λにおける螢光成
分即ち螢光分光ラジアンスフアクターRf(λ)は
μ=0としてdによつて与えられる。なお内挿の
方法は上述した3次式の方法に限定されない。次
に第1メモリm1から波長λに対応するデータを
読出し、第3メモリm3の波長λに対応するデー
タで割算して見掛けの分光反射ラジアンスフアク
ターRf(λ)を求めこれから上記dを3倍して引
算すると真の分光反射ラジアンスフアクターRr
(λ)が求まる。dを3倍して引算するのは第1
メモリのデータは波長λの真の反射成分と測光素
子Dの3個の単位素子にまたがつた螢光成分との
和であり、上述dは測光素子の単位素子1個分の
分光螢光ラジアンスフアクターだからである。
The control circuit Com then performs the following arithmetic operation.
Read the fluorescence data at the illumination light wavelength λ from the second memory m2, divide it by 3, and then read out the fluorescence data at the illumination light wavelength λ.
It is divided by the data of the address corresponding to the wavelength λ of the memory m3, that is, the intensity of the reflected light of the wavelength λ of the standard white board.
The reason for dividing by 3 is that in this embodiment, three unit elements on the photometric element D constitute one address.
This means taking the average of the outputs of the unit elements, and the reason why the data in the third memory m3 is not divided by 3 is because the standard white plate has no fluorescence, and the wavelength width equivalent to the output slit of the reflected light spectrometer is the same as that of the photometric element D. This is because even if there are three unit elements, the wavelength width of the reflected light is the same as the wavelength width of the output light of the illumination light spectrometer M1, and on the photometric element D, it is well within the width of one unit element. be. Let the above-mentioned division result be A(μ) (μ is the difference between the wavelength of the fluorescent light and the wavelength of the illumination light, and 10 nm is taken as 1). First, perform interpolation calculations. The mountain of fluorescence F in Fig. 1 is approximated by a cubic equation, and we set A(μ) = aμ 3 +bμ 2 +cμ+d, where μ is 0 when the wavelength is λ and 1 when 10 nm, so μ is - The value of F (μ) when substituting 2, -1, 1, 2 is 2 points each 10 nm before and after the wavelength λ, λ-2, λ-1, λ+1, λ+2 in Figure 1.
Using the values of A(μ) for a total of four points, A(-2)=-8a+4b-2c+d A(-1)=-a+b-c+d A(+1)=a+b+c+d A(+2)=8a+4b+2c+d from a to d The fluorescence component at wavelength λ, that is, the fluorescence spectral radiance factor Rf(λ), is given by d with μ=0. Note that the interpolation method is not limited to the cubic method described above. Next, the data corresponding to the wavelength λ is read from the first memory m1 and divided by the data corresponding to the wavelength λ in the third memory m3 to obtain the apparent spectral reflection radiance factor Rf(λ). Multiplying and subtracting gives the true spectral reflection radiance factor Rr
(λ) is found. The first step is to multiply d by 3 and subtract it.
The data in the memory is the sum of the true reflection component of the wavelength λ and the fluorescent component spanning three unit elements of the photometric element D, and the above d is the spectral fluorescence radian of one unit element of the photometric element. This is because he is a sphactor.

以上の演算動作を照明光分光器の波長走査域の
各波長点毎に行う。このようにして得られたデー
タRr(λ),Rf(λ)、各波長毎の相対螢光スペク
トル強度A(μ)等のデータは照明光源の特性に
よらない試料の個有定数である。全波長域にわた
つてRf(λ)が0になるような試料は螢光性のな
い試料である。従つてRf(λ)が0であるか否か
で試料の螢光性の有無が判る。従来は反射ラジア
ンスフアクターと螢光ラジアンスフアクターとを
区別して測定していなかつたので試料の螢光の有
無が検出できなかつた。螢光を伴う螢光の見掛け
の分光反射率は反射光分光器の波長分解能(出射
スリツト幅)によつて異なる。真の反射光は入射
光と同じ波長なので照明光分光器の波長分解能に
よつて定まる波長幅しか有しないが、螢光は広い
波長域に分布しているので反射光分光器において
スリツト幅を広くすると見掛け上螢光が強まつた
ように観測される。螢光性の物の色は反射光と螢
光との和によつて定まるが、測定器によつて見掛
けの螢光強度が異なるとそれから求められた3色
刺激値も測定器によつて異なつてくる。
The above calculation operation is performed for each wavelength point in the wavelength scanning range of the illumination light spectrometer. The data such as the data Rr (λ), Rf (λ) and the relative fluorescence spectral intensity A (μ) for each wavelength obtained in this way are constants unique to the sample, regardless of the characteristics of the illumination light source. A sample in which Rf (λ) is 0 over the entire wavelength range is a sample without fluorescence. Therefore, whether or not the sample has fluorescence can be determined by whether Rf (λ) is 0 or not. Conventionally, the reflective radiance factor and the fluorescent radiance factor were not measured separately, so it was not possible to detect the presence or absence of fluorescent light in the sample. The apparent spectral reflectance of fluorescence accompanying fluorescence differs depending on the wavelength resolution (output slit width) of the reflected light spectrometer. Since the true reflected light has the same wavelength as the incident light, it has a wavelength width determined only by the wavelength resolution of the illumination light spectrometer. However, since fluorescent light is distributed over a wide wavelength range, the slit width in the reflected light spectrometer is widened. As a result, the fluorescence appears to become stronger. The color of a fluorescent object is determined by the sum of the reflected light and the fluorescent light, but if the apparent fluorescent intensity differs depending on the measuring instrument, the three-color stimulus values calculated from it will also differ depending on the measuring instrument. It's coming.

上述実施例では螢光ラジアンスフアクターは先
にA(μ)を求めて内挿により求めているが、順
序を逆にして先に内挿により照明光波長における
螢光強度を算出し、その後で標準白板の照明光波
長における反射光強度で割算してもよい。また分
光反射ラジアンスフアクターも上述実施例では見
掛けの反射ラジアンスフアクターを算出し、それ
から螢光ラジアンスフアクターを引いて求めてい
るが、計算順序を変えて先に照明光波長における
試料からの光の強度かり内挿により求めた螢光を
引いた値を標準白板の同波長における反射光強度
で割つて反射ラジアンスフアクターを算出しても
全く同じであることも云うまでもない。
In the above embodiment, the fluorescence radiance factor is determined by first calculating A(μ) and then by interpolation, but the order is reversed and the fluorescence intensity at the illumination light wavelength is first calculated by interpolation, and then the fluorescence intensity is calculated by interpolation. It may be divided by the reflected light intensity at the illumination light wavelength of the standard white board. In addition, the spectral reflection radiance factor is determined by calculating the apparent reflection radiance factor and subtracting the fluorescence radiance factor from it in the above example, but by changing the calculation order, first calculating the spectral reflection radiance factor by calculating the spectral reflection radiance factor from the sample at the illumination light wavelength. It goes without saying that even if the reflected radiance factor is calculated by dividing the value obtained by subtracting the fluorescent light obtained by interpolation by the intensity of the reflected light from the standard white board at the same wavelength, the result will be exactly the same.

本発明によれば反射光分光器の分解能が測定に
影響しないから、反射光分光器の出射スリツトを
広くして明るくすることができる。螢光成分は弱
いから反射光分光器を明るくできることは螢光性
の試料で螢光の効果を検出するのに有利である。
螢光染料を用いて白布を増白する場合白布の黄ば
み(青紫色光部の反射率のわづかな低下)を青紫
色螢光で補うので、わづかな螢光強度で効果があ
るが、本発明では螢光の効果を過大評価すること
なくかつ確実に螢光を検出できる。
According to the present invention, since the resolution of the reflected light spectrometer does not affect the measurement, the output slit of the reflected light spectrometer can be made wider and brighter. Since the fluorescent component is weak, being able to brighten the reflected light spectrometer is advantageous for detecting the effect of fluorescence in fluorescent samples.
When whitening white cloth using fluorescent dye, the yellowing of the white cloth (a slight decrease in the reflectance of the blue-violet light area) is compensated for by the blue-violet fluorescence, so it is effective even with a slight fluorescence intensity. In the present invention, fluorescence can be detected reliably without overestimating the effect of fluorescence.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は螢光性試料の反射光スペクトルの一般
形を示す図、第2図は本発明の一実施例装置の光
学系の配置図及び信号処理部のブロツク図であ
る。 M1……照明光分光器、M2……反射光分光
器、I……積分球、W……標準白板、Sm……試
料、D……多チヤンネル測光素子、Com……制
御回路、m1,m2,m3……メモリ。
FIG. 1 is a diagram showing the general form of the reflected light spectrum of a fluorescent sample, and FIG. 2 is a layout diagram of an optical system and a block diagram of a signal processing section of an apparatus according to an embodiment of the present invention. M1...Illuminating light spectrometer, M2...Reflected light spectrometer, I...Integrating sphere, W...Standard white plate, Sm...Sample, D...Multi-channel photometric element, Com...Control circuit, m1, m2 , m3...Memory.

Claims (1)

【特許請求の範囲】 1 試料に任意波長の単色光を照射するための照
明光分光器と、 スペクトル像面に多チヤンネル測光素子を配置
され、上記照明光分光器からの出射光により照明
された試料からの反射光を分光する反射光分光器
と、 標準白板の分光反射光強度のデータを記憶させ
ておくメモリと、同メモリ内のデータを用いて上
記反射光分光器の多チヤンネル測光素子出力に演
算処理を施す演算回路とを設け、 上記演算回路に、照明光分光器から出射される
試料照明光と同一波長の両側の近接波長域に対す
る上記多チヤンネル測光素子の出力と上記メモリ
内の上記試料照明光波長におけるデータとから内
挿法により試料の上記試料照明光波長における螢
光ラジアンスフアクターを算出し、 および、上記試料照明光波長に対する上記多チ
ヤンネル測光素子出力を同波長に対する上記メモ
リ内のデータで割算した値から上記螢光ラジアン
スフアクターを引算して試料の上記試料照明光波
長における反射ラジアンスフアクターを算出する
演算を行わせるようにしたことを特徴とする測色
装置。
[Scope of Claims] 1. An illumination light spectrometer for irradiating a sample with monochromatic light of an arbitrary wavelength; and a multichannel photometric element disposed on a spectral image plane, which is illuminated by the light emitted from the illumination light spectrometer. A reflected light spectrometer that separates the reflected light from the sample, a memory that stores data on the spectral reflected light intensity of a standard white plate, and a multichannel photometric element output of the reflected light spectrometer using the data in the memory. an arithmetic circuit that performs arithmetic processing on the sample illumination light emitted from the illumination light spectrometer; The fluorescence radiance factor of the sample at the sample illumination light wavelength of the sample is calculated by interpolation from the data at the sample illumination light wavelength, and the output of the multichannel photometric element for the sample illumination light wavelength is calculated in the memory for the same wavelength. 1. A color measurement device, characterized in that a calculation is performed to calculate a reflection radiance factor of the sample at the wavelength of the sample illumination light by subtracting the fluorescence radiance factor from the value divided by the data.
JP55131956A 1980-09-22 1980-09-22 Color measuring device Granted JPS5756724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55131956A JPS5756724A (en) 1980-09-22 1980-09-22 Color measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55131956A JPS5756724A (en) 1980-09-22 1980-09-22 Color measuring device

Publications (2)

Publication Number Publication Date
JPS5756724A JPS5756724A (en) 1982-04-05
JPH0211848B2 true JPH0211848B2 (en) 1990-03-16

Family

ID=15070134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55131956A Granted JPS5756724A (en) 1980-09-22 1980-09-22 Color measuring device

Country Status (1)

Country Link
JP (1) JPS5756724A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107498B2 (en) * 1985-04-09 1995-11-15 株式会社日立製作所 Multi-wavelength simultaneous photometer
JPH089770Y2 (en) * 1986-07-04 1996-03-21 株式会社振豊紡機製作所 Centrifugal governor

Also Published As

Publication number Publication date
JPS5756724A (en) 1982-04-05

Similar Documents

Publication Publication Date Title
US10161796B1 (en) LED lighting based multispectral imaging system for color measurement
US5844680A (en) Device and process for measuring and analysing spectral radiation, in particular for measuring and analysing color characteristics
US4255053A (en) Photometer including auxiliary indicator means
Donaldson Spectrophotometry of fluorescent pigments
JPH05253256A (en) Decision of color of translucent object, such as teeth and apparatus therefor
MXPA01006360A (en) Method and apparatus for determining the appearance of an object.
JPH03501059A (en) How to determine the color of objects such as dental prostheses
JP2009520184A (en) Apparatus and method for illuminator independent color measurement
JP4710393B2 (en) Excitation spectrum correction method in fluorescence spectrophotometer
US11199450B2 (en) Optical sensor and method for detecting electromagnetic radiation
EP1856504A2 (en) Device for analysing the colour of a unhomogeneous material, like hair, and method thereof
JP2002171519A (en) Infrared ray color image forming device
US6278521B1 (en) Method of and apparatus for bispectral fluorescence colorimetry
JPH0211848B2 (en)
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
JP3657345B2 (en) Film thickness inspection system
GB2070765A (en) Spectrophotometry
JPH0781840B2 (en) Optical film thickness measuring device
JPS6140928B2 (en)
Schafer The colour of the human skull
CN106885630A (en) A kind of method and device that spectral measurement is carried out based on color
JPH1073534A (en) Equipment for determining color developing matter
US4178102A (en) Process and apparatus for measuring the concentration of a molecule of selective spectrum in a sample substance
JPH11344439A (en) Absorptiometric analytical instrument
Anders Control of Whites: The Cibanoid White Scale