JPH0211711A - Method for controlling distribution of feedstock in blast furnace - Google Patents

Method for controlling distribution of feedstock in blast furnace

Info

Publication number
JPH0211711A
JPH0211711A JP16339788A JP16339788A JPH0211711A JP H0211711 A JPH0211711 A JP H0211711A JP 16339788 A JP16339788 A JP 16339788A JP 16339788 A JP16339788 A JP 16339788A JP H0211711 A JPH0211711 A JP H0211711A
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
distribution
chute
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16339788A
Other languages
Japanese (ja)
Other versions
JPH0625370B2 (en
Inventor
Daisuke Onoda
大介 斧田
Shuichi Taniyoshi
谷吉 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16339788A priority Critical patent/JPH0625370B2/en
Publication of JPH0211711A publication Critical patent/JPH0211711A/en
Publication of JPH0625370B2 publication Critical patent/JPH0625370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To uniformly feed raw material to circumferential direction in a blast furnace and to stabilize the furnace condition by controlling feeding the raw material with a swinging chute based on the result of actual monitoring of the fed material distribution to the circumferential direction in the furnace at the time of feeding the raw material with the swinging chute in top part of the blast furnace. CONSTITUTION:Iron ore and coke in fixed hoppers 2, 3 are fed into the blast furnace while swining the swinging chute 9 after passing a fixed chute 8 through gates 4, 5. In this case, based on inputs of weighers 16, 17 in the fixed hoppers 2, 3 and swung angle of the swinging chute 9, etc., the actual result monitoring of the charged material on a small bell 10 is executed and the results is expanded into Fourier series to obtain frequency distribution of segregation. Then, by dynamic-operating and working position of the swinging chute 9 so that the raw material wt. of each iron ore and coke at every few batches, regular revolution/reverse revolution ratio of the swinging chute 9 and each accumulated value of the raw material discharged wt. entirely become the constant values on the small bell 10, the charged material is uniformly distributed to the circumferential direction in the blast furnace and the furnace condition in the blast furnace is stably operated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高炉原料装入物分布の制御方法に係り、詳しく
は、高炉炉頂から旋回シュートを介して高炉内に原料を
装入する際に、その装入物分布を高炉の円周方向にわた
って一定になるように制御する方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the distribution of raw material charge in a blast furnace, and more specifically, when charging raw material into a blast furnace from the top of the blast furnace through a rotating chute, The present invention relates to a method of controlling the charge distribution so as to be constant over the circumferential direction of the blast furnace.

従  来  の  技  術 高炉の炉頂部には、炉内に粒塊状原料を投下し、分布す
るための旋回機能を有するシュートが設けられ、このシ
ュートにより、高炉原料を装入し均一な炉内分布とする
方法が採用されている。そこで、上記方法を実施する際
に用いられる装置の一例を第6図に従って説明する。第
6図は動作が簡易なる所謂ベル式の原料装入方式の場合
の例であるが、ベルレス式の装入方式の場合であっても
同様である。図中の符号1は貯鉱槽及び貯骸槽(図示せ
ず)より高炉原料である各種鉱石(A)及びコークス(
B)を炉頂へ搬送するための装入コンベア、2.3はそ
の原料A、Bを高炉内へ装入する前にそれぞれ一時滞留
の役目をする固定ホッパ4.5はこの固定ホッパの底部
に位置して開閉動作により原料を排出するゲート、6.
7は炉頂ガスをシールするためのシール弁、8は固定シ
ュート、9は旋回シュートである。これらは小ベル10
の直上に位置して、これら原料の高炉円周方向分布を均
一にする目的で設置されている重要な装置である。この
旋回シュート9は符号11の油圧モータを動力源として
駆動し、油圧モータ11は電動機12を駆動源とする油
圧ポンプ13の発生油圧により回転するもので、油圧モ
ータ11と油圧ポンプ13との油圧配管途中には、油圧
ポンプ13を正転、逆転、制動等の切替え等の制御をす
るための電磁弁ユニット14が設置されている。
Conventional technology The top of the blast furnace is equipped with a chute with a rotating function for dropping and distributing the granular material into the furnace.This chute allows the material to be charged into the blast furnace and distributed uniformly in the furnace. The method is adopted. An example of an apparatus used to carry out the above method will be described with reference to FIG. 6. Although FIG. 6 shows an example of a so-called bell-type raw material charging system which is simple in operation, the same applies to a bell-less charging system. Reference numeral 1 in the figure indicates various ores (A) and coke (A), which are raw materials for blast furnaces, collected from the ore storage tank and the storage tank (not shown).
2.3 is a charging conveyor for transporting the raw materials A and B to the top of the blast furnace; 2.3 is a fixed hopper 4.5 that serves as a temporary storage area for the raw materials A and B before charging them into the blast furnace; 4.5 is the bottom of this fixed hopper; 6. A gate located at the gate for discharging raw materials by opening and closing operations;
7 is a seal valve for sealing the top gas, 8 is a fixed chute, and 9 is a rotating chute. These are small bell 10
This is an important device that is located directly above the blast furnace and is installed for the purpose of making the distribution of these raw materials uniform in the circumferential direction of the blast furnace. The swing chute 9 is driven by a hydraulic motor 11 as a power source, and the hydraulic motor 11 is rotated by the hydraulic pressure generated by a hydraulic pump 13 whose driving source is an electric motor 12. A solenoid valve unit 14 is installed in the middle of the piping to control switching of the hydraulic pump 13 between normal rotation, reverse rotation, braking, etc.

以上説明した旋回シュート周辺の機器構成における動作
の流れを第7図に示す。まず、旋回シュート9をどちら
かの方向に連続旋回駆動させ、加速が終了してほぼ定速
回転となるタイミングにシール弁6.7の開動作及び開
動作の検出と同時にゲート4、引き続いてゲート5を順
次開動作とする。これより固定ホッパ2.3内の原料は
ゲート4.5及びシール弁6.7を通過し、固定シュー
ト8により小ベル10の円周上に装入される。固定ホッ
パ2.3内の原料が全て排出されたと思われる充分なる
余裕時間を見てゲート4.5を閉動作とし、この閉動作
の検出と同時にシル弁6.7を閉動作とする。その後、
旋回シュド9を停止させる。第7図において斜線部は、
旋回シュート9上に原料が落下しているタイミングを示
したものである。
FIG. 7 shows the flow of operations in the equipment configuration around the rotating chute described above. First, the swing chute 9 is continuously driven to swing in either direction, and at the timing when the acceleration is finished and the rotation becomes approximately constant speed, the opening operation of the seal valve 6.7 and the detection of the opening operation are simultaneously performed, and the gate 4 is opened. 5 as sequential opening operation. From this, the raw material in the fixed hopper 2.3 passes through the gate 4.5 and the seal valve 6.7, and is charged onto the circumference of the small bell 10 through the fixed chute 8. The gate 4.5 is closed after a sufficient margin of time when all the raw materials in the fixed hopper 2.3 are thought to have been discharged, and the sill valve 6.7 is closed at the same time as this closing operation is detected. after that,
The rotating SUD 9 is stopped. In Fig. 7, the shaded area is
This shows the timing at which the raw material is falling onto the rotating chute 9.

以上の動作が炉頂バッチの進行に従って、順次繰返し行
なわれる。なお、旋回シュート9の回転方向はオペレー
ター設定にて選択することができ、一定炉頂バツチ数毎
に切替えて運用するようにしている。
The above operations are sequentially repeated as the furnace top batch progresses. Note that the rotation direction of the rotating chute 9 can be selected by operator settings, and is switched for every certain number of batches at the top of the furnace.

以上の旋回シュート9の動作運用においては、以下に示
す問題のために、小ベル円周上において装入偏差が生じ
る弊害が指摘されている。
In the operation of the above-mentioned rotating chute 9, it has been pointed out that due to the following problems, a charging deviation occurs on the circumference of the small bell.

0時間管理を主体としたシーケンシャル制御のみで旋回
シュートの位置制御がなされていない。
The position control of the rotating chute is not controlled only by sequential control mainly based on zero time management.

■旋回シュートは油圧駆動のため、温度、粘度及び負荷
(原料重量)の変化の影響を受は易く動作スピードが一
定でない。
■Since the rotating chute is hydraulically driven, it is easily affected by changes in temperature, viscosity, and load (raw material weight), and its operating speed is not constant.

■旋回シュートを正転旋回(第1図において旋回シュー
ト9が矢印方向へ旋回)するか、逆転旋回(第1図にお
いて旋回シュート9が矢印方向と逆方向へ旋回)するか
は正転旋回と逆転旋回では円周方向の装入物分布が旋回
シュド旋回開始位置を対象点として対象な形となるため
、円周方向装入物分布制御において重要な要素であるが
手動管理に委ねられており、明確なる制御指針がない。
■Whether the rotating chute rotates forward (the rotating chute 9 rotates in the direction of the arrow in Figure 1) or reversely (the rotating chute 9 rotates in the opposite direction to the arrow in Figure 1) is determined by normal rotation. In reverse rotation, the charge distribution in the circumferential direction is symmetrical with respect to the start position of the rotation, so although it is an important element in controlling the circumferential charge distribution, it is left to manual management. , there are no clear control guidelines.

以上の問題により、現状の制御においては原料落下時の
旋回シュート9の位置、旋回速度、すなわち、小ベル1
0の円周方向の落下位置が無制御状態にあり均一な分布
制御が期待できない。
Due to the above problems, in the current control, the position and rotation speed of the rotating chute 9 when the material falls, that is, the small bell 1
The falling position of 0 in the circumferential direction is in an uncontrolled state, and uniform distribution control cannot be expected.

このような問題に対し、従来から種々の試みがなされて
いる。
Various attempts have been made to solve this problem.

例えば、特開昭62−63606号公報に示されたもの
がある。
For example, there is one disclosed in Japanese Patent Application Laid-Open No. 62-63606.

この方法は固定ホッパ内からの原料排出速度の変化及び
旋回シュートの旋回角度を検出することによって、分布
実績モニタリングにて積付は実績を把握し、この実績値
を次の制御に反映させ、次の制御において順次偏析弁を
打消すフィトバック制御をするようにしたものであり、
この方法によれば、小ベルの円周方向の落下位置等の制
御は可能となるが、装入物分布に偏析が発生した場合に
、その偏析の解消する手段を見出すことが試行錯誤的な
方法しかなく、そのため偏析解消手段が見出せない場合
も多々あり、十分な装入物分布の制御がむづかしい。
This method detects the change in material discharge speed from the fixed hopper and the rotation angle of the rotating chute to grasp the actual loading performance through distribution performance monitoring, and reflects this actual value in the next control. In this control, phytback control is performed to sequentially cancel the segregation valve.
According to this method, it is possible to control the falling position of the small bell in the circumferential direction, but when segregation occurs in the charge distribution, it is difficult to find a means to eliminate the segregation by trial and error. However, there are many cases where no means of eliminating segregation can be found, making it difficult to adequately control the charge distribution.

発明が解決しようとする課題 本発明はこれらの問題を解決することを目的とし、具体
的には、従来例では旋回シュートによる高炉原料の炉内
分布装入においては、旋回シュートの位置制御がなされ
ていないこと、旋回シュートは油圧駆動であるため、油
圧ポンプの油の変化の影響を受は易く、動作スピードが
定でないこと、旋回シュートを正転旋回するか、逆転旋
回するかの判断の基準がな(、手動管理されていること
などから小ベル円周上において装入偏差を生ずる口と、
更に、このような小ベル円周上における原料装入偏差を
解決した高炉原料装入物分布の制御方法が十分に確立さ
れていないこと等の問題を解決する口とを目的とする。
Problems to be Solved by the Invention The present invention aims to solve these problems, and specifically, in the conventional example, when distributing and charging blast furnace raw materials into the furnace using a rotating chute, the position of the rotating chute is not controlled. Since the swing chute is hydraulically driven, it is easily affected by changes in the oil in the hydraulic pump, and the operating speed is not constant.The criteria for determining whether to swing the swing chute in the forward direction or in the reverse direction (A mouth that causes charging deviation on the circumference of the small bell due to manual control etc.)
Furthermore, it is an object of the present invention to solve the problem that a method of controlling the distribution of the blast furnace raw material charge that solves the raw material charging deviation on the circumference of the small bell has not been sufficiently established.

課題を解決するための 手段ならひにその作用 すなわち、本発明は、複数の固定ホッパから旋回シュー
トを介して高炉内へ原料を装入する際に、固定ホッパの
重量計よりの排出及び旋回シュートの旋回角度等の入力
に基づいて高炉内円周方向の装入物分布の実績モニタリ
ングを行ない、この結果に基づいて数バッチ分電の鉱石
、コークス別の原料重量、排出順の各累積値が全旋回角
度にわたって一定値となるようにフーリエ級数にて表現
した偏析の数学モデルに基づき、次回装入の排出タイミ
ングを逐一ダイナミックにフィードバック演算し、この
演算結果に基づいて原料装入することを特徴とする。
As a means for solving the problem, the present invention has the following advantages: When charging raw materials from a plurality of fixed hoppers into a blast furnace via a rotating chute, the present invention is capable of discharging from a weighing scale of the fixed hoppers and discharging from a rotating chute. Based on inputs such as the rotation angle of the blast furnace, actual monitoring of the charge distribution in the circumferential direction inside the blast furnace is performed, and based on this result, the cumulative values of the raw material weight and discharge order for each batch of ore and coke are calculated. Based on a mathematical model of segregation expressed in a Fourier series so as to maintain a constant value over the entire rotation angle, the discharge timing for the next charge is dynamically calculated step by step, and raw materials are charged based on the results of this calculation. shall be.

そこで、これらの手段たる構成ならびにその作用につい
て更に具体的に説明すると、次の通りである。
Therefore, the structure of these means and their operation will be explained in more detail as follows.

本発明は原料A、Bの固定ホッパ2.3の重量計及び旋
回シュート9の旋回角度等の入力に基づいて、小ベル1
0上の装入物分布の実績モニタリングを行ない、この結
果をフーリエ級数に展開し偏析の周波数成分を求めるこ
とにより、数バッチ分電の鉱石、コークス別の原料重量
、正転/逆転比、原料排出順の各累積値が全旋回角度、
すなわち、小ベル10の全ての円周において一定値とな
るように次回装入の原料排出開始時の旋回シュート9の
位置(スタートポイント)を逐ダイナミックに演算し、
これに従って高炉原料を装入するもので、この方法は従
来全く知られていなかったもので、これにより適切なる
装入物分布を得、安定した高炉の操業を確保し得ること
ができる高炉の原料装入物分布の制御方法を提供するも
のである。
The present invention operates based on inputs such as the weight scale of the fixed hopper 2.3 of raw materials A and B and the turning angle of the turning chute 9.
By monitoring the performance of the charge distribution on 0 and expanding the results into a Fourier series to obtain the frequency components of segregation, we can calculate the raw material weight, forward/reverse rotation ratio, and raw material weight for each batch of ore and coke. Each cumulative value in the ejection order is the total turning angle,
That is, the position (start point) of the rotating chute 9 at the start of discharging the material to be charged next time is dynamically calculated so that it becomes a constant value over the entire circumference of the small bell 10,
The blast furnace raw material is charged according to this method, and this method was completely unknown in the past.This method allows for obtaining an appropriate distribution of the burden material and ensuring stable operation of the blast furnace. A method for controlling charge distribution is provided.

以下、図面に従って、本発明について詳しく説明すると
、次の通りである。
Hereinafter, the present invention will be described in detail with reference to the drawings.

なお、第1図は本発明方法を実施する際に用いる高炉原
料装入装置の一例の一部ブロック線図を含む概略の断面
図であり、第2図は円周方向装入物分布を示すグラフで
あり、第3図は第2図の線図を周期関数とみなした円周
方向装入物分布を示すグラフであり、第4図はスタート
ポイント0°より72°ずつスタートポイントをシフト
して5回装入時の炉内に堆積した円周方向装入物分布の
各装入毎の推移を示すグラフであり、第5図は第4図の
冬作における高炉内に堆積した円周方向原料分布の周波
数成分の各装入毎の推移を示すグラフであり、第6図は
従来例の旋回シュートにより炉内分布の概要を示す説明
図であり、第7図は従来例の旋回シュート周辺の機器動
作のフロー図である。
In addition, FIG. 1 is a schematic cross-sectional view including a partial block diagram of an example of a blast furnace raw material charging apparatus used when carrying out the method of the present invention, and FIG. 2 shows a circumferential direction charge distribution. Fig. 3 is a graph showing the circumferential charge distribution with the diagram in Fig. 2 taken as a periodic function, and Fig. 4 is a graph in which the starting point is shifted by 72° from the starting point of 0°. Figure 5 is a graph showing the change in the circumferential distribution of charge deposited in the blast furnace during five charging times, and Figure 5 shows the change in the circumferential distribution of charge deposited in the blast furnace during the winter cropping shown in Figure 4. FIG. 6 is an explanatory diagram showing an overview of the distribution in the furnace using a conventional rotating chute; FIG. FIG. 3 is a flow diagram of peripheral device operations.

符号1は装入コンベア、2.3は固定ホッパA、B、4
.5はゲートA、B、6.7はシール弁A、 B、 8
は固定シュート、9は旋回シュート、10は小ベル、1
1は油圧モータ、12は電動機、13は油圧ポンプ、1
4は電磁ユニット、15は分布実績モニタリング演算装
置、16.17は重量計A、 B、 18は位置検出器
、19は炉頂シーケンス装置、20はプリンタ、21は
分布制御演算装置、22はゲート制御装置を示す。
1 is the charging conveyor, 2.3 is the fixed hopper A, B, 4
.. 5 is gate A, B, 6.7 is seal valve A, B, 8
is a fixed chute, 9 is a rotating chute, 10 is a small bell, 1
1 is a hydraulic motor, 12 is an electric motor, 13 is a hydraulic pump, 1
4 is an electromagnetic unit, 15 is a distribution performance monitoring calculation device, 16.17 is a weighing scale A, B, 18 is a position detector, 19 is a furnace top sequence device, 20 is a printer, 21 is a distribution control calculation device, 22 is a gate The control device is shown.

第1図の原料装入装置の旋回シュート9の周辺機器の構
成は、第6図に示した従来例の機器構成に対して以下の
機器を付加したものである。
The configuration of the peripheral equipment of the rotating chute 9 of the raw material charging device shown in FIG. 1 is such that the following equipment is added to the equipment configuration of the conventional example shown in FIG.

なお、この実施例装置において従来例と同一の機器につ
いては第6図に付した符号を付けずに留め、重複の説明
は省略する。図中符号15は原料Aの固定ホッパ2、原
料Bの固定ホッパ3に設けた重量計16.17からの重
量信号と旋回シュー1〜9の位置検出器18からの旋回
角信号に基づいて、小ベル10上の装入物分布を想定す
る分布実績モタリング演算装置である。本装置はまた既
存の炉頂装入シーケンス制御装置19より、固定ホッパ
2.3内に堆積している原料の区別、すなわち、鉱石で
あるかコークスであるかの信号もとりこんでいる。炉頂
装入シーケンス制御装置19では貯鉱槽あるいは貯骸槽
より一連の原料の流れをトラッキングしており、旋回シ
ュート9にて小ベル10上に原料装入する時の原料の区
別を固定ホッパ2.3でのトラッキング結果をもって、
分布実績モニタリング渓算装置15にとりこむものであ
る。分布制御演算装置21では、前段での実際の積付は
状況の実績結果をとらえて、その結果を高速フーリエ変
換処理にてフーリエ級数に展開し、偏析の周波数成分を
求め、プリンタ20に前段よりとりこんだ分布実績モニ
タリング演i装置15での/mW処理結果と共に出力す
る。そして、偏析の周波数成分、最新の数バッチ分毎の
鉱石、コークス別の原料重量の全累積値が全旋回角度、
すなわち、小ベル10の全ての円周において一定値とな
るように次回装入のスター1−ポイントを逐一ダイナミ
ックに演算する。図中符号22は前段の指令に基づいて
シール弁6.7及び引き続きゲート4.5の開動作制御
を行なうゲト制御装置である。
In this embodiment, the same equipment as in the conventional example is omitted from the reference numerals shown in FIG. 6, and redundant explanation will be omitted. Reference numeral 15 in the figure is based on the weight signal from the weight scales 16 and 17 provided in the fixed hopper 2 for raw material A and the fixed hopper 3 for raw material B, and the rotation angle signal from the position detectors 18 of the rotation shoes 1 to 9. This is a distribution performance monitoring calculation device that assumes the charge distribution on the small bell 10. The device also receives a signal from the existing top charging sequence controller 19 to distinguish the material deposited in the stationary hopper 2.3, ie, ore or coke. The furnace top charging sequence control device 19 tracks the flow of a series of raw materials from the ore storage tank or the storage tank, and distinguishes between raw materials when charging the raw materials onto the small bell 10 with the rotating chute 9 between the fixed hopper and the fixed hopper. With the tracking results in 2.3,
This is to be taken into the distribution performance monitoring calculation device 15. The distribution control arithmetic unit 21 captures the actual results of the actual loading situation at the front stage, expands the results into a Fourier series using fast Fourier transform processing, obtains the frequency components of segregation, and sends the results to the printer 20 from the front stage. The captured distribution performance monitoring performance is output together with the /mW processing result in the i-device 15. Then, the frequency components of segregation, the total cumulative value of the weight of ore for each of the latest batches, and the raw material weight for each coke are determined by the total rotation angle,
That is, the star 1-point for the next charging is dynamically calculated one by one so that it becomes a constant value over the entire circumference of the small bell 10. Reference numeral 22 in the figure is a gate control device that controls the opening operation of the seal valve 6.7 and subsequently the gate 4.5 based on the previous command.

以上の構成から明らかなように、本発明は以下に述べる
特徴から成立っている。
As is clear from the above configuration, the present invention is based on the features described below.

すなわち、本発明は円周方向装入物分布を7リ工級数に
て表現し、その偏析の各周波数成分の大きさより旋回シ
ュート9の最適スタートポイントの演算を行なうことで
、次の特徴をダイナミックに行なうというものである。
That is, the present invention expresses the charge distribution in the circumferential direction as a 7-rework series, and calculates the optimal starting point of the rotating chute 9 from the magnitude of each frequency component of the segregation, thereby dynamically realizing the following characteristics: The idea is to do so.

以下、更に本発明について詳しく説明する。The present invention will be further explained in detail below.

まず、分布実績モニタリング演算装置15における処理
方法について述べる。固定ホッパ2及び固定ホッパ3の
各々の個別の重量計16.17h・らの重量変化と、炉
頂装入シーケンス制御装置19からの原料の区別(鉱石
、コークス)の変化の入力信号と、もう一つの入力信号
である旋回シコト9の位置検出器18からの旋回角信号
の変化との時間的対応をとり、旋回角度と装入原料量と
の関係を導いている。この装入原料量は鉱石とコークス
及び固定ホッパ2の排出分(原料A)と固定ホッパ3の
排出分(原料B)の4つの区分別とするものである。
First, the processing method in the distribution performance monitoring calculation device 15 will be described. Input signals of changes in the weight of the individual weight scales 16,17h, etc. of each of the fixed hoppers 2 and 3, and changes in the classification of raw materials (ore, coke) from the furnace top charging sequence control device 19, The relationship between the rotation angle and the amount of raw material charged is derived by making a temporal correspondence with a change in the rotation angle signal from the position detector 18 of the rotation tip 9, which is one input signal. The amount of charged raw materials is divided into four categories: ore, coke, the amount discharged from the fixed hopper 2 (raw material A), and the amount discharged from the fixed hopper 3 (raw material B).

次に、分布制御演算装置21での処理方法の詳細につい
て述べる。
Next, details of the processing method in the distribution control calculation device 21 will be described.

分布実績モニタリング演算装置15よりとらえた円周方
向装入物分布を示す線図(旋回シュドの旋回角度と装入
物重量との関係を示す線図)は、第2図に示すような形
であるが、この装入物分布を第3図の線図に示すような
数学的な意見での360度周期の周期関数と考えること
により、装入物分布をフーリエ級数で表現することがで
き、装入物分布の円周方向偏差を数学的に記述が可能と
なる(このフーリエ級数については、以北出版発行工業
基礎演習シリーズI「フリエ解析」等に記載されている
)。油圧ポンプの温度や粘度は短時間内では同じ状況に
あると見なせるので、旋回シュート9の旋回速度は、原
料数バッチ装入間には油圧ポンプの温度や粘度の変化に
よる影響は受けることはない。また、固定ホッパ2.3
の重量の時間的変化は、固定ホッパ2.3に装入される
それぞれの原料の量、原料性状が同一でゲート開度が同
一ならば一定である。そこで、固定ホッパ2.3に装入
される原料の量、原料性状が同一である場合、1バツチ
当りに装入される円周方向装入物分布はスタートポイン
トθ′度の時、(1)式及び(1)′式で求められる。
A diagram showing the circumferential charge distribution captured by the distribution performance monitoring calculation device 15 (a diagram showing the relationship between the turning angle of the rotating sudo and the charge weight) is shown in the form shown in Fig. 2. However, by considering this charge distribution as a periodic function with a period of 360 degrees in mathematical terms as shown in the diagram in Figure 3, the charge distribution can be expressed as a Fourier series, It becomes possible to mathematically describe the deviation in the circumferential direction of the charge distribution (this Fourier series is described in the Industrial Basic Exercises Series I "Furier Analysis" published by Ikita Publishing, etc.). Since the temperature and viscosity of the hydraulic pump can be considered to be in the same state within a short time, the rotation speed of the rotation chute 9 is not affected by changes in the temperature and viscosity of the hydraulic pump during the charging of several batches of raw material. . In addition, fixed hopper 2.3
The temporal change in the weight of is constant if the amount and properties of each raw material charged into the fixed hopper 2.3 are the same and the gate opening degree is the same. Therefore, when the amount of raw material charged into the fixed hopper 2.3 and the raw material properties are the same, the distribution of the charged material in the circumferential direction charged per batch is (1 ) and (1)'.

f(θ、θ’ 1=ao+Σ(ak −cos(k ・
(θ−θ′))に+1 +bksin(k(θ−θ’ )))  −・・−=(
1)=ao+ΣCk (Sin(−に−θ′に +γk)・C08(k・θ)+cos(−k・θ′+ 
7kl −5in(k−θ))・・・・・・・・・(1
)′但し、θ:高炉円周方向角度 f(θ、θ′)ニスタートポイントθ′度で装入した時
の円周方向装入 物分布 すに γに−TAN−1 ak Ck−品T〒1F (1)、(1)′式において、ao以外の各項が円周方
向の偏析に関与する。スタートポイントψむ り、jは互いに素な正の整数)ずつシフトシて1回原料
を装入した場合、高炉内に堆積した円周方向原料分布F
(θ、L 、 j)は次の(2)式によって求められる
f(θ, θ' 1=ao+Σ(ak −cos(k ・
(θ−θ′)) +1 +bksin(k(θ−θ′))) −・・−=(
1)=ao+ΣCk (Sin(- to -θ'+γk)・C08(k・θ)+cos(-k・θ′+
7kl −5in(k−θ))・・・・・・・・・(1
)' However, θ: Blast furnace circumferential direction angle f (θ, θ') Circumferential charge distribution when charging at Ni start point θ' degrees -TAN-1 ak Ck-Product T 〒1F In equations (1) and (1)', each term other than ao is involved in segregation in the circumferential direction. If the raw material is charged once by shifting the starting point ψ (j is a relatively prime positive integer), the circumferential raw material distribution F deposited in the blast furnace is
(θ, L, j) is determined by the following equation (2).

F(θ、L 、 J)= Lao+Σi −ci・4 
Hsin(L−k・θ十γ6.k)・・・・・・(2)
(2)式にて偏析の周波数成分はLの整数倍でない項が
0である。
F (θ, L, J) = Lao + Σi −ci・4
Hsin (L-k・θ1γ6.k)...(2)
In equation (2), the frequency component of segregation is 0 for terms that are not integral multiples of L.

料装入による高炉内に堆積した円周方向原料分布の推移
(旋回角度と原料重量との関係)及び炉内装入物分布の
偏析、周波数成分(ak2+ bk2)の推移を各装入
バッチ毎に計算してその結果をそれぞれ第4図及び第5
図にプリンター出力結果として示した。
Changes in the circumferential distribution of raw materials deposited in the blast furnace due to charging (relationship between rotation angle and raw material weight), segregation of the contents distribution in the furnace, and changes in frequency components (ak2 + bk2) for each charging batch. Calculate and show the results in Figures 4 and 5, respectively.
The figure shows the printer output results.

分布演算制御I演算装置21は(1)式により偏析の周
波数成分を求め、その高炉操業に悪影響をおよぼず周波
数成分の周波数最大値kmaxを求め、を解消する制御
を固定ホッパ2.3別に、また、コークス、鉱石毎に行
なうものである。シフ1へ角の計算は装入バッチ毎に行
なわれ、新たに計算されたシフト角が今回使用のシフト
角とある値以上差がある時には変更し、多少の小ベル上
の円周方向分布の乱れが制御に対する影響のないものと
する。周波数最大値kmaxはF(θ、む、j)を鉱石
、コークス別の原料重量、原料排出順の各累積値それぞ
れについて計算し、その偏析の総和Σpが基準レベ□ル
以上となる Lの中の最大値とする。
The distribution calculation control I calculation unit 21 calculates the frequency component of segregation using equation (1), calculates the maximum frequency value kmax of the frequency component without adversely affecting the blast furnace operation, and performs control to eliminate the problem for each fixed hopper 2.3. This is also done for each coke and ore. The calculation of the shift angle to shift 1 is performed for each charging batch, and if the newly calculated shift angle differs from the currently used shift angle by more than a certain value, it is changed, and the circumferential distribution on some small bells is changed. Assume that disturbances have no effect on control. The maximum frequency value kmax is calculated by calculating F(θ, m, j) for each cumulative value of ore, raw material weight for each coke, and raw material discharge order, and then calculating the value in L where the total segregation Σp is equal to or higher than the standard level □. be the maximum value of

また、Jはkmax決定後、kmax+1回装入までの
累積偏差「(θ、θ′)を(3)、(4)式により各J
についてn=1よりn = kmaxにて計算し、km
ax +1回までの装入時の偏析5〆が最小となるよう
なjを採用する。
In addition, after determining J, calculate the cumulative deviation "(θ, θ') up to kmax + 1 charge for each J using equations (3) and (4).
Calculate with n = km from n = 1 for km
Adopt j that minimizes the segregation 5〆 during charging up to ax +1 times.

ΣF(θ、 θ’  1=n−ao  +Σ(八K・S
II′1θ+BK−CO3θ)   −(3)に ントを演算し、(kmax+1)回の装入で炉内円周方
向装入物分布の偏析のkmax以下の周波数成分ゲート
制御l装置22は前段の分布制御Il演算装置21の指
令に基づいて具体的にシール弁6.7及び引き続きゲー
ト4.5の開動作を行なう動力制御回路である。
ΣF(θ, θ' 1=n-ao +Σ(8K・S
II′1θ+BK−CO3θ)−(3), and the gate control device 22 controls the frequency component of the segregation of the charge distribution in the circumferential direction in the furnace below kmax after (kmax+1) charging times. This is a power control circuit that specifically opens the seal valve 6.7 and subsequently the gate 4.5 based on commands from the control Il calculation device 21.

なお、分布実績モニタリング演算装置15および分布制
御0演算装置21は同一のマイコン内で処理する構成と
なっている。
Note that the distribution performance monitoring calculation device 15 and the distribution control zero calculation device 21 are configured to be processed within the same microcomputer.

上記の実施例によれば、円周方向の高炉原料装入物分布
を自動的に高炉操業に最適な状態の分布に制御できる。
According to the above-mentioned embodiment, the distribution of the blast furnace raw material charge in the circumferential direction can be automatically controlled to the optimum distribution for the blast furnace operation.

〈発明の効果〉 以上説明した通り、本発明は、複数の固定ホラパから旋
回シュートを介して高炉内へ原料を装入する際に、固定
ホッパの重量計よりの排出及び旋回シュートの旋回角度
等の入力に基づいて高炉内円周方向の装入物分布の実績
モニタリングを行ない、この結果に基づいて数バッチ弁
筒の鉱石、コークス別の原料重量、排出順の各累積値が
全旋回角度にわたって一定値となるようにフーリエ級数
にて表現した偏析の数学モデルに基づき、次回装入の排
出タイミングを逐一ダイナミックにフィードバック演算
し、この演算結果に基づいて原料装入することを特徴と
するものである。
<Effects of the Invention> As explained above, the present invention enables the discharge of the fixed hopper from the weighing scale, the turning angle of the turning chute, etc. when charging raw materials from a plurality of fixed hoppers into the blast furnace via the turning chute. Based on this input, we perform actual monitoring of the charge distribution in the circumferential direction inside the blast furnace, and based on this result, we calculate the cumulative values of the raw material weight and discharge order for each batch of ore and coke over the entire rotation angle. Based on a mathematical model of segregation expressed in a Fourier series so as to maintain a constant value, the discharge timing for the next charge is dynamically calculated step by step, and the material is charged based on the results of this calculation. be.

従来例では旋回シュートによる高炉原料の炉内分布装入
において、高炉原料装入管理が十分に行なわれていない
ため、高炉原料装入物分布が小ベル円周上において装入
偏差が生じ、これを解決する有効、万全なる方策が見当
らなかったのが現状である。
In the conventional example, when blast furnace raw material is distributed and charged inside the furnace using a rotating chute, the blast furnace raw material charging management is not carried out sufficiently, so the blast furnace raw material charge distribution causes charging deviation on the small bell circumference, and this The current situation is that no effective or perfect solution has been found.

そこで、本発明はこの偏差を確実に把握し、よって次の
制御にダイナミックに反映するどいう方策を採ったこと
に大きな特徴を有するもので、これらの原料重量、鉱石
/コークス比等の面についての偏析防止の効果が高く、
このため、常に適正なる装入物分布が得られると共に、
円滑なる原料装入を行なうことができ、安定した高炉操
業を確保することができる。
Therefore, the present invention has a major feature in that it takes measures to reliably grasp this deviation and dynamically reflect it in the next control. Highly effective in preventing segregation,
Therefore, a proper charge distribution can always be obtained, and
Smooth raw material charging can be performed and stable blast furnace operation can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する際に用いる高炉原料装入
装置の一例の一部ブロック線図を含む概略の断面図、第
2図は円周方向装入物分布を示すグラフ、第3図は第2
図の線図を周期関数とみなした円周方向装入物分布を示
すグラフ、第4図はスタートポイント0°より72°ず
つスタートポイントをシフ]・シて5回装入時の炉内に
堆積した円周方向原料分布の各装入毎の推移を示すグラ
フ、第5図は第4図の冬作における高炉内に堆積した円
周方向原料分布の周波数成分の各装入毎の推移を示すグ
ラフ、第6図は従来例の旋回シュートによる炉内分布の
概要を示す説明図、第7図は従来例の旋回シュート周辺
の機器動作のフロー図である。 符号1・・・・・・装入コンベア 2.3・・・・・・
固定ホッパ4.5・・・・・・ゲート   6.7・・
・・・・シール弁8・・・・・・固定シュート 9・・
・・・・旋回シュー1−10・・・・・・小ベル   
 11・・・・・・油圧モータ12・・・・・・電動機
    13・・・・・・油圧ポンプ14・・・・・・
電磁弁ユニット 15・・・・・・分布実績モニタリング演算装置16.
17・・・・・・重量計A  18・・・・・・位置検
出器19・・・・・・炉頂シーケンス装買 20・・・・・・プリンタ 21・・・・・・分布側t[l演算装置22・・・・・
・ゲート制tIl装置
FIG. 1 is a schematic cross-sectional view including a partial block diagram of an example of a blast furnace raw material charging apparatus used in carrying out the method of the present invention, FIG. 2 is a graph showing the circumferential charge distribution, and FIG. The figure is the second
A graph showing the circumferential charge distribution considering the diagram in the figure as a periodic function. Figure 4 shows the starting point shifted by 72° from the starting point of 0°. Figure 5 is a graph showing the changes in the distribution of the circumferential raw material deposited in the blast furnace for each charge. FIG. 6 is an explanatory diagram showing an overview of the distribution in the furnace due to the conventional rotating chute, and FIG. 7 is a flowchart of equipment operations around the conventional rotating chute. Code 1...Charging conveyor 2.3...
Fixed hopper 4.5...Gate 6.7...
... Seal valve 8 ... Fixed chute 9 ...
...Swivel shoe 1-10 ...Small bell
11... Hydraulic motor 12... Electric motor 13... Hydraulic pump 14...
Solenoid valve unit 15...Distribution performance monitoring calculation device 16.
17... Weight scale A 18... Position detector 19... Furnace top sequence equipment 20... Printer 21... Distribution side t [l Arithmetic unit 22...
・Gated tIl device

Claims (1)

【特許請求の範囲】[Claims] 1)複数の固定ホッパから旋回シュートを介して高炉内
へ原料を装入する際に固定ホッパの重量計よりの排出及
び旋回シュートの旋回角度等の入力に基づいて高炉内円
周方向の装入物分布の実績モニタリングを行ない、この
結果に基づいて数バッチ分毎の鉱石、コークス別の原料
重量、排出順の各累積値が全旋回角度にわたつて一定値
となるようにフーリエ級数にて表現した偏析の数学モデ
ルに基づき次回装入の排出タイミングを逐一ダイナミッ
クにフィードバック演算し、この演算結果に基づいて原
料装入することを特徴とする高炉原料装入物分布の制御
方法。
1) When charging raw materials into the blast furnace from multiple fixed hoppers via the rotating chute, charging in the circumferential direction inside the blast furnace based on inputs such as discharge from the weight scale of the fixed hoppers and the rotation angle of the rotating chute. Based on the results, the cumulative values of each batch of ore, raw material weight for each coke, and discharge order are expressed in a Fourier series so that they remain constant over the entire rotation angle. A method for controlling the distribution of raw material charge in a blast furnace, characterized in that the discharge timing of the next charge is dynamically calculated based on a mathematical model of segregation, and the raw material is charged based on the result of this calculation.
JP16339788A 1988-06-30 1988-06-30 Blast furnace feed charge distribution control method Expired - Lifetime JPH0625370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16339788A JPH0625370B2 (en) 1988-06-30 1988-06-30 Blast furnace feed charge distribution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16339788A JPH0625370B2 (en) 1988-06-30 1988-06-30 Blast furnace feed charge distribution control method

Publications (2)

Publication Number Publication Date
JPH0211711A true JPH0211711A (en) 1990-01-16
JPH0625370B2 JPH0625370B2 (en) 1994-04-06

Family

ID=15773116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16339788A Expired - Lifetime JPH0625370B2 (en) 1988-06-30 1988-06-30 Blast furnace feed charge distribution control method

Country Status (1)

Country Link
JP (1) JPH0625370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387137A2 (en) * 2002-07-30 2004-02-04 SMS Demag AG Apparatus for charging of a blast furnace via conveyor belt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387137A2 (en) * 2002-07-30 2004-02-04 SMS Demag AG Apparatus for charging of a blast furnace via conveyor belt
EP1387137B1 (en) * 2002-07-30 2010-03-10 Paul Wurth S.A. Apparatus for charging of a blast furnace via conveyor belt
DE10234520B4 (en) * 2002-07-30 2011-01-27 Paul Wurth S.A. Apparatus for banding a blast furnace

Also Published As

Publication number Publication date
JPH0625370B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
EP0488318B1 (en) Control method of and apparatus for material charging at top of blast furnace
JPH0211711A (en) Method for controlling distribution of feedstock in blast furnace
US4344823A (en) Discharging method and apparatus for dry coke cooling chambers
JPS6043406B2 (en) Control method of raw material control gate
JPS58123808A (en) Charging method of raw material into blast furnace
JPS6137903A (en) Method for controlling discharge of starting material to be charged into blast furnace
RU2806426C1 (en) Method for monitoring grinding process in drum mills
JP2000345220A (en) Method for charging raw material in bell-less blast furnace
JPH033722B2 (en)
JP3739018B2 (en) Raw material charging control method for blast furnace
KR100376519B1 (en) Method for charging fuel by one side hopper
JPH04341413A (en) Blast furnace raw material charging control device
Rybalchenko et al. Model to control portioning for multi-component charge
JP2703682B2 (en) Calculation method of raw material behavior torque on distribution chute in bellless blast furnace
JPS57207104A (en) Charging method for bell-less type blast furnace
KR20010038729A (en) Controlling method of distributing chute of blast furnace for uniformly distributing charging material into blast furnace
CN117187457A (en) Furnace top charging bucket weighing compensation method, system and equipment
JPH02254111A (en) Method for controlling bellless charging equipment in blast furnace
JPS5943803A (en) Charging method of raw material to bell type blast furnace
KR100584733B1 (en) Apparatus for detecting the state of charging and Method thereof
KR20230151908A (en) Method and arrangement for the industrial scale production of a suspension for a battery
JPH0390506A (en) Method for controlling opening degree of gate for adjusting raw material flow rate in bell-less blast furnace charging device
CN116796564A (en) Blast furnace feeding simulation method
JPH05215596A (en) Method for controlling amount of raw material weighing hopper to be taken out
JPH05215595A (en) Method for controlling amount of raw material weighing hopper to be taken out