JPH02116765A - Magnetization observing apparatus - Google Patents

Magnetization observing apparatus

Info

Publication number
JPH02116765A
JPH02116765A JP26943588A JP26943588A JPH02116765A JP H02116765 A JPH02116765 A JP H02116765A JP 26943588 A JP26943588 A JP 26943588A JP 26943588 A JP26943588 A JP 26943588A JP H02116765 A JPH02116765 A JP H02116765A
Authority
JP
Japan
Prior art keywords
image
wavelength plate
contrast
optical path
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26943588A
Other languages
Japanese (ja)
Inventor
Kenji Fukuzawa
健二 福澤
Junichi Kishigami
順一 岸上
Yasuhiro Koshimoto
越本 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26943588A priority Critical patent/JPH02116765A/en
Publication of JPH02116765A publication Critical patent/JPH02116765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a magnetic domain image with a better contrast with no magnetic field applied thereto by determining a differential image between observation images as obtained when a wavelength plate adapted to generate a phase difference of a 1/2 wavelength is added or not to an optical system of a magnetic Kerr effect observing device. CONSTITUTION:A mechanism 13 is operated by a signal of a computer 14 and a 1/2 wavelength plate 7 is moved onto or out of an optical path to record an observation image for each action on an image processor 11. It is so arranged that when the wavelength plate 7 is moved onto the optical path, an optical axis thereof becomes parallel with or vertical to a direction of polarization of an analyzer 8 when it is in a crossed nicol positional relationship. At this point, a polarization plane of reflected light is turned by a magnetic Kerr effect. This causes an inversion in contrast of light between magnetic domains opposite in the direction thereof. Reflected light with no turning of the polarization plane as caused by reflection from a foreign matter or the like is equal in contrast. Thus, when the device 11 is used to determine a differential image of the observation image depending on the presence of the wavelength plate 7, the contrast is stressed double.

Description

【発明の詳細な説明】 る。[Detailed description of the invention] Ru.

第1図は本発明の実施例を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

第1図中、1は光源、2はコレクタレンズ、3は偏光子
、4は反射鏡、5は対物レンズ、6は被測定試料、7は
%波長の位相差を生じさせる波長板、8は検光子、9は
結像レンズ、10はカメラ、11はカメラlOで撮影し
た複数の観測像を記録する機能および複数の観測像同士
の差分像を求める機能を合わせ持つ画像処理装置であり
、−例として画像を記録するメモリと複数の画像差分を
求める処理機能を持った装置か挙げられる。12は鏡筒
である。13は局波長の位相差を生じさせる波長板7を
移動し光路上から出し入れする機構であり、例としては
鏡筒に穴を設は波長板7をプランジャーで出し入れする
機構が挙げられる。14はコンピュータであり、画像処
理装置11および機構13により1/2波長板7の光路
上からの出し入れを制御する。15は対物レンズ5およ
び結像レンズ9の光■hhを示す。
In Figure 1, 1 is a light source, 2 is a collector lens, 3 is a polarizer, 4 is a reflecting mirror, 5 is an objective lens, 6 is a sample to be measured, 7 is a wavelength plate that produces a phase difference of % wavelength, and 8 is a An analyzer, 9 is an imaging lens, 10 is a camera, and 11 is an image processing device that has both the function of recording a plurality of observation images taken by the camera IO and the function of obtaining a difference image between the plurality of observation images, - An example is a device that has a memory for recording images and a processing function for calculating differences between multiple images. 12 is a lens barrel. Reference numeral 13 denotes a mechanism for moving the wavelength plate 7, which causes a phase difference between the local wavelengths, to take it in and out of the optical path.An example is a mechanism in which a hole is provided in the lens barrel and the wavelength plate 7 is moved in and out with a plunger. Reference numeral 14 denotes a computer, which controls the insertion and removal of the 1/2 wavelength plate 7 from the optical path by the image processing device 11 and mechanism 13. Reference numeral 15 indicates light ``hh'' from the objective lens 5 and the imaging lens 9.

光源1からの光はコレクタレンズ2で集束ビームとなっ
た後、偏光子3により直線偏光となり、鏡筒12内の反
射鏡4によって対物レンズ5の片隅に入射する。対物レ
ンズ5に入射した光は被測定試料6の表面で反射され、
対物レンズ5および検光子8を介して、結像レンズ9に
よりカメラlOに結像される。この際、検光子8は、磁
区観測像の一部の磁区が暗になるように配置する。
Light from a light source 1 becomes a focused beam by a collector lens 2, becomes linearly polarized light by a polarizer 3, and enters one corner of an objective lens 5 by a reflecting mirror 4 in a lens barrel 12. The light incident on the objective lens 5 is reflected by the surface of the sample to be measured 6,
An image is formed by an imaging lens 9 on a camera IO via an objective lens 5 and an analyzer 8. At this time, the analyzer 8 is arranged so that a part of the magnetic domain in the magnetic domain observation image becomes dark.

被測定試料6からの反射光の(扁光面は磁化によって異
なる。そのため、一部の磁区が暗になるように検光子8
を配置しても、それと異なる磁化を持つ磁区像は暗とな
らず、明暗のコントラストが生ずる。コンピュータ14
の信号により機構13を動作させ1/2波長板7を光路
上から出し入れし、1/2波長板7を光路上に入れた場
合のカメラ10に結像した観測像と周波長板7を光路上
から出した場合の観測像とを、コンピュータ14を介し
て機構13と連動した画像処理装置11に記録する。周
波長板7は光路上に入れた際、その光学軸を直交ニコル
時に検光子8の偏光方向と平行あるいは垂直になるよう
に配置しておく。このとき磁気カー効果により被測定試
料6の磁区からの反射光の偏光面は入射光のそれに比へ
て回転する。磁化の向きが反対同士の磁区からの反射光
の偏光面は入射光の偏光面に対して対称となっている。
The polarization plane of the reflected light from the sample to be measured 6 differs depending on the magnetization. Therefore, the analyzer 8 is
Even if a magnetic domain image is placed, a magnetic domain image with a different magnetization will not become dark, and a contrast between light and dark will occur. computer 14
The mechanism 13 is operated by the signal to move the 1/2 wavelength plate 7 in and out of the optical path. The observed image when taken out from the road is recorded in the image processing device 11 linked to the mechanism 13 via the computer 14. When placed on the optical path, the frequency plate 7 is arranged so that its optical axis is parallel or perpendicular to the polarization direction of the analyzer 8 in crossed Nicols. At this time, due to the magnetic Kerr effect, the plane of polarization of the reflected light from the magnetic domain of the sample to be measured 6 is rotated relative to that of the incident light. The plane of polarization of reflected light from magnetic domains with opposite magnetization directions is symmetrical with respect to the plane of polarization of incident light.

また、偏光子31局波長板7および検光子8の配置によ
り、局波長板7を光路上に入れると反射光の偏光面は入
射光の偏光面に対して対称に回転する。つまり、周波長
板7を光路に入れた場合には、出した場合に暗に見える
磁区と磁化の向きが反対であるような磁区が暗に見える
Further, due to the arrangement of the polarizer 31, the local wavelength plate 7, and the analyzer 8, when the local wavelength plate 7 is placed on the optical path, the polarization plane of the reflected light rotates symmetrically with respect to the polarization plane of the incident light. That is, when the frequency plate 7 is placed in the optical path, magnetic domains whose direction of magnetization is opposite to those that appear dark when the wavelength plate 7 is taken out appear dark.

このように周波長板7を光路上から出した場合の観測像
と入れた場合のそれとでは、磁化の向きが反対であるよ
うな磁区同士のコントラストは、明暗が反転している。
In this way, the contrast between magnetic domains with opposite directions of magnetization is reversed in brightness and darkness between the observed image when the wavelength plate 7 is taken out from the optical path and the image when it is put in.

このとき、異物等による反射により6n気カー効果によ
る偏光面の回転が生じなかった反射光は、その方向が入
射光の偏光面の方向に等しいため、前者と後者において
コントラストが等しい。つまり局波長板を光路上から出
した場合と入れた場合において、磁気カー効果によるコ
ントラストは明暗が逆であり、磁気カー効果以外のコン
トラストは等しい。画像処理装置allを用いて前者の
観測像と後者の観測像の差分像を求めると、観測像のコ
ントラストを2倍に強調し、磁気カー効果によらないコ
ントラストはキャンセルされS/N比も向上する。
At this time, the direction of the reflected light whose polarization plane has not been rotated due to the 6n Kerr effect due to reflection by a foreign object or the like is the same as the direction of the polarization plane of the incident light, so that the former and the latter have the same contrast. That is, when the local wavelength plate is taken out from the optical path and when it is put in, the contrast due to the magnetic Kerr effect is opposite in brightness and darkness, and the contrast other than the magnetic Kerr effect is the same. When the difference image between the former observed image and the latter observed image is obtained using the image processing device ALL, the contrast of the observed image is doubled, contrast not due to the magnetic Kerr effect is canceled, and the S/N ratio is also improved. do.

コントラストのノイズ低減には、差分像を複数求め、そ
れらを加算することが効果的であり、複数画像同士の加
算像を求める機能を画像処理装置11に付加すれば実現
できる。画像処理装置11にこの機能を付加した観測製
雪においては、この複数の差分像の加算像を求め、ノイ
ズを低減する作業を自動的に行うことができる。
In order to reduce contrast noise, it is effective to obtain a plurality of difference images and add them. This can be achieved by adding a function to the image processing device 11 to obtain a summation image of the plurality of images. In observational snowmaking in which this function is added to the image processing device 11, it is possible to obtain a summation image of the plurality of difference images and automatically perform the work of reducing noise.

以上の実施例では偏光子を用いて直線偏光を作成してい
るが、直線偏波レーザを光源に用いれは、光源の単色化
と構造の簡素化か図れることは言うまでもない。
In the above embodiments, linearly polarized light is created using a polarizer, but it goes without saying that if a linearly polarized laser is used as the light source, the light source can be monochromatic and the structure can be simplified.

U発明の効果] 以上述べたように、本発明によれば、磁区構造の観測に
おいてコントラストの強調が磁気的に非破壊で可能とな
り、さらにコントラスト強調の自動化も可能となる。
Effects of the Invention] As described above, according to the present invention, it is possible to enhance contrast in a magnetically non-destructive manner in observing a magnetic domain structure, and furthermore, it is also possible to automate contrast enhancement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の模式図である。 5・・・対物レンズ、 6・・・被測定試料、 7・・・周波長の位相差を生じさせる波長板、8・・・
検光子、 9・・・結像レンズ、 10・・・カメラ、 II・・・画像処理装置、 12・・・鏡筒、 13・・・波長板7を移動し光路から出し入れする機構
、 14・・・コンピュータ。 特許出願人  日本電信電話株式会社
FIG. 1 is a schematic diagram of an embodiment of the present invention. 5... Objective lens, 6... Sample to be measured, 7... Wave plate that produces a phase difference between circumferential wavelengths, 8...
Analyzer, 9... Imaging lens, 10... Camera, II... Image processing device, 12... Lens barrel, 13... Mechanism for moving the wavelength plate 7 in and out of the optical path, 14. ··Computer. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1)同一光路中に少なくとも偏光子と1/2波長板と検
光子を含む顕微鏡光学系と、 該顕微鏡光学系によって観測された複数の観測像を記録
し、かつ該記録された観測像同士の差分像を形成する画
像処理手段と、 該画像処理手段と連動して前記1/2波長板の光路上か
らの出し入れを制御する制御手段とを有し、 前記1/2波長板が光路上にある時の該1/2波長板の
光学軸が、前記偏光子と検光子とが直交ニコルの位置関
係にある時の検光子の偏光方向と平行あるいは垂直にな
るように配置されていることを特徴とする磁化観測装置
[Scope of Claims] 1) A microscope optical system including at least a polarizer, a half-wave plate, and an analyzer in the same optical path; and recording a plurality of observation images observed by the microscope optical system; an image processing means for forming a difference image between the observed images obtained by the observation, and a control means for controlling the insertion and removal of the 1/2 wavelength plate from the optical path in conjunction with the image processing means, The optical axis of the half-wave plate when the wavelength plate is on the optical path is parallel or perpendicular to the polarization direction of the analyzer when the polarizer and analyzer are in a crossed Nicols positional relationship. A magnetization observation device characterized by:
JP26943588A 1988-10-27 1988-10-27 Magnetization observing apparatus Pending JPH02116765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26943588A JPH02116765A (en) 1988-10-27 1988-10-27 Magnetization observing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26943588A JPH02116765A (en) 1988-10-27 1988-10-27 Magnetization observing apparatus

Publications (1)

Publication Number Publication Date
JPH02116765A true JPH02116765A (en) 1990-05-01

Family

ID=17472395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26943588A Pending JPH02116765A (en) 1988-10-27 1988-10-27 Magnetization observing apparatus

Country Status (1)

Country Link
JP (1) JPH02116765A (en)

Similar Documents

Publication Publication Date Title
US7075055B2 (en) Measuring device
EP0597390B1 (en) Birefringence distribution measuring method
CA2004377A1 (en) Optical output controlling method and apparatus therefor
US7151632B2 (en) Apparatus for production of an inhomogeneously polarized optical beam for use in illumination and a method thereof
JP3943620B2 (en) Differential interference microscope
JPH10281876A (en) Polarizing imaging system
JP2787678B2 (en) Polarized light microscope
JPH02116765A (en) Magnetization observing apparatus
US6593739B1 (en) Apparatus and method for measuring magnetization of surfaces
JPH0792236A (en) Inspecting apparatus for voltage distribution on surface of substrate
JP2002257718A (en) Light beam scanning type magnetic domain detector
JP2002062218A (en) Optical anisotropic substance evaluating device
JPH03185338A (en) Laser-polarization microscope for observing magnetic domain
JPS62247319A (en) Method and apparatus for image forming for substance showing optical activity
JP2822280B2 (en) Near-field scanning microscope for magnetic domain observation
JPH07287059A (en) Magnetic-domain detection apparatus for magnetic material
Ping et al. A fast‐scanning optical microscope for imaging magnetic domain structures
JP2018116136A (en) Magnetic optical kerr effect microscope
JPH0961366A (en) Differential interference microscope, and defect inspecting device using the same
TWI588465B (en) Optical measurement system and method of liquid crystal panel
KR20230139294A (en) Polarized microscopy and intra image field correction method
Protopopov et al. Magneto-Optics
Nagai et al. Magnetization vector measurement with wide-band high spatial resolution Kerr microscope
JPH03115875A (en) Observing device of magnetization
JPH04307380A (en) Magnetic domain observation device