JPH02118375A - Ice making structure for flow-down type ice making machine - Google Patents

Ice making structure for flow-down type ice making machine

Info

Publication number
JPH02118375A
JPH02118375A JP27174088A JP27174088A JPH02118375A JP H02118375 A JPH02118375 A JP H02118375A JP 27174088 A JP27174088 A JP 27174088A JP 27174088 A JP27174088 A JP 27174088A JP H02118375 A JPH02118375 A JP H02118375A
Authority
JP
Japan
Prior art keywords
ice
making
ice making
water
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27174088A
Other languages
Japanese (ja)
Inventor
Toshio Kojima
敏男 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP27174088A priority Critical patent/JPH02118375A/en
Publication of JPH02118375A publication Critical patent/JPH02118375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PURPOSE:To reduce manufacturing cost and shorten ice removing time by a method wherein evaporating pipes are pinched by an opposing pair of ice making plates and grooves, functioning as the dropping flow passages of ice removing, water, are formed on respective ice making plates so as to be projected in the direction of intersecting with the transversal extending parts of the evaporating pipes. CONSTITUTION:Ice making water is sent to an ice making water sprayer 24 from an ice making water tank 18 through a pump and is supplied onto the ice making surface of an ice making plate 10 while spraying it through spraying holes 24a. The ice making plate 10 is cooled to a temperature below the freezing point of water by evaporating pipes 12. When ice plates 14, having a required thickness, are produced on the ice making surfaces of the ice making plate 10, it is detected by a sensor to switch a valve in a refrigerant circulating system and supply hot gas into the evaporating pipes 12. On the other hand, ice removing water is supplied to the rear surfaces of the ice making plate 10 while spraying it through an ice removing water sprayer 34 arranged above the ice making plate 10. In this case, the ice making plate 10 is provided with grooves 10 having required configuration in the direction of intersecting with the transversal extending par 12c of the evaporating pipes 12 whereby the sprayed water wherefrom ice is removed flows down through the grooves 10a and is diffused uniformly into the whole of the rear surfaces of the ice making plate 10.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、立設した製氷板に製氷水を循環供給して板
木を形成し、除氷運転時には、該製氷板に除氷水を供給
して除氷促進を行なう流下式製氷機において、■製氷板
に薄手の熱良導体金属板の使用を可能として製造コスト
の低減を図り、■除氷水を製氷板背面に設けた除氷水通
路に流下させ、除氷水温を熱良導体である製氷板に可能
な限り均一に行き渡らせて除氷時間の短縮を実現し、■
製氷・除氷運転の反復に伴う熱変動により生ずる応力を
逃げ易くして、製氷板と蒸発管との接合部における劣化
剥離を抑制し、■併せて加工が容易で、長期の使用に対
し充分な耐久力を発揮し得る製氷構造に関するものであ
る。
[Detailed Description of the Invention] Industrial Application Field This invention forms wooden boards by circulating and supplying ice making water to an ice making plate set upright, and during deicing operation, deicing water is supplied to the ice making plate. In a flow-down ice maker that promotes ice removal, we have: 1) made it possible to use a thin metal plate with good thermal conductivity for the ice-making plate to reduce manufacturing costs; By distributing the deicing water temperature as evenly as possible to the ice making plate, which is a good thermal conductor, the deicing time is shortened.
It makes it easier to escape the stress caused by thermal fluctuations caused by repeated ice-making and de-icing operations, suppresses deterioration and peeling at the joint between the ice-making plate and the evaporator tube, and is also easy to process and sufficient for long-term use. This relates to an ice-making structure that can exhibit long durability.

従来技術 従来より、垂直に立設した製氷板に冷凍系から導出した
蒸発管を配設し、この蒸発管により冷却される前記製氷
板に製氷水を散布供給して板氷を形成し、得られた板氷
を剥離して落下放出させる流下式製氷機が、簡単な構成
で製氷コストも低置になし得ることから広く使用されて
いる。
PRIOR ART Conventionally, an evaporation tube led out from a refrigeration system is arranged on a vertically erected ice-making plate, and ice-making water is sprayed and supplied to the ice-making plate cooled by the evaporation tube to form ice sheets. Drop-down ice makers that peel off ice sheets and let them fall are widely used because they have a simple configuration and can reduce ice production costs.

本発明は、この流下式製氷機の製氷構造に関するので、
先ず流下式製氷機の一般梼造を概略的に説明する。第7
図に示すように、垂直に配置した製氷板10の裏面側に
1図示しない冷凍系から導出され横方向に蛇行する蒸発
管12が密着固定されている。この製氷板10の直下に
は、m数の通孔16aを穿設した集水板16が傾斜配設
され、製氷運転に際し製氷板10に供給した製氷水は、
前記通孔16aを介して、下方に位置する製氷水タンク
18に回収貯留される。なお集水板16は。
The present invention relates to the ice making structure of this down-flow ice maker, so
First, the general structure of a down-flow ice maker will be briefly explained. 7th
As shown in the figure, an evaporation tube 12 led out from a refrigeration system (not shown) and meandering in the lateral direction is closely fixed to the back side of an ice-making plate 10 arranged vertically. Directly below this ice-making plate 10, a water collection plate 16 with a through hole 16a of m number is arranged at an angle, and the ice-making water supplied to the ice-making plate 10 during ice-making operation is
The ice is collected and stored in the ice-making water tank 18 located below through the through hole 16a. In addition, the water collection plate 16.

除氷運転により剥離されて落下する板氷14を。Sheet ice 14 that peels off and falls during deicing operation.

該集水板16の斜め下方に配設したアイスクラッシャー
や貯水庫(図示せず)に案内する機能も果している。
It also functions to guide the water to an ice crusher and a water storage (not shown) disposed diagonally below the water collecting plate 16.

製氷水タンク18から循環ポンプ20を介して導出した
製氷水供給管22は、前記製氷板10のト方かつ製氷面
側に設けた製氷水散布器24に接続している。この製氷
水散布器24には多数の散水孔24aが穿設され、製氷
運転時にタンク18からポンプ圧送される製氷水を、前
記散水孔24aおよび偏向ガイド26を経て前記製氷板
10の氷結温度にまで冷却されている製氷面に散布流下
させ、該製氷面に所要厚みの板氷14を生成する。
An ice-making water supply pipe 22 led out from the ice-making water tank 18 via a circulation pump 20 is connected to an ice-making water sprinkler 24 provided on the front side of the ice-making plate 10 and on the ice-making surface side. A large number of water sprinkling holes 24a are bored in this ice-making water sprayer 24, and the ice-making water pumped from the tank 18 during ice-making operation is passed through the water sprinkling holes 24a and the deflection guide 26 to reach the freezing temperature of the ice-making plate 10. The ice cubes are dispersed and flowed down onto an ice making surface that has been cooled down to a temperature of 100.degree. C. to form sheet ice 14 of a required thickness on the ice making surface.

図示の製氷機には、前述した製氷水供給系と別に、除氷
水供給系が設けられている。すなわち除氷に際して、冷
凍系の弁切換えにより、蒸発管12にホットガスを循環
させて製氷板10を加熱し、該製氷面と板氷14との氷
結を融解させると共に、製氷板10の裏面に常温の水、
または昇温された水(以下「除氷水」という)を散布し
て、その昇温による除氷促進を行なうようになっている
The illustrated ice maker is provided with a deicing water supply system in addition to the ice making water supply system described above. That is, when deicing, hot gas is circulated through the evaporation tube 12 by switching the valves of the refrigeration system to heat the ice-making plate 10, melting the ice between the ice-making surface and the ice plate 14, and melting the ice on the back surface of the ice-making plate 10. room temperature water,
Alternatively, heated water (hereinafter referred to as "deicing water") is sprayed to promote deicing by increasing the temperature.

例えば、製氷機内に配設した除氷水タンク28からポン
プ30を介して導出した除氷水供給管32は、前記製氷
板10の上部かつ裏面側に設けた除氷水散布器34に接
続している。そして除氷運転時に、タンク28から圧送
された除氷水は、除氷水散布器34に穿設した多数の散
水孔34aを介して製氷板10の裏側に散布供給されて
流下し。
For example, a deicing water supply pipe 32 led out via a pump 30 from a deicing water tank 28 disposed within the ice making machine is connected to a deicing water sprayer 34 provided at the top and back side of the ice making plate 10. During the deicing operation, the deicing water force-fed from the tank 28 is distributed and supplied to the back side of the ice-making plate 10 through a large number of watering holes 34a formed in the deicing water sprayer 34, and flows down.

製氷板10と板氷14との氷結面を融解する。[氷板1
0の裏側を流下した除氷水は、製氷水と同様に前記集水
板16に穿設した通孔16aを介して製氷水タンク18
に回収される。
The frozen surfaces of the ice making plate 10 and the ice plate 14 are thawed. [Ice plate 1
The de-icing water flowing down the back side of the ice-making water tank 18 is passed through the through hole 16a formed in the water collecting plate 16 in the same way as the ice-making water.
will be collected.

発明が解決しようとする課題 前述した従来の流下式製氷機では、その製造コストにお
けるかなりの割合を、製氷構造の重要部品である前記製
氷板が占めていた。すなわち製氷板としては、一般に熱
伝導率の良好な銅板が使用されるが、製氷・除氷運転の
反復により製氷板には加冷・加熱の大きな熱変化が常に
加わるために、長期の使用により反りや曲り等の変形を
来さないよう、充分に大きな板厚の銅板が一般に使用さ
れている。しかしこのように厚手の銅板は、薄手の同じ
銅板に比して購入単価が大きく嵩み、従って製造コスト
が高くつく欠点がある。
Problems to be Solved by the Invention In the conventional down-flow ice maker mentioned above, the ice making plate, which is an important part of the ice making structure, accounts for a considerable proportion of the manufacturing cost. In other words, copper plates with good thermal conductivity are generally used as ice-making plates, but due to repeated ice-making and de-icing operations, the ice-making plates are constantly subjected to large thermal changes due to cooling and heating. Copper plates are generally used that have a sufficiently large thickness to prevent deformations such as warping and bending. However, such a thick copper plate has the drawback that the purchase price is much higher than that of the same thin copper plate, and therefore the manufacturing cost is higher.

また、製氷板は蒸発管により冷却されるから。Also, the ice-making plate is cooled by an evaporator tube.

当該製氷板の板厚が大きいと、これを氷点下にまで充分
に冷却するのに大きな熱容量を必要とすることになり、
従って冷凍系も大型化して、この面からも製造コストが
嵩むことになる。しかも銅価格は市況に大きく左右され
、不安定であることから、銅材料を大量に使用する業種
では、前記欠点が更に増大される。
If the thickness of the ice-making plate is large, a large heat capacity will be required to sufficiently cool it to below freezing.
Therefore, the refrigeration system also becomes larger, which also increases manufacturing costs. Moreover, since the price of copper is greatly influenced by market conditions and is unstable, the above-mentioned drawbacks are further exacerbated in industries that use large quantities of copper materials.

なお、除氷運転に際し製氷板の裏面に除氷水を供給し、
製氷板からの板氷の剥離を促進することについては前述
したが、蒸発管は1図示の如く横方向に蛇行させるよう
になっている。このため、製氷板の上部裏面側に設けた
除氷水散布器から除氷水を供給しても、該除氷水の流下
は横方向に蛇行する蒸発管により部分的に阻害されて製
氷板裏面に均一に行き渡らず、結果的に氷結面の融解に
時間が掛かるという間顕点も指摘される。
In addition, during deicing operation, deicing water is supplied to the back of the ice making plate.
As described above, the evaporation tube is designed to meander in the lateral direction as shown in Figure 1, as described above to promote the separation of the ice cubes from the ice-making plates. For this reason, even if deicing water is supplied from the deicing water sprayer installed on the back side of the upper part of the ice making plate, the flow of the deicing water is partially obstructed by the evaporation tube that snakes in the horizontal direction, so that it is uniformly spread over the back side of the ice making plate. It has also been pointed out that the ice is not fully distributed, and as a result, it takes time for the frozen surface to thaw.

この対応筆としては、第8図に示す如く、蒸発管12を
縦方向(横方向でなく)に蛇行させると共に、その上下
の湾曲部12aを製氷板10の上下水平端部から僅かに
延出させるようにして、隣接し合う真直管体部12bの
間に除氷水の落下流路を確保することが提案される。し
かしこの場合は。
As shown in FIG. 8, the evaporation tube 12 is made to meander in the vertical direction (not in the horizontal direction), and its upper and lower curved portions 12a are slightly extended from the upper and lower horizontal ends of the ice-making plate 10. It is proposed to ensure a falling flow path for deicing water between adjacent straight pipe body portions 12b by doing so. But in this case.

冷媒が縦方向に蛇行する蒸発管12の下部湾曲部12a
に停滞気味となり、該冷媒の円滑な循環が妨げられて、
冷却効率が低下する別の難点を生ずる。
Lower curved portion 12a of the evaporation pipe 12 where the refrigerant meanders in the vertical direction
The refrigerant becomes stagnant, preventing smooth circulation of the refrigerant,
Another drawback arises in that cooling efficiency is reduced.

発明の目的 この発明は、前述した従来技術に係る流下式製氷機の製
氷構造に内在している前記欠点に鑑み、これを好適に解
決するべく提案されたものであって、I!氷板として薄
手の熱良導体金属板の使用を可能として製造コストの低
減を図り、また除氷水を製氷板に均一に行き渡らせるよ
うにして除氷時間を有効に短縮し、かつ製氷・除氷運転
の反復により大きな熱変動が加わっても製氷板と蒸発管
との接合部に劣化剥離を来し難く、しかも加工が容易な
製氷構造を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in view of the above-mentioned drawbacks inherent in the ice-making structure of the down-flow ice maker according to the prior art, and has been proposed to suitably solve the problems. By making it possible to use a thin metal plate with good heat conductivity as the ice plate, manufacturing costs can be reduced, and by uniformly distributing the deicing water to the ice making plate, the deicing time can be effectively shortened, and ice making and deicing operations can be improved. To provide an ice-making structure that is difficult to cause deterioration and peeling at the joint between an ice-making plate and an evaporator tube even if large thermal fluctuations are applied by repeating the process, and which is easy to process.

課題を解決するための手段 前述したi+utiを克服し、所期の目的を好適に達成
するため本発明は、立設した製氷板に冷凍系から導出し
た蒸発管を密着固定し、製氷運転時には、前記製氷板の
製氷面に製氷水を循環供給して板氷を形成し、除氷i?
I!転時には、前記製氷板の裏面に除氷水を供給して除
氷促進を行なう流下式製氷機において。
Means for Solving the Problems In order to overcome the above-mentioned i+uti and suitably achieve the intended purpose, the present invention provides a system in which an evaporation tube led out from a refrigeration system is closely fixed to an ice-making plate set upright, and during ice-making operation, Ice-making water is circulated and supplied to the ice-making surface of the ice-making plate to form ice sheets, and the ice is removed.
I! In a falling type ice maker which accelerates deicing by supplying deicing water to the back side of the ice making plate when turning over.

前記蒸発管は横方向に蛇行させると共に、この蒸発管を
対向し合う一対の製氷板により挟持し。
The evaporation tube is made to meander in the lateral direction, and is sandwiched between a pair of ice-making plates facing each other.

各製氷機に前記除氷水の落下流路として機能する溝部を
、蒸発管の横方向延在部に対し交差方向に突出形成した
ことを特徴とする。
Each ice maker is characterized in that a groove portion functioning as a falling flow path for the deicing water is formed to protrude in a direction transverse to the horizontally extending portion of the evaporation tube.

実施例 次に1本発明に係る流下式製氷機の製氷構造につき、好
適な実施例を挙げて、添付図面を参照しながら説明する
2なお本発明が実施される製氷機の基本的な構成は、第
6図に関連して説明したところと略同じであるので、同
一部材については同じ符号で指示する。
EXAMPLESNext, 1. The ice making structure of the down-flow ice maker according to the present invention will be explained with reference to the attached drawings, citing preferred embodiments. 2.The basic structure of the ice maker in which the present invention is implemented is as follows. , are substantially the same as those described in connection with FIG. 6, so the same members are designated by the same reference numerals.

実施例に係る製氷機構では、横方向に蛇行する蒸発管1
2が立設され、この蒸発管12を一対の製氷板10.1
0が対向的に挟持している。ここで使用される製氷板1
0は、熱伝導率に優れた銅板を材質とするが、この銅板
としては、従来一般に使用される銅板に較べ、厚みを大
幅に減少させた薄手の板材が採用されている。但し、製
氷板10に薄手の銅板を採用しただけでは1反りや曲り
等の軽重的変形を招来することは前述した通りである。
In the ice making mechanism according to the embodiment, the evaporation pipe 1 meandering in the horizontal direction
2 is installed upright, and this evaporation tube 12 is connected to a pair of ice making plates 10.1.
0 are holding it oppositely. Ice making plate 1 used here
0 is made of a copper plate with excellent thermal conductivity, but this copper plate is a thin plate material with a significantly reduced thickness compared to the copper plate commonly used in the past. However, as described above, simply adopting a thin copper plate for the ice-making plate 10 will result in minor deformations such as warpage and bending.

そこで各製氷板10は、第1図および第2図に示す如く
、その補強を兼ねると共に、後述の如く除氷水の落下流
路として機能する溝部10aが所要間隔で突出形成され
ている。なお、前記蒸発管12も熱伝導率に優れた銅を
材質としている。
Therefore, as shown in FIGS. 1 and 2, each ice-making plate 10 is provided with protruding grooves 10a at required intervals, which serve not only to reinforce the ice-making plate 10 but also to function as deicing water drop channels as described later. The evaporator tube 12 is also made of copper, which has excellent thermal conductivity.

そして、これら蒸発管12および製氷板10の何れも、
その銅表面に錫鍍金等による防錆処理を施しておくのが
好ましい。
Both of these evaporation tubes 12 and ice-making plates 10,
Preferably, the copper surface is subjected to anti-corrosion treatment such as tin plating.

前記溝部10aは、製氷板10の補強と除氷水の落下流
路としての機能とを具備するものであれば、その形状お
よび突設長さに関する制限はない。
As long as the groove portion 10a has the function of reinforcing the ice-making plate 10 and functioning as a falling channel for deicing water, there are no restrictions on its shape and length.

すなわち前記溝部10aは、蒸発管12の横方向延在部
12c(湾曲部12aを除いた部分)に対し交差方向に
形成されることによって、この部分での除氷水落下流路
が確保される。従って溝部10aは、■第1図に示すよ
うに、製氷板10の全高さに頁って延在する突条として
形成してもよいし、また前記薄手の製氷板10の機械的
強度を増大させるものである限り、■第6図に示す如く
That is, the groove portion 10a is formed in a direction crossing the horizontally extending portion 12c (the portion excluding the curved portion 12a) of the evaporator tube 12, thereby ensuring a deicing water falling flow path in this portion. Therefore, the groove 10a may be formed as a protrusion that extends over the entire height of the ice-making plate 10, as shown in FIG. 1, or may increase the mechanical strength of the thin ice-making plate 10. (2) As shown in Figure 6.

少なくとも蒸発管12の横方向延在部12cと対応する
部分にのみ形成するようにしてもよい。
It may be formed only at least in a portion corresponding to the horizontally extending portion 12c of the evaporation tube 12.

なお溝部10aの形状は、製氷板10の断面において、
蒸発管12の横方向延在部12cに接合する連続部と、
該延在部1.2 cに非接触で除氷水流路Cを形成する
間隙部とを交互に連続させるものであるならば、第4図
に示す如き台形状に形成してもよいし、第5図(a)に
示す山形や、第5図(b)に示す半円形状の如きf4一
種形状としてもよい。
Note that the shape of the groove portion 10a is as follows in the cross section of the ice making plate 10:
a continuous portion joined to the lateral extending portion 12c of the evaporation tube 12;
As long as the extending portions 1.2c and the gap portions forming the deicing water flow paths C are made to alternately continue in a non-contact manner, they may be formed into a trapezoidal shape as shown in FIG. It may be an f4 type shape such as the chevron shape shown in FIG. 5(a) or the semicircular shape shown in FIG. 5(b).

何れの形状であっても、製氷板10として薄手の銅板が
使用されるので、溝部10aを形成する加工は容易であ
る。
Regardless of the shape, since a thin copper plate is used as the ice-making plate 10, processing to form the groove portion 10a is easy.

また製氷板10および蒸発管12は、何れも銅の如く熱
伝導率に優れた同種金属で構成されるので、半田付は等
の技術的に完成している蝋付は手段を密着部の固定に採
用することができる。しかも同種金属であるため接合が
確実で、製氷・除氷運転の反復による熱変動に晒されて
も、該接合部が経時的に剥離する畏れは最小限に抑制し
得る。
In addition, since the ice-making plate 10 and the evaporator tube 12 are both made of the same kind of metal with excellent thermal conductivity, such as copper, soldering and other technologically advanced methods such as brazing are the only means of fixing the contact parts. can be adopted. Moreover, since they are made of the same type of metal, the bonding is reliable, and even if exposed to thermal fluctuations due to repeated ice making and deicing operations, the risk of the bonded portion peeling off over time can be minimized.

実施例の作用 次に、このように構成した流下式製氷機の製氷構造の作
用につき説明する。製氷機の製氷運転を開始すると、蒸
発管12に冷媒が循環供給され、第3図に示す如く、製
氷水タンク18からポンプ2oを介して製氷水が製氷水
散布器24に圧送される。この製氷水は散水孔24aか
ら製氷板10の製氷面に散布供給される。製氷板10は
蒸発管12により氷点下に冷却されているので、散布さ
れた製氷水は製氷面に徐々に氷結して氷層を形成する6
製氷板10に供給され、氷結するに到らなかった製氷水
は、製氷板10の下端に固定された集水板16に至り、
タンク18に同数されて再循環に供される。
Function of the Embodiment Next, the function of the ice-making structure of the down-flow ice maker constructed as described above will be explained. When the ice-making machine starts ice-making operation, refrigerant is circulated and supplied to the evaporator tube 12, and ice-making water is force-fed from the ice-making water tank 18 to the ice-making water sprayer 24 via the pump 2o, as shown in FIG. This ice-making water is sprayed and supplied to the ice-making surface of the ice-making plate 10 from the water sprinkling holes 24a. Since the ice-making plate 10 is cooled to below freezing point by the evaporator tube 12, the sprinkled ice-making water gradually freezes on the ice-making surface to form an ice layer 6
The ice-making water that is supplied to the ice-making plate 10 and has not yet frozen reaches the water collection plate 16 fixed to the lower end of the ice-making plate 10.
An equal number of them are placed in the tank 18 and subjected to recirculation.

製氷運転が進行し、製氷板10の製氷面に所要厚の板氷
14が生成されると、これをセンサが検知し、冷媒循環
系の弁を切換えて蒸発管12にホットガスを供給する。
As the ice-making operation progresses and ice sheets 14 of a required thickness are generated on the ice-making surface of the ice-making plate 10, a sensor detects this and switches the valve of the refrigerant circulation system to supply hot gas to the evaporation tube 12.

また製氷板10の上方に配設した除氷水散布器34から
、各製氷板10.10の裏面に除氷水が散布供給される
。このとき各製氷板10には、蒸発管12の横方向延在
部12cと交差する方向に所要形状の溝部10aが形成
されているから、散布された除氷水は該溝部10aを流
下して、製氷板12の裏面全体に均一に拡散する。
In addition, deicing water is sprayed and supplied to the back surface of each ice making plate 10.10 from a deicing water sprayer 34 disposed above the ice making plate 10. At this time, since each ice-making plate 10 is formed with a groove 10a having a desired shape in a direction intersecting the horizontally extending portion 12c of the evaporation tube 12, the sprayed deicing water flows down the groove 10a. The ice is evenly spread over the entire back surface of the ice-making plate 12.

なお、第1図に示す実施例では、製氷板12の全高さに
亘って溝部10aが延在していたが、第6図に示す如く
、前記溝部10aを、少なくとも蒸発管12の横方向に
延在する部位と対応する部分にのみ形成した構成であっ
ても、散布された除氷水は該溝部10aを円滑に流下し
、製氷板12の裏面全体に均一に拡散する。またこのよ
うに溝部10aを、製氷板10の全面でなく所要個所に
散点状に突設する場合であっても、薄手の銅板に充分な
強度が付与される。
In the embodiment shown in FIG. 1, the groove 10a extends over the entire height of the ice-making plate 12, but as shown in FIG. Even if the deicing water is formed only in the portion corresponding to the extending portion, the deicing water that has been sprayed smoothly flows down the groove portion 10a and is uniformly spread over the entire back surface of the ice making plate 12. Further, even when the groove portions 10a are provided not on the entire surface of the ice-making plate 10 but in a scattered manner at required locations, sufficient strength is imparted to the thin copper plate.

発明の効果 本発明に係る製氷構造は、立設した製氷板に蒸発管を密
着固定し、前記製氷板の製氷面に製氷水を供給して板氷
を形成し、除氷時には製氷板裏面に除氷水を供給して板
氷の剥離を促進する流下式製氷機において、蒸発管を横
方向に蛇行させると共に、この蒸発管を対向し合う一対
の製氷板により挟持し、各製氷板に前記除氷水の落下流
路として機能する溝部を、蒸発管の横方向延在部に対し
交差方向に突出形成したものである。
Effects of the Invention In the ice-making structure according to the present invention, an evaporation tube is closely fixed to an ice-making plate set upright, and ice-making water is supplied to the ice-making surface of the ice-making plate to form ice sheets. In a down-flow ice maker that supplies deicing water to promote the peeling of ice sheets, an evaporation tube is meandered in the horizontal direction, and this evaporation tube is sandwiched between a pair of ice-making plates facing each other, and each ice-making plate is provided with the de-icing water. A groove portion functioning as a falling flow path for ice water is formed to protrude in a direction crossing the horizontally extending portion of the evaporation tube.

■この溝部の形成により、製氷板の機械的強度は増大さ
れるので、従来要求されていた厚みの大きい銅板を製氷
板の材質とする必要がなくなり、薄手の銅板で充分に使
用可能となった。このため製造コストの大幅な引下げが
可能となり、加えて製氷板の冷却は小さな熱容量で足り
るので、冷凍系が小型化する等、この面からも低置な製
造コストの実現に寄与する。また薄手材料の採用により
、加工が容易となる。
■The formation of this groove increases the mechanical strength of the ice-making plate, so there is no longer a need to use thick copper plates as the material for the ice-making plate, which was previously required, and a thin copper plate can now be used. . This makes it possible to significantly reduce manufacturing costs, and in addition, since a small heat capacity is sufficient to cool the ice-making plate, the refrigeration system can be made smaller, which also contributes to lower manufacturing costs. Also, the use of thin material makes processing easier.

■製氷板の裏面に除氷水を供給して板氷の剥離を促進す
るに際し、この除氷水は蒸発管の横方向延在部に対し交
差方向に突出形成した溝部を介して流下可能であるので
、製氷板の裏面全体に均一に拡散する。従って、蒸発管
に切換供給されるホットガスの加熱効果と相俟って、v
i氷板からの板氷の剥離に要する時間の短縮化が図られ
る。
■When supplying de-icing water to the back of the ice-making plate to promote the peeling of the ice-board, this de-icing water can flow down through a groove formed protruding in a direction transverse to the lateral extension of the evaporation tube. , evenly spread over the entire back side of the ice cube. Therefore, together with the heating effect of the hot gas switched and supplied to the evaporation tube, v
i The time required to peel the ice sheet from the ice sheet can be shortened.

■製氷板および蒸発管の材質として、熱伝導率に優れた
鋼を同種金属として使用するので、技術的に完成してい
る半田付けの如き蝋付けによる良好な接合を行なうこと
ができる。従って、製氷・除氷運転の反復に伴う大きな
熱変化に接合部が晒されても、長期の間に剥離すること
がなく、充分な耐久性が得られる。
(2) Since steel, which has excellent thermal conductivity, is used as the same material for the ice-making plate and the evaporation tube, it is possible to perform good joining by brazing, which is technically perfected by soldering. Therefore, even if the bonded portion is exposed to large thermal changes due to repeated ice making and deicing operations, it will not peel off over a long period of time, and sufficient durability can be achieved.

■蒸発管を挟んで対向的に一対の製氷板を配設する構造
としたために、単位時間当りの収量が大きくなり、製氷
効率が向上する。なお、各製氷板には前述の溝部が形成
されているから、その製氷面に生成した板氷は、該溝部
の部位において多少氷層が薄くなるが、剥離された板氷
は直ちにクラッシャーにより破砕されるので、この点は
全く問題とされない。
■The structure has a pair of ice-making plates facing each other across the evaporation tube, which increases the yield per unit time and improves ice-making efficiency. Furthermore, since each ice-making plate is formed with the aforementioned grooves, the ice sheet formed on the ice-making surface will have a slightly thinner ice layer at the grooves, but the peeled ice cubes will be immediately crushed by a crusher. Therefore, this point is not an issue at all.

すなわち本発明によれば、製氷板に薄手の熱良導金属板
の使用を可能として製造コストの低減を図り、また除氷
水が製氷板に均一に行き渡るようにして除氷時間を短縮
し、かつ製氷・除氷運転の反復により大きな熱変動が加
わっても製氷板と蒸発管との接合部に剥離を来し難くす
ると共に、成形加工を容易になし得る等の有益な効果を
奏するものである。
That is, according to the present invention, it is possible to use a thin heat-conducting metal plate for the ice-making plate, thereby reducing the manufacturing cost, and also to shorten the de-icing time by uniformly distributing the de-icing water to the ice-making plate. This has beneficial effects such as making it difficult for the joint between the ice-making plate and the evaporator tube to peel off even when large thermal fluctuations occur due to repeated ice-making and de-icing operations, and also making it easier to form the ice-making plate. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は好適実施例に係る製氷構造の概略構成を示す斜
視図、第2図は一実施例としての製氷板の溝部形成状態
を示す要部斜視図、第3図は第1図に示す製氷構造の側
面図、第4図は第1図のIV−IV線線断断面図第5図
(a)および第5図(b)は、製氷板に形成される溝部
の別個を示す断面図、第6図は本発明の別実施例を示す
概略正面図、第7図は従来技術に係る流下式製氷機の概
略構成を示す説明図、第8図は蒸発管を縦方向に蛇行さ
せた構成に係る製氷構造の概略平面図である。 10・・・製氷板    12・・・蒸発管10a・・
・溝部
FIG. 1 is a perspective view showing a schematic configuration of an ice making structure according to a preferred embodiment, FIG. 2 is a perspective view of essential parts showing a state in which grooves are formed in an ice making plate as an example, and FIG. 3 is shown in FIG. 1. A side view of the ice making structure, FIG. 4 is a sectional view taken along the line IV-IV in FIG. 1, and FIGS. 5(a) and 5(b) are sectional views showing separate grooves formed in the ice making plate. , FIG. 6 is a schematic front view showing another embodiment of the present invention, FIG. 7 is an explanatory diagram showing the schematic configuration of a conventional down-flow ice maker, and FIG. 8 is an evaporator tube meandering in the vertical direction. FIG. 2 is a schematic plan view of an ice making structure according to the configuration. 10... Ice making plate 12... Evaporation tube 10a...
・Groove

Claims (1)

【特許請求の範囲】 〔1〕立設した製氷板(10)に冷凍系から導出した蒸
発管(12)を密着固定し、製氷運転時には、前記製氷
板(10)の製氷面に製氷水を循環供給して板氷を形成
し、除氷運転時には、前記製氷板(10)の裏面に除氷
水を供給して除氷促進を行なう流下式製氷機において、 前記蒸発管(12)は横方向に蛇行させると共に、この
蒸発管(12)を対向し合う一対の製氷板(10、10
)により挟持し、 各製氷板(10)に前記除氷水の落下流路として機能す
る溝部(10a)を、蒸発管(12)の横方向延在部に
対し交差方向に突出形成した ことを特徴とする流下式製氷機の製氷構造。 〔2〕前記製氷板(10)および蒸発管(12)を、何
れも銅の如く熱伝導率に優れた同種金属で構成し、各製
氷板(10)と蒸発管(12)との密着部の固定は、蝋
付け等の接着手段によりなされる請求項1記載の流下式
製氷機の製氷構造。 〔3〕前記溝部(10a)は、製氷板(10)の全高さ
に亘って延在する突条として形成される請求項1記載の
流下式製氷機の製氷構造。 〔4〕前記溝部(10a)は、少なくとも蒸発管(12
)の横方向に延在する部位と対応する部分にのみ形成さ
れる請求項1記載の流下式製氷機の製氷構造。
[Scope of Claims] [1] An evaporation tube (12) led out from the refrigeration system is closely fixed to an ice-making plate (10) set upright, and during ice-making operation, ice-making water is poured onto the ice-making surface of the ice-making plate (10). In a flow-down ice maker that forms sheet ice by circulating supply and accelerates deicing by supplying deicing water to the back side of the ice making plate (10) during deicing operation, the evaporation tube (12) is arranged in a horizontal direction. At the same time, the evaporation tube (12) is connected to a pair of ice-making plates (10, 10) facing each other.
), and each ice-making plate (10) is provided with a groove (10a) that functions as a falling flow path for the deicing water and protrudes in a direction crossing the lateral extension of the evaporation tube (12). The ice-making structure of a down-flow ice maker. [2] The ice-making plate (10) and the evaporator tube (12) are both made of the same kind of metal with excellent thermal conductivity, such as copper, and the contact portion between each ice-making plate (10) and the evaporator tube (12) is 2. The ice making structure of a falling type ice making machine according to claim 1, wherein the fixation is performed by adhesive means such as brazing. [3] The ice-making structure of the down-flow ice-making machine according to claim 1, wherein the groove (10a) is formed as a protrusion extending over the entire height of the ice-making plate (10). [4] The groove portion (10a) is provided with at least the evaporation tube (12
2. The ice making structure of a down-flow ice making machine according to claim 1, wherein the ice making structure is formed only in a portion corresponding to a portion extending in the lateral direction of the ice making structure.
JP27174088A 1988-10-26 1988-10-26 Ice making structure for flow-down type ice making machine Pending JPH02118375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27174088A JPH02118375A (en) 1988-10-26 1988-10-26 Ice making structure for flow-down type ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27174088A JPH02118375A (en) 1988-10-26 1988-10-26 Ice making structure for flow-down type ice making machine

Publications (1)

Publication Number Publication Date
JPH02118375A true JPH02118375A (en) 1990-05-02

Family

ID=17504172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27174088A Pending JPH02118375A (en) 1988-10-26 1988-10-26 Ice making structure for flow-down type ice making machine

Country Status (1)

Country Link
JP (1) JPH02118375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502860B1 (en) * 2013-09-04 2015-03-17 대영이앤비 주식회사 Ice maker
CN105674691A (en) * 2016-04-01 2016-06-15 苏州大学 Double-sealing type device used for collecting spray-freezing ice ball particles and collecting method of double-sealing type device
JP2019032153A (en) * 2017-08-04 2019-02-28 オキセン, インコーポレイテッドOxen, Inc. Ice maker with ejection mechanism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502860B1 (en) * 2013-09-04 2015-03-17 대영이앤비 주식회사 Ice maker
CN104422219B (en) * 2013-09-04 2017-04-12 大荣E&B株式会社 Ice maker
CN105674691A (en) * 2016-04-01 2016-06-15 苏州大学 Double-sealing type device used for collecting spray-freezing ice ball particles and collecting method of double-sealing type device
WO2017166669A1 (en) * 2016-04-01 2017-10-05 苏州大学 Double-sealing type apparatus for collecting spray-freezing ice ball particles and collecting method thereof
US10337796B2 (en) 2016-04-01 2019-07-02 Soochow University Double-sealing type apparatus for collecting spray freeze ice ball particles and collecting method thereof
JP2019032153A (en) * 2017-08-04 2019-02-28 オキセン, インコーポレイテッドOxen, Inc. Ice maker with ejection mechanism

Similar Documents

Publication Publication Date Title
US10458692B2 (en) Ice making machine and ice cube evaporator
US4366679A (en) Evaporator plate for ice cube making apparatus
US6205807B1 (en) Low cost ice making evaporator
US6311501B1 (en) Ice machine water distribution and cleaning system and method
US5941091A (en) Low cost ice making evaporator
JPH02118375A (en) Ice making structure for flow-down type ice making machine
JP2005180823A (en) Automatic ice making machine
US4474029A (en) Hot gas defrost pan and system
JPS604056Y2 (en) Refrigeration circuit for refrigerator
JP2005180824A (en) Automatic ice making machine
JPH0445007Y2 (en)
US3625023A (en) Ice maker apparatus
JPS63290375A (en) Flow-down type ice machine
JPH0419425Y2 (en)
JP3203038B2 (en) Downstream ice machine
JP2011231943A (en) Ice-making unit of flow-down type ice-making machine
EP3324136B1 (en) Ice making machine and ice cube evaporator
JPH0416133Y2 (en)
JPH0334624Y2 (en)
JPH0534586B2 (en)
JP2006214706A (en) Ice making portion of falling-type ice making machine
JP4869826B2 (en) Automatic ice machine heat exchanger
JPH0552673U (en) Ice-making section of a downflow type ice-making machine
JP2007024472A (en) Ice making section for flow-down type ice making machine
JPS61250475A (en) Water circulation type ice machine