JPH0211677B2 - - Google Patents

Info

Publication number
JPH0211677B2
JPH0211677B2 JP12117281A JP12117281A JPH0211677B2 JP H0211677 B2 JPH0211677 B2 JP H0211677B2 JP 12117281 A JP12117281 A JP 12117281A JP 12117281 A JP12117281 A JP 12117281A JP H0211677 B2 JPH0211677 B2 JP H0211677B2
Authority
JP
Japan
Prior art keywords
electrolytic
intermediate electrode
chamber
electrolytic cell
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12117281A
Other languages
Japanese (ja)
Other versions
JPS5822385A (en
Inventor
Hiroshi Ishizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12117281A priority Critical patent/JPS5822385A/en
Priority to IL64372A priority patent/IL64372A0/en
Priority to CA000390909A priority patent/CA1171384A/en
Priority to US06/325,036 priority patent/US4401543A/en
Priority to IN1354/CAL/81A priority patent/IN153352B/en
Priority to AU78340/81A priority patent/AU556119B2/en
Priority to EP81850235A priority patent/EP0054527B1/en
Priority to DE8181850235T priority patent/DE3173217D1/en
Priority to AR287756A priority patent/AR225564A1/en
Priority to BR8108030A priority patent/BR8108030A/en
Priority to NO814230A priority patent/NO156725C/en
Priority to KR1019810004860A priority patent/KR880000709B1/en
Publication of JPS5822385A publication Critical patent/JPS5822385A/en
Publication of JPH0211677B2 publication Critical patent/JPH0211677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/04Electrolytic production, recovery or refining of metals by electrolysis of melts of magnesium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は電解槽、特に陽極と陰極との間に1箇
以上の二極性の中間電極を配置した溶融MgCl2
の電解槽に対する改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement to an electrolytic cell, in particular an electrolytic cell for molten MgCl 2 in which one or more bipolar intermediate electrodes are arranged between the anode and the cathode.

溶融MgCl2の電解により金属マグネシウムを製
造するための電解槽としてこれまで多くの構成が
提案されている。これらは基本的には黒鉛から成
る陽極とこの主たる一つまたは二つの面に対向し
て配置される鉄板から成る陰極とで構成される電
極対を1組または複数組同一電解槽内に並置した
もの、またはこれらの電極対間に1箇以上の二極
性電極を挾んで並べた構成を有する。これらの運
転において生成する金属マグネシウムは通常電解
浴よりも密度が小さく浴表面へと上昇するので、
この溶融金属を同様に浴中を上昇する副生成物の
塩素ガスとの接触による再結合を防ぎながら回収
することが必要な反面、これらの生成物を生ずる
電極間の間隔はできるだけ小さくして電流効率を
高め更にこの様な電極対をできるだけ多数同一電
解槽内に配置して槽の生産能力を増すことが望ま
れる。
Many configurations have been proposed so far as electrolytic cells for producing metallic magnesium by electrolysis of molten MgCl 2 . These basically consist of an anode made of graphite and a cathode made of an iron plate placed opposite one or two main surfaces of the anode, and one or more pairs of electrodes are placed side by side in the same electrolytic cell. or a structure in which one or more bipolar electrodes are sandwiched between a pair of these electrodes. The metallic magnesium produced during these operations usually has a lower density than the electrolytic bath and rises to the bath surface.
While it is necessary to recover this molten metal while preventing recombination due to contact with chlorine gas, which is a by-product rising in the bath, the spacing between the electrodes that produce these products should be kept as small as possible so that the current It is desirable to increase the efficiency and to arrange as many such electrode pairs as possible in the same electrolytic cell to increase the cell's production capacity.

上記の技術的要望は相対立する性格のものであ
り、従来これらを満たすべく多くの電解槽の構成
が開発され提案されているにもかゝわらず、これ
らの要求を満足できる程度に両立させたものは得
られていない。
The above technical demands are of contradictory nature, and although many electrolytic cell configurations have been developed and proposed to meet these demands, there is still no way to satisfy these demands at the same time. I haven't gotten what I wanted.

例えば一つの電解槽内に多くの陽極−陰極から
成る電極対を配置して槽当りの生産性の向上を図
つた構成がいくつか知られている。例えば米国特
許第3676323号には1枚の鉄板の両面を隣接する
陽極に対するそれぞれの陰極面として使用する様
に構成し多数の電極対を取付けた電解槽が記載さ
れている。この際特別な接触防止手段が取られて
いないので生成したMgと塩素ガスとは再結合す
る機会が多く、結局電気エネルギーの効率は低
い。更に特に陽極を電解槽の下方に固定する方式
では陽極材と導電体との間の密着性を得るのが実
際上困難なため、通電時に接触不良による発熱乃
至電力損失を生じやすい。その上消耗した陽極材
の交換に煩雑な操作を要する等の欠点が見られ
る。一方米国特許第3907651号には同様に陰極材
の両面が隣接する陽極に対向して用いられる多数
の電極対の構成が記載されている。この際電解室
に置かれた各陰極材は中空であり、内部に電解浴
を通すためのダクトが設けられる。こゝではMg
を含む電解浴は上方からダクト内に入る際に塩素
ガスを分離しダクト側方の開口を経て仕切壁によ
り電解室から隔てられた金属Mgの捕集室へ導か
れ、こゝでMgが浴から分離され、一方浴は隔壁
下部の開口を経て電解室へ戻る。この様にこの構
成では陰極材内のダクトに充分に大きな幅をとる
必要があるので、この陰極を挾んで置かれる隣接
陽極間の距離はあまり小さくできず、この点から
電解槽内に置かれる電極対の数乃至電解槽の容量
が制限を受ける。また特にこの公報に示されてい
る構成の場合、電解槽の蓋を貫通する電極(陽
極)の数が多いので蓋の気密シールが技術上かな
り困難になる。
For example, some configurations are known in which many electrode pairs consisting of anodes and cathodes are arranged in one electrolytic cell to improve productivity per cell. For example, U.S. Pat. No. 3,676,323 describes an electrolytic cell in which a number of pairs of electrodes are attached, each of which is constructed so that both sides of a single iron plate are used as respective cathode surfaces for adjacent anodes. At this time, since no special measures are taken to prevent contact, there are many opportunities for the generated Mg and chlorine gas to recombine, resulting in low electrical energy efficiency. Furthermore, in particular, in a method in which the anode is fixed below the electrolytic cell, it is practically difficult to obtain adhesion between the anode material and the conductor, so that heat generation or power loss is likely to occur due to poor contact when electricity is applied. Moreover, there are drawbacks such as the need for complicated operations to replace the worn out anode material. On the other hand, US Pat. No. 3,907,651 similarly describes a configuration of multiple electrode pairs in which both sides of a cathode material are used opposite an adjacent anode. At this time, each cathode material placed in the electrolytic chamber is hollow, and a duct for passing the electrolytic bath therein is provided. Here Mg
When entering the duct from above, the electrolytic bath containing chlorine gas is separated and guided through an opening on the side of the duct to a metal Mg collection chamber separated from the electrolytic chamber by a partition wall, where Mg is collected in the bath. while the bath returns to the electrolytic chamber through an opening in the lower part of the partition wall. In this way, in this configuration, it is necessary to have a sufficiently large width for the duct inside the cathode material, so the distance between adjacent anodes placed between this cathode cannot be made too small. The number of electrode pairs and the capacity of the electrolytic cell are limited. Furthermore, especially in the case of the configuration shown in this publication, since there are a large number of electrodes (anodes) penetrating the lid of the electrolytic cell, it is technically quite difficult to hermetically seal the lid.

上記の様な電解室から突出する電極の数を減じ
た構成は米国特許第2468022号及びソ連邦発明者
証第609778号に記載されている。こゝでは陽極と
陰極との間に外部的に結線されない電極が複数箇
直列に配置され、これらの陽極と陰極に近い面が
それぞれ陰極面及び陽極面として機能する(二極
性電極)様になつている。この様な中間乃至二極
性電極では陽極面としての黒鉛と陰極面としての
鉄板とが完全に密着した構成を得ることが実際上
不可能なため、これらの接着面の間で電解が進行
し陰極面が消耗されるおそれがある。
A structure with a reduced number of electrodes protruding from the electrolytic chamber as described above is described in US Pat. No. 2,468,022 and USSR Inventor's Certificate No. 609,778. In this case, multiple electrodes that are not externally connected are arranged in series between the anode and the cathode, and the surfaces close to the anode and cathode function as the cathode surface and the anode surface, respectively (bipolar electrode). ing. With such intermediate or bipolar electrodes, it is practically impossible to obtain a structure in which the graphite as the anode surface and the iron plate as the cathode surface are completely in contact with each other, so electrolysis progresses between these bonded surfaces and the cathode The surface may be worn out.

一方、米国特許第4055474号に記載の電解槽の
構成では槽内に複数箇併置された陽極は各々垂直
面に対して傾斜した二つの面をもち、陰極はこれ
らの面に対向してほゞ平行に置かれる。この場合
電極間々隔の減小により電流効率の向上は期待さ
れるが、陽極相互間の間隔は減小できないため電
解槽の能力向上には限度がある上、多数の陽極材
が槽の蓋を貫通して並べられることにより、上記
の米国特許第3907651号の場合と同様に蓋の気密
シールの面で問題が残る。
On the other hand, in the structure of the electrolytic cell described in U.S. Pat. No. 4,055,474, a plurality of anodes arranged side by side in the cell each have two surfaces inclined with respect to the vertical surface, and the cathode is approximately opposite to these surfaces. placed in parallel. In this case, it is expected that the current efficiency will improve by reducing the distance between the electrodes, but since the distance between the anodes cannot be reduced, there is a limit to improving the capacity of the electrolytic cell. The through-line arrangement leaves problems with hermetic sealing of the lid, as in the case of the above-mentioned US Pat. No. 3,907,651.

従つて本発明は上記の従来技術に付随する各欠
点を除去した新規な構成の電解槽を提供するもの
である。即ち本発明は金属Mgと塩素ガスとを速
やかに分離・回収することによるこれらの生成物
の再結合の防止、並びに電極間々隔の減小により
電極間での電圧降下の減小を効果的に行ない、以
て電流効率の向上、更に電解槽の容積当りの生産
能力の向上を達成せしめた電解槽を提供するもの
である。そして本発明の要旨とするところは、本
質的に垂直に据えられた陽極及び陰極、該電極対
間に並べられた少くとも1箇の二極性中間電極、
並びに該陽極・陰極・中間電極から成る電極セツ
トを少くとも1組収容せる電解室及び電解浴流通
のための貫通開口を有する隔壁により該電解室か
ら分離・併設された金属捕集室を有するMgCl2
電解装置において、上記中間電極が本質的に陽極
として機能する面を供する黒鉛材と陰極として働
く面を供する鉄材とを良導電性の材質を用いて接
続すると共に該両材質の対向面間に全体的に空間
を設け、更に該空間の少くとも一端を上記隔壁の
貫通開口と連結せしめ、以て中間電極の対向部材
間に金属マグネシウム生成物のための電解室から
捕集室へ向かう流路を構成せしめたことを特徴と
するMgCl2用電解槽に存する。
Accordingly, the present invention provides an electrolytic cell with a novel configuration that eliminates the drawbacks associated with the above-mentioned prior art. That is, the present invention effectively prevents the recombination of these products by quickly separating and recovering metal Mg and chlorine gas, and effectively reduces the voltage drop between the electrodes by reducing the electrode spacing. The purpose of the present invention is to provide an electrolytic cell that achieves improved current efficiency and improved production capacity per volume of the electrolytic cell. The subject matter of the present invention is to provide an essentially vertically oriented anode and a cathode, at least one bipolar intermediate electrode arranged between the pair of electrodes;
and an electrolytic chamber accommodating at least one electrode set consisting of the anode, cathode, and intermediate electrode, and a metal collection chamber separated from and attached to the electrolytic chamber by a partition having a through opening for electrolytic bath circulation. In the electrolysis device for 2 , the intermediate electrode essentially connects the graphite material that provides the surface that functions as an anode and the iron material that provides the surface that functions as the cathode using a highly conductive material, and also connects the opposing surfaces of the two materials. a space is provided throughout the space, and at least one end of the space is connected to a through opening in the partition, so that a flow from the electrolytic chamber to the collection chamber for the metallic magnesium product is formed between the opposing members of the intermediate electrode. The present invention relates to an electrolytic cell for MgCl 2 , characterized in that it comprises a channel.

次に本発明を添附の図面によつて説明する。第
1図は本発明による電解槽の一例の概略を示す側
方断面図、第2図は第1図のA−Aで示す位置に
おける正面断面図、第3図は第2図にB−Bで示
した位置における平面断面図であり、第4図及び
第5図はこの電解槽の特に中間電極の部分の構成
のいくつかの改変例をそれぞれ側面図及び平面図
によつて略示するものである。これらの各図にお
いて電解槽1は本質的に、電解反応を行なうため
の電解室2とこの電解室2から仕切壁3によつて
隔てられた金属Mg捕集室4とから成る。電解室
2には本質的に黒鉛板から成る陽極5が一端に、
鉄板製の陰極6が他端に仕切壁3に対してほゞ直
角に据えられ、これらの両電極の一端は外部電源
に接続されている。両電極の配置はこの外場合に
応じて一方の電極を電解室2の中央に、他を両端
に据えるようにしてもよい。陽極5と陰極6との
間にはこれらとほゞ平行に、本質的に黒鉛と鉄材
とで構成された二極性の中間電極7が複数箇並べ
られる。これらの各種電極5,6,7はすべて電
気絶縁材製の架台8に載置される。架台8には電
解浴やスラツジの流動のために貫通孔9が多数設
けられ、一方電解室2の床部には沈澱したスラツ
ジを寄せ集めるために傾斜が付けられている。各
中間電極7には黒鉛板10と鉄板11との間に生
成した金属Mgを担時している浴を捕集室4へ導
くための空洞12が設けられ、この空洞12は仕
切壁3と隣接する端部にて開放し、更に仕切壁3
に設けられた貫通孔13を経て捕集室4に通じ
る。中間電極7は第2図に見られる様に鉄板面が
上向となる様な平行四辺形の断面に組立てられ
て、下端にテーパーを付けた陽極に対してほぼ平
行に並べられる。中間電極は後述する様にこの外
にも例えば第4図に略示する様に各種の態様をと
りうる。一般的に中間電極7は厚目の黒鉛板10
及びこれに金属製のボルトやピンの様な支柱14
を介して取付けられた鉄板11から成る。支柱1
4は所望の長さを残して下端部を鉄鉛板10内に
埋込まれ、頭部には鉄板11が溶接等により固着
される。この様に中間電極の黒鉛板と鉄板とは支
柱によつて両部材の内面間に浴流動のための空間
が設けられると同時に両部材の電位が等しく保た
れ、一方それぞれの外面は陽極面及び陰極面とし
て働く。この場合陰極面は全体を一枚の鉄板或は
複数枚の横長又は縦長の帯状の鉄板で構成するこ
とができる。各電極の配置としては、陽極及び陰
極を作用面が直立する様に電解室に据え、これら
の間に、1枚の鉄板を黒鉛板にほぱ平行に取付け
て成る中間電極を両外面が直立する様にして一列
に並べることができる(第4図−a)が、この際
陽極及び中間電極の黒鉛部分の作用面は直立させ
たまゝ陰極及び中間電極の鉄板部分をやゝ傾け隣
接電極との間隔をやゝ上開きとしてもよい(同
b)。或は第一の例と同様に陽極、陰極及び中間
電極の黒鉛が直立的に配置され、中間電極の鉄板
も上端部を除く主たる部分は直立に近く据え付け
られるが、ただし上端部は接続されている黒鉛の
方へある高さの所から折曲がつている(c)。これは
塩素ガスと浴とを分離するのに特に有効である。
以上の各例では鉄板は全体的に一枚の板に形成し
てもよいが、縦長または横長の帯板を横または縦
に並べ集めて構成することもできる。後者の場合
において各々の鉄片の継目は必ずしも密閉される
ことを要しない。多少の間隙があつても本発明の
目的は達成できる。要は析出した溶融Mgが陰極
面に沿つて定常的に上昇する構成であればよい。
例(d)は後者の特別な場合である。こゝでは一枚の
黒鉛板状に複数枚の横長の帯板が黒鉛板の対向面
に対してある傾斜角をなして固定され、ちようど
(ベネシアン)ブラインド乃至よろい(鎧)板状
を呈している。各鉄片の下端には内側へ向かつて
上り勾配の傾斜を付けておくのがMgと塩素ガス
との再結合を防ぐ上で有利である。上記の(a)〜(d)
の各例並びに類似の場合において中間電極の黒鉛
と鉄板とは互に本質的に平行に並べることもでき
るが、第5図のa,bの平面図に概略示す様にこ
の電極の金属Mg捕集室外の端部へ向かつて連続
的にまたは段階的に間隔が広くなる構成にする
と、この空間内の浴に捕集室の方へ向かう流れを
形成する上で好都合である。
Next, the present invention will be explained with reference to the accompanying drawings. FIG. 1 is a side cross-sectional view schematically showing an example of an electrolytic cell according to the present invention, FIG. 2 is a front cross-sectional view taken along the line A-A in FIG. 1, and FIG. FIG. 4 and FIG. 5 schematically illustrate several modified examples of the structure of this electrolytic cell, particularly of the intermediate electrode portion, by means of a side view and a plan view, respectively. It is. In each of these figures, an electrolytic cell 1 essentially consists of an electrolytic chamber 2 for carrying out an electrolytic reaction and a metal Mg collection chamber 4 separated from the electrolytic chamber 2 by a partition wall 3. The electrolytic chamber 2 has at one end an anode 5 consisting essentially of a graphite plate.
A cathode 6 made of iron plate is placed at the other end substantially perpendicular to the partition wall 3, and one end of both electrodes is connected to an external power source. The arrangement of both electrodes may be such that one electrode is placed in the center of the electrolytic chamber 2 and the other electrodes are placed at both ends, depending on the case. Between the anode 5 and the cathode 6, a plurality of bipolar intermediate electrodes 7 essentially made of graphite and iron are arranged substantially parallel thereto. These various electrodes 5, 6, and 7 are all mounted on a pedestal 8 made of electrically insulating material. The frame 8 is provided with a large number of through holes 9 for the flow of the electrolytic bath and sludge, while the floor of the electrolytic chamber 2 is sloped to collect the precipitated sludge. Each intermediate electrode 7 is provided with a cavity 12 for guiding a bath containing metal Mg generated between the graphite plate 10 and the iron plate 11 to the collection chamber 4, and this cavity 12 is connected to the partition wall 3. Open at the adjacent end and further partition wall 3
It communicates with the collection chamber 4 through a through hole 13 provided in the. As shown in FIG. 2, the intermediate electrode 7 is assembled to have a parallelogram cross section with the iron plate side facing upward, and is arranged approximately parallel to the anode having a tapered lower end. As will be described later, the intermediate electrode may take various other forms, such as those schematically shown in FIG. 4, for example. Generally, the intermediate electrode 7 is a thick graphite plate 10
and a support 14 such as a metal bolt or pin on this
It consists of a steel plate 11 attached via a. Pillar 1
4 is embedded in the iron-lead plate 10 at its lower end leaving a desired length, and the iron plate 11 is fixed to the head by welding or the like. In this way, the graphite plate and the iron plate of the intermediate electrode are provided with a space for bath flow between the inner surfaces of both members by the supports, and at the same time, the potential of both members is kept equal, while the outer surfaces of each are connected to the anode surface and the iron plate. Acts as a cathode surface. In this case, the entire cathode surface can be composed of a single iron plate or a plurality of horizontally or vertically long belt-shaped iron plates. The arrangement of each electrode is such that the anode and cathode are placed in the electrolytic chamber with their working surfaces upright, and between them is an intermediate electrode made of a single iron plate attached almost parallel to a graphite plate, with both outer surfaces upright. (Fig. 4-a), but in this case, while keeping the active surfaces of the graphite parts of the anode and intermediate electrode upright, the iron plate parts of the cathode and intermediate electrode are slightly tilted so that they do not overlap with the adjacent electrodes. It is also possible to open the interval slightly upwards (see b). Alternatively, as in the first example, the anode, cathode, and intermediate electrode graphite are arranged vertically, and the main part of the intermediate electrode iron plate except the upper end is installed almost upright, but the upper end is not connected. It bends from a certain height toward the graphite (c). This is particularly effective in separating chlorine gas and bath.
In each of the above examples, the iron plate may be formed as a single plate as a whole, but it may also be constructed by gathering vertically or horizontally long strip plates arranged horizontally or vertically. In the latter case, the joints of each shingle do not necessarily need to be sealed. Even if there are some gaps, the object of the present invention can be achieved. In short, any configuration is sufficient as long as the precipitated molten Mg rises steadily along the cathode surface.
Example (d) is a special case of the latter. In this case, a plurality of horizontally elongated strips are fixed to a single graphite plate at a certain angle of inclination to the opposite surface of the graphite plate, forming a Venetian blind or armor plate. It is showing. It is advantageous to provide an inwardly upward slope at the lower end of each iron piece in order to prevent recombination of Mg and chlorine gas. (a) to (d) above
In each of these examples and similar cases, the graphite and iron plates of the intermediate electrode can be arranged essentially parallel to each other, but the metallic Mg capture of this electrode A configuration in which the spacing increases continuously or stepwise toward the end outside the collection chamber is advantageous in creating a flow in the bath in this space toward the collection chamber.

これらの中間電極は浴面下に沈められる。中間
電極7の各空洞12に接続して仕切壁3には浴を
捕集室4へ導くための貫通孔13が設けられてい
る。孔13の断面は空洞12とほぼ同一の幅をも
つ矩形または平行四辺形で上端は中間電極7の上
端と大体同じ高さに位置されるが、電解室2側の
入口を少し高くし(ただし浴面位以下)捕集室4
へ向かつて下り傾斜を付けると浴に伴なつて塩素
ガスが捕集室へ流入するのを有効に防ぐことがで
きる。孔13の下端は各電極が載置されている架
台8より高ければよい。仕切壁3の厚さは全体に
わたつて同一の厚さにすることもできるが、電解
室2の一端、特に陽極側を他端より厚くすること
により生成金属Mgを経て迷走電流が生じるのを
防ぐ様にするのが好ましい。一方中間電極の頂部
には浴面付近に存在する金属Mgによる短絡を防
ぐために、浴面位より上方に達する高さの絶縁材
質ブロツク15が電解室2のほゞ全幅にわたつて
載置されてもよい。
These intermediate electrodes are submerged below the bath surface. A through hole 13 is provided in the partition wall 3 connected to each cavity 12 of the intermediate electrode 7 for guiding the bath to the collection chamber 4 . The cross section of the hole 13 is a rectangle or a parallelogram with almost the same width as the cavity 12, and the upper end is located at approximately the same height as the upper end of the intermediate electrode 7, but the entrance on the electrolytic chamber 2 side is slightly higher (but Below bath level) Collection chamber 4
By sloping downward toward the bottom, it is possible to effectively prevent chlorine gas from flowing into the collection chamber along with the bath. It is sufficient that the lower end of the hole 13 is higher than the pedestal 8 on which each electrode is placed. The thickness of the partition wall 3 can be made the same throughout, but by making one end of the electrolytic chamber 2, especially the anode side, thicker than the other end, it is possible to prevent stray current from occurring through the generated metal Mg. It is preferable to prevent this. On the other hand, on the top of the intermediate electrode, an insulating material block 15 with a height reaching above the bath level is placed over almost the entire width of the electrolytic chamber 2 in order to prevent short circuits due to metal Mg present near the bath surface. Good too.

捕集室4へ流入する金属Mgを伴なつた浴は浴
面にMgを分離し室内を下降する。この下降流は
自然対流を用いてもよいが、室4の外周壁を薄く
したり、この外壁上に冷風を吹きつけたり、或は
浴中に浸された冷却管(図示せず)内に冷媒を通
す等の適切な公知の冷却手段を講じて浴の温度を
固化しない程度に低下させると浴の下降流が加速
されて金属Mgの分離・回収上有利である。室4
の上部に溜められたMgは適宜槽外へ運出され
る。一方もう一方の生成物である塩素ガスは電解
室2の浴面位上方に設けられているダクト16を
経て回収される。これらの両生成物を分離された
浴は仕切壁3の下部の開口17を通つて電解室2
へ戻る。
The bath with metallic Mg flowing into the collection chamber 4 separates Mg on the bath surface and descends within the chamber. Natural convection may be used for this downward flow, but the outer circumferential wall of the chamber 4 may be thinned, cold air may be blown onto this outer wall, or refrigerant may be placed in a cooling pipe (not shown) immersed in the bath. If the temperature of the bath is lowered to a level that does not solidify by taking appropriate known cooling means such as passing through the bath, the downward flow of the bath will be accelerated, which is advantageous for the separation and recovery of metallic Mg. room 4
The Mg accumulated in the upper part of the tank is transported out of the tank as appropriate. On the other hand, the other product, chlorine gas, is recovered through a duct 16 provided above the bath level of the electrolytic chamber 2. The bath from which both of these products have been separated is passed through the opening 17 at the bottom of the partition wall 3 to the electrolytic chamber 2.
Return to

電解浴の槽1への導入は従来通り行なうことが
できる。例えば所定の組成に混合された材料を固
体として或は溶融状態にて捕集室4を経て電解室
に満たす。
The electrolytic bath can be introduced into the tank 1 in a conventional manner. For example, materials mixed to a predetermined composition are filled in the electrolytic chamber through the collection chamber 4 in a solid state or in a molten state.

金属Mg捕集室は一つの電解室に専有されても
よいが二つ以上の電解室に共有される構成とすれ
ば設備をコンパクトに設計できる点で有利なこと
は明らかである。
Although the metal Mg collection chamber may be exclusively used in one electrolytic chamber, it is clear that a configuration in which it is shared by two or more electrolytic chambers is advantageous in that the equipment can be designed compactly.

次に本発明による電解槽の操作例を示す。 Next, an example of operation of the electrolytic cell according to the present invention will be shown.

実施例 本質的に第1〜3図に概略せる電解槽構成を用
いた。縦1m、横2.28m、深さ2.2mの電解室と
0.2m×2.21m×2.2m(以上内側寸法)の金属Mg
捕集兼冷却室は厚さ35cmの仕切壁で隔てられてい
る。電解室には一端を陽極として、高さ2m、幅
1m、厚さ12.5cmの黒鉛板を、他端に陰極として
80cm×1m×3cmの鉄板を配置した。これらの間
に80cm×1m×12.5cmの黒鉛板と80cm×1m×
1.5cmの鉄板とを直経6cmの鉄製ボルト24本を用
いて結合せしめてなる中間電極を9箇並べた。こ
の際鉄板はこれに設けた孔にボルトの頭を溶接す
ることによつて固着された。これらの各電極は電
解室を横切つて配置され、互に間隔をおいて並べ
られたアルミナ煉瓦製の台上にそれぞれ載置され
る。各中間電極の頂部には、幅10cm×高さ20cm×
長さ1mのアルミナ煉瓦製の板が約5cm浴面位よ
り上方に出る様に置かれる。中間電極の鉄板と黒
鉛板との間に形成された約4.5cmの幅の各空間に
接続する仕切壁の部分にはこれと同じ幅の貫通孔
が設けられている。各孔の下端は中間電極の底面
から35cm、上端は入口において中間電極の頂部よ
り15cm高く、捕集室側の出口においてこれと同じ
高さで途中まで傾斜がつけられている。仕切壁の
下部には、浴を電解室へ戻すために30cm×30cmの
断面の開口が4箇設けられている。
EXAMPLE An electrolytic cell configuration essentially as outlined in FIGS. 1-3 was used. An electrolysis chamber with a length of 1m, width of 2.28m, and depth of 2.2m.
0.2m x 2.21m x 2.2m (inner dimensions or more) metal Mg
The collection and cooling chamber is separated by a 35cm thick partition wall. The electrolytic chamber has a graphite plate with a height of 2 m, width of 1 m, and thickness of 12.5 cm, with one end serving as an anode, and the other end serving as a cathode.
An iron plate measuring 80cm x 1m x 3cm was placed. Between these is a graphite plate of 80cm x 1m x 12.5cm and 80cm x 1m x
Nine intermediate electrodes were arranged, each of which was connected to a 1.5 cm iron plate using 24 iron bolts with a diameter of 6 cm. At this time, the steel plate was fixed by welding the head of a bolt into the hole provided in the steel plate. Each of these electrodes is placed across the electrolytic chamber and placed on alumina brick stands arranged at intervals. The top of each intermediate electrode is 10cm wide x 20cm high x
A 1 m long alumina brick plate is placed so that it extends approximately 5 cm above the bath surface. Through-holes with the same width are provided in the parts of the partition wall that connect to each space with a width of about 4.5 cm formed between the iron plate and the graphite plate of the intermediate electrode. The lower end of each hole is 35 cm from the bottom of the intermediate electrode, the upper end is 15 cm higher than the top of the intermediate electrode at the entrance, and is sloped halfway at the same height at the exit on the collection chamber side. At the bottom of the partition wall, four openings with a cross section of 30 cm x 30 cm are provided for returning the bath to the electrolysis chamber.

上記の如く構成された電解槽に重量比で
MgCl220%、NaCl50%、CaCl230%から成る電解
浴を溶融し、浴面を中間電極の頂部より15cmの高
さに調整した。陽極−陰極間に38Vの電圧を印加
し、隣接電極間に各3.8Vの電圧をかける様にし
た。反応によつて消費されるMgCl2を捕給し
つゝ、また捕集室で電解浴からMgを回収する一
方この浴を、外壁上に冷風を強制的に吹きつけ
て、冷却せしめつゝ電解操作を24時間続行し、金
属Mg460KgとCl2ガス1.360Kgを回収した。操作条
件は浴温700℃(電解室)、約670℃(捕集室下
部)、電解電流4500A電流密度0.56A/cm2で、電流
効率は約94%、電力消費量はMg1トン当り約
8920KWHであつた。これは従来一般的に用いら
れていた単槽形式の電解槽によるMgCl2の電解の
場合の14000〜18000KWH/t−Mgに比し、ま
た間に浴の流路をもたない中間電極を用いた場合
の9425KWH/t−Mg程度に比べても大幅な向
上を示すものである。
In the electrolytic cell configured as above,
An electrolytic bath consisting of 20% MgCl 2 , 50% NaCl, and 30% CaCl 2 was melted, and the bath surface was adjusted to a height of 15 cm from the top of the intermediate electrode. A voltage of 38V was applied between the anode and cathode, and a voltage of 3.8V was applied between adjacent electrodes. While capturing the MgCl 2 consumed by the reaction and recovering Mg from the electrolytic bath in the collection chamber, this bath is cooled by forcing cold air onto the outer wall of the electrolytic bath. The operation continued for 24 hours and 460Kg of metal Mg and 1.360Kg of Cl 2 gas were recovered. The operating conditions are a bath temperature of 700℃ (electrolysis chamber), approximately 670℃ (bottom of the collection chamber), electrolytic current of 4500A, current density of 0.56A/ cm2 , current efficiency of approximately 94%, and power consumption of approximately 1 ton of Mg.
It was 8920KWH. This is compared to 14,000 to 18,000 KWH/t-Mg in the case of MgCl 2 electrolysis using a conventionally commonly used single-cell type electrolytic cell, and also using an intermediate electrode with no bath flow path in between. This is a significant improvement compared to the 9425KWH/t-Mg that would have been achieved if the fuel had been used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電解槽の一例の概略を示
す側方断面図、第2図は第1図のA−Aにおける
正面断面図、第3図は第2図のB−Bにおける平
面断面図を示し、第4図及び第5図はこの電解槽
の特に中間電極の構成の改変例をそれぞれ側面図
及び平面図によつて略示する。図において各参照
番号は下記の部材を表わす。 1……電解槽;2……電解室;3……仕切壁;
4……金属Mg捕集室;5……陽極;6……陰
極;7……中間電極;8……架台;9……架台貫
通孔、10……黒鉛板、11……鉄板;12……
中間電極空洞部、13……仕切壁貫通孔;14…
…支柱;15……絶縁ブロツク;16……塩素ガ
スダクト;17……仕切壁開口。
FIG. 1 is a side sectional view schematically showing an example of an electrolytic cell according to the present invention, FIG. 2 is a front sectional view taken along line A-A in FIG. 1, and FIG. 3 is a plane cross-sectional view taken along line BB in FIG. 4 and 5 schematically illustrate a modified example of the structure of this electrolytic cell, particularly of the intermediate electrode, by means of a side view and a plan view, respectively. In the figures, each reference number represents the following member. 1... Electrolytic cell; 2... Electrolytic chamber; 3... Partition wall;
4... Metallic Mg collection chamber; 5... Anode; 6... Cathode; 7... Intermediate electrode; 8... Mount; 9... Mount through hole; 10... Graphite plate; 11... Iron plate; 12... …
Intermediate electrode cavity, 13... partition wall through hole; 14...
... Support column; 15 ... Insulation block; 16 ... Chlorine gas duct; 17 ... Partition wall opening.

Claims (1)

【特許請求の範囲】 1 本質的に垂直に据えられた陽極及び陰極、該
電極対間に並べられた少くとも1箇の二極性中間
電極、並びに該陽極・陰極・中間電極から成る電
極セツトを少くとも1組収容せる電解室及び電解
浴流通のための貫通開口を有する隔壁により該電
解室から分離・併設された金属捕集室を有する
MgCl2用電解装置において、上記中間電極が本質
的に陽極として機能する面を供する黒鉛材と陰極
として働く面を供する鉄材とを良導電性の材質を
用いて接続すると共に該両材質の対向面間に全体
的に空間を設け、更に該空間の少くとも一端を上
記隔壁の貫通開口と連結せしめ、以て中間電極の
対向部材間に金属マグネシウム生成物のための電
解室から捕集室へ向かう流路を構成せしめたこと
を特徴とするMgCl2用電解槽。 2 上記中間電極の鉄材が一体品である特許請求
の範囲第1項記載のMgCl2用電解槽。 3 上記中間電極の鉄材が複数箇の部分から構成
されている特許請求の範囲第1項記載のMgCl2
電解槽。 4 上記中間電極の鉄材が隣接する電極の黒鉛材
の対向面に対し本質的に平行に設置されている特
許請求の範囲第1項記載のMgCl2用電解槽。 5 上記中間電極の鉄材が隣接する電極の黒鉛の
対向面に対し小さな上開きの傾斜を成す特許請求
の範囲第1項記載のMgCl2用電解槽。
[Scope of Claims] 1. An electrode set consisting of an anode and a cathode arranged essentially vertically, at least one bipolar intermediate electrode arranged between the pair of electrodes, and the anode, cathode, and intermediate electrode. It has an electrolytic chamber that can accommodate at least one set, and a metal collection chamber that is separated from and attached to the electrolytic chamber by a partition wall that has a through opening for electrolytic bath circulation.
In the electrolyzer for MgCl2 , the intermediate electrode essentially connects a graphite material that provides a surface that functions as an anode and an iron material that provides a surface that functions as a cathode using a highly conductive material, and also connects the opposing surfaces of the two materials. A space is generally provided between the electrodes, and at least one end of the space is connected to a through opening in the partition wall, so that between the opposing members of the intermediate electrode there is a flow from the electrolytic chamber to the collection chamber for the metallic magnesium product. An electrolytic cell for MgCl 2 characterized by comprising a flow path. 2. The MgCl 2 electrolytic cell according to claim 1, wherein the iron material of the intermediate electrode is an integral part. 3. The electrolytic cell for MgCl 2 according to claim 1, wherein the iron material of the intermediate electrode is composed of a plurality of parts. 4. The MgCl 2 electrolytic cell according to claim 1, wherein the iron material of the intermediate electrode is installed essentially parallel to the opposing surface of the graphite material of the adjacent electrode. 5. The MgCl 2 electrolytic cell according to claim 1, wherein the iron material of the intermediate electrode forms a small upward slope with respect to the opposing graphite surface of the adjacent electrode.
JP12117281A 1980-12-11 1981-07-31 Electrolytic cell for mgcl2 Granted JPS5822385A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP12117281A JPS5822385A (en) 1981-07-31 1981-07-31 Electrolytic cell for mgcl2
IL64372A IL64372A0 (en) 1980-12-11 1981-11-25 Electrolytic cell for magnesium chloride
CA000390909A CA1171384A (en) 1980-12-11 1981-11-25 Electrolytic cell for magnesium chloride
US06/325,036 US4401543A (en) 1980-12-11 1981-11-25 Electrolytic cell for magnesium chloride
IN1354/CAL/81A IN153352B (en) 1980-12-11 1981-11-30
AU78340/81A AU556119B2 (en) 1980-12-11 1981-12-07 Electrolysis of magnesium chloride
EP81850235A EP0054527B1 (en) 1980-12-11 1981-12-08 Improved electrolytic cell for magnesium chloride
DE8181850235T DE3173217D1 (en) 1980-12-11 1981-12-08 Improved electrolytic cell for magnesium chloride
AR287756A AR225564A1 (en) 1980-12-11 1981-12-10 IMPROVED ELECTROLYTIC CELL FOR MAGNESIUM CHLORIDE
BR8108030A BR8108030A (en) 1980-12-11 1981-12-10 PERFECTED ELECTROLYTIC CELL FOR MAGNESIUM CHLORIDE
NO814230A NO156725C (en) 1980-12-11 1981-12-10 CELL FOR ELECTROLYTIC MAGNESIUM PREPARATION FROM MAGNESIUM CHLORIDE.
KR1019810004860A KR880000709B1 (en) 1980-12-11 1981-12-11 Electrolyzer for Magnesium Chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12117281A JPS5822385A (en) 1981-07-31 1981-07-31 Electrolytic cell for mgcl2

Publications (2)

Publication Number Publication Date
JPS5822385A JPS5822385A (en) 1983-02-09
JPH0211677B2 true JPH0211677B2 (en) 1990-03-15

Family

ID=14804623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12117281A Granted JPS5822385A (en) 1980-12-11 1981-07-31 Electrolytic cell for mgcl2

Country Status (1)

Country Link
JP (1) JPS5822385A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573939B2 (en) * 1987-02-16 1997-01-22 株式会社クボタ Travel control device for automatic traveling work vehicle
US8608914B2 (en) 2006-07-07 2013-12-17 Asahi Glass Co. Ltd. Electrolysis system and method
EP3251751B1 (en) 2016-06-02 2019-06-05 Panasonic Corporation Object disassembling apparatus
JP6933936B2 (en) * 2017-09-13 2021-09-08 東邦チタニウム株式会社 Molten salt electrolytic cell

Also Published As

Publication number Publication date
JPS5822385A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
JP3812951B2 (en) Multipolar electrolyzer for metal recovery by electrolysis of molten electrolyte
EP0101243A2 (en) Metal production by electrolysis of a molten electrolyte
EP0089325B1 (en) Apparatus and method for electrolysis of mgc12
EP0027016A1 (en) Improvement in an apparatus for electrolytic production of magnesium metal from its chloride
EP0054527B1 (en) Improved electrolytic cell for magnesium chloride
JPS60155502A (en) Fluorine electrolytic production method and new electrolytic cell for it
US4960501A (en) Electrolytic cell for the production of a metal
JPH0465911B2 (en)
JPH0211677B2 (en)
US3297561A (en) Anode and supporting structure therefor
US2282058A (en) Electrolytic cell
JPH0443987B2 (en)
US3790465A (en) Electrolytic cell including vertical hollow anodes with deflector panels diverging upwardly from each anode
KR20090074041A (en) Method for producing metal from molten chloride and electrolytic cell for producing same
US3515661A (en) Electrolytic cells having detachable anodes secured to current distributors
US1074988A (en) Apparatus for electrolysis of fused alkali chlorids.
US3676323A (en) Fused salt electrolyzer for magnesium production
US4495037A (en) Method for electrolytically obtaining magnesium metal
EP0181544B1 (en) Apparatus for molten salt electrolysis
US4601804A (en) Cell for electrolytic purification of aluminum
KR880000709B1 (en) Electrolyzer for Magnesium Chloride
JPH0211676B2 (en)
KR850001013B1 (en) Apparatus for electrolytic production of magnesium metal from its chloride
JPS6017036B2 (en) Electrolyzer for molten magnesium chloride
JPS643957B2 (en)