JPH02116207A - Differential circuit - Google Patents

Differential circuit

Info

Publication number
JPH02116207A
JPH02116207A JP27001988A JP27001988A JPH02116207A JP H02116207 A JPH02116207 A JP H02116207A JP 27001988 A JP27001988 A JP 27001988A JP 27001988 A JP27001988 A JP 27001988A JP H02116207 A JPH02116207 A JP H02116207A
Authority
JP
Japan
Prior art keywords
level
contact
differential circuit
circuit
vss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27001988A
Other languages
Japanese (ja)
Inventor
Yasuhiko Rai
頼 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27001988A priority Critical patent/JPH02116207A/en
Publication of JPH02116207A publication Critical patent/JPH02116207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To synchronize the output level of a differential circuit part to the voltage fluctuation of a power source VSS and to synchronize with the fluctuation of the input logical threshold of a next step BFL inverter by using a differential circuit connecting a DFET in which the VSS is connected to a gate between the complementary output edges of the differential circuit, for an ECL input circuit. CONSTITUTION:When an input signal IN is level-shifted and a low level is inputted to a depression type MES electric field effect transistor (DFET) Q109 of the differential circuit of the circuit in an ECL input circuit, a high level is outputted to a contact N103, a low level is outputted to a contact N102 by the difference voltage in a referring voltage VREF, the contact N102 at the low level side of the differential circuits is clamped through a DFET Q122 to the potential of the contact N103 at the high level side and the level of the N102 at the low level side at this time depends on the capability of the DFET Q122. Namely, by the voltage fluctuation of the power source VSS, the level of the N102 at the low level side of the differential circuit is changed. Thus, the level of an output contact N104 of a differential circuit part 12 is synchronized to the level of the power source VSS.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物半導体集積回路に関し、特に差動回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to compound semiconductor integrated circuits, and particularly to differential circuits.

[従来の技術] 従来、この種の差動回路は負荷用デプレッション型ME
S電界効果トランジスタ(以下、デプレッション型ME
S電界効果トランジスタをDFETと称す)、入力用D
FET、定電流源用DFETで構成され、レベルシフト
を介してG a A s内部論理レベルであるBFLレ
ベルに変換されていた。以下、図面を用いて説明する。
[Prior art] Conventionally, this type of differential circuit is a depletion type ME for load.
S field effect transistor (hereinafter referred to as depletion mode ME)
(S field effect transistor is called DFET), input D
It was composed of a FET and a constant current source DFET, and was converted to the BFL level, which is the GaAs internal logic level, through level shifting. This will be explained below using the drawings.

第3図は従来の差動回路を用いたECL入力回路の回路
図である。人力信号INは入力レベルシフト回路部31
によってレベルシフトされ、その出力信号N301が差
動回路部32に入力される。差動回路部32において、
参照電圧VREFとN301の差電圧を増幅しレベルシ
フトをしてBFLレベルに変換し、差動回路部32の出
力信号N304は次段BFLインバータに入力される。
FIG. 3 is a circuit diagram of an ECL input circuit using a conventional differential circuit. The human input signal IN is input level shift circuit section 31
The output signal N301 is level-shifted by and input to the differential circuit section 32. In the differential circuit section 32,
The differential voltage between the reference voltage VREF and N301 is amplified and level shifted to convert it to a BFL level, and the output signal N304 of the differential circuit section 32 is input to the next stage BFL inverter.

第4−a図はVSS=−2,OV、VEE=−5,2V
(1)時の従来のECL入力回路のDC伝達特性である
。ECL入力の高レベル/低レベル=−Q、9V/−1
゜7VがINに入力されると、差動回路部32の接点N
304に現れる出力電圧は高レベル/低レベル=−1,
6V/−2,7Vが出力される。
Figure 4-a shows VSS=-2, OV, VEE=-5,2V
This is the DC transfer characteristic of the conventional ECL input circuit at (1). ECL input high level/low level = -Q, 9V/-1
゜When 7V is input to IN, the contact N of the differential circuit section 32
The output voltage appearing at 304 is high level/low level = -1,
6V/-2,7V is output.

[発明が解決しようとする問題点] 上述した従来の差動回路を用いたECL入力回路は電源
vSSの電圧変動により、差動回路部32の次段のBF
Lインバータの入力論理しきい値が大きく変動する。第
4−b図、第4−c図はそれぞれVSS=−2,4V 
(+20%)、■5S=−1.6V(−20%)の従来
のECL入力回路のDC伝達特性であり、VEEはとも
に−5゜2Vである。差動回路部32の出力信号N30
4のDCL/J\ルはVSSの変動に依存しないで、B
FL回路部33のBFLインバータの入力論理しきい値
が変動する。特に、第4−b図において■5S=−2,
4V (+20%)の場合、差動回路部32の出力電位
N304の低レベルは、次段33のBFLインバータの
入力論理しきい値であるVSSのレベルに対して十分な
低レベル(例えばQ317のしきい値電圧をVTDとす
ると[VSS−+ VTD l]以下)にならないため
、BFLインバータのDFET  Q317を十分にカ
ットオフできないという欠点がある。
[Problems to be Solved by the Invention] In the ECL input circuit using the conventional differential circuit described above, due to the voltage fluctuation of the power supply vSS, the BF of the next stage of the differential circuit section 32
The input logic threshold of the L inverter varies greatly. Figures 4-b and 4-c are VSS = -2 and 4V, respectively.
(+20%), ■5S=-1.6V (-20%), which are the DC transfer characteristics of a conventional ECL input circuit, and both VEEs are -5°2V. Output signal N30 of differential circuit section 32
DCL/J\le of 4 does not depend on the fluctuation of VSS, and B
The input logic threshold of the BFL inverter of the FL circuit section 33 changes. In particular, in Figure 4-b, ■5S=-2,
In the case of 4V (+20%), the low level of the output potential N304 of the differential circuit section 32 is a sufficiently low level (for example, the level of If the threshold voltage is VTD, it will not be less than [VSS-+VTD l], so there is a drawback that DFET Q317 of the BFL inverter cannot be sufficiently cut off.

[発明の従来技術に対する相違点] 上述したレベルシフトと従来の差動回路で構成されるE
CL入力回路に対し、本発明は差動回路の相補出力端(
第3図のN302とN303)の間にvSSがゲートに
接続されたDFETを接続した差動回路をECL入力回
路に用いることによって、差動回路部の出力レベルを電
源vSSの電圧変動に同期させ、次段BFLインバータ
の人力論理しきい値の変動と同期できるという相違点が
ある。
[Differences between the invention and the prior art] E configured with the above-mentioned level shift and conventional differential circuit
For the CL input circuit, the present invention provides a complementary output terminal (
By using a differential circuit in which a DFET with vSS connected to the gate between N302 and N303 in Figure 3 is used as the ECL input circuit, the output level of the differential circuit section can be synchronized with the voltage fluctuation of the power supply vSS. , the difference is that it can be synchronized with the fluctuation of the human logic threshold of the next-stage BFL inverter.

[問題点を解決するための手段] 本発明の差動回路はECL入力回路内の差動回路の相補
の出力端(第1図のN103とN102)の間に接続さ
れ、ゲートをVSSに接続されたDFETを有している
[Means for solving the problem] The differential circuit of the present invention is connected between the complementary output terminals (N103 and N102 in FIG. 1) of the differential circuit in the ECL input circuit, and the gate is connected to VSS. It has a DFET.

すなわち、本発明の差動回路は第1のデプレッション型
電界効果トランジスタのゲートを第1の接点にドレイン
を第1の電源にソースを前記第1の接点に接続し、第2
のデプレッション型電界効果トランジスタのゲートを第
2の接点にドレインを前記第1の電源にソースを前記第
2の接点に接続し、第3の電界効果トランジスタのゲー
トを第1の信号線にドレインを前記第1の接点にソース
を第3の接点に接続し、第4の電界効果トランジスタの
ゲートを第2の信号線にドレインを前記第2の接点にソ
ースを前記第3の接点に接続し、第5のデプレッション
型電界効果トランジスタのゲートを第2の電源にドレイ
ンを前記第3の接点にソースを前記第2の電源に接続し
、第6のデプレッション型電界効果トランジスタのゲー
トを第3の電源にドレインを前記第1の接点にソースを
前記第2の接点に接続して構成されることを特徴とする
That is, in the differential circuit of the present invention, the gate of the first depletion field effect transistor is connected to the first contact, the drain is connected to the first power supply, the source is connected to the first contact, and the gate of the first depletion field effect transistor is connected to the first contact.
The gate of a third field effect transistor is connected to a second contact, the drain is connected to the first power supply, and the source is connected to the second contact, and the gate of a third field effect transistor is connected to the first signal line, and the drain is connected to the first signal line. a source of the first contact is connected to a third contact, a gate of a fourth field effect transistor is connected to a second signal line, a drain is connected to the second contact, and a source is connected to the third contact; The gate of a fifth depression type field effect transistor is connected to a second power source, the drain is connected to the third contact, and the source is connected to the second power source, and the gate of the sixth depression type field effect transistor is connected to a third power source. The drain is connected to the first contact and the source is connected to the second contact.

[実施例] 次に、本発明について図面を参照して説明する。[Example] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の差動回路を用いた第1の実施例のEC
L入力回路の回路図である。入力信号INは入力レベル
シフト回路部11によってレベルシフトされ、その出力
信号N101が差動回路部12に入力される。差動回路
部12において参照電圧VREFとN101の差電圧を
増幅しレベルシフトをしてBFLレベルに変換し、差動
回路部12の出力信号N104はBFL回路部13のB
FLインバータに入力される。従来の差動回路を用いた
ECL入力回路に対し本発明では第1図のDFET  
Q122が追加されて構成される。第2 3図はVSS
=−2,OV、VEE=−5゜2Vの時の本発明の差動
回路を用いたECL入力回路のDC伝達特性である。第
2−b図、第2=C図はそれぞれVSS=−2,4V 
(+20%)、VSS=−1,6V(−20%)の時の
本発明の差動回路を用いたECL入力回路のDC伝達特
性であり、VEEは共に−5,2■である。
FIG. 1 shows an EC of the first embodiment using the differential circuit of the present invention.
FIG. 3 is a circuit diagram of an L input circuit. The input signal IN is level-shifted by the input level shift circuit section 11, and its output signal N101 is input to the differential circuit section 12. The differential voltage between the reference voltage VREF and N101 is amplified and level-shifted in the differential circuit section 12 to convert it to the BFL level.
It is input to the FL inverter. In contrast to the conventional ECL input circuit using a differential circuit, the present invention uses the DFET shown in FIG.
It is configured by adding Q122. Figure 23 shows VSS
FIG. 2 is a DC transfer characteristic of an ECL input circuit using the differential circuit of the present invention when VEE=-2, OV and VEE=-5°2V. Figure 2-b and Figure 2-C are VSS = -2 and 4V, respectively.
(+20%), VSS=-1.6V (-20%), and VEE are both -5.2V (-20%).

以下、第2−a図、第2−b図、第2−c図を用いて第
1図の動作説明をする。第1図において、入力信号IN
がレベルシフトされて低しJ\ルがECL入力回路内の
回路の差動回路のDFET  Q109に入力されると
、参照電圧VREFとの差電圧により接点N103には
高レベル、接点N102には低レベルが出力される。こ
の時、差動回路の低レベル側の接点N102は高レベル
側の接点N103の電位にDFET  Q122を介し
てクランプされる。従って、この時の低レベル側N10
2のレベルはDFET  Q122の能力に依存する。
Hereinafter, the operation of FIG. 1 will be explained using FIG. 2-a, FIG. 2-b, and FIG. 2-c. In FIG. 1, the input signal IN
When J\ is inputted to DFET Q109 of the differential circuit in the ECL input circuit, the voltage difference between it and the reference voltage VREF causes the contact N103 to have a high level and the contact N102 to have a low level. The level will be output. At this time, the contact N102 on the low level side of the differential circuit is clamped to the potential of the contact N103 on the high level side via DFET Q122. Therefore, at this time, the low level side N10
The level of 2 depends on the capabilities of DFET Q122.

すなわちDFET  Q122のケート電位である電源
VSSの電圧変動によって差動回路の低しJ\ル側N1
02のレベルが変化する。故に差動回路部12の出力接
点N104のレベルは電源VSSのレベルに同期する。
In other words, due to the voltage fluctuation of the power supply VSS, which is the gate potential of DFET Q122, the low side N1 of the differential circuit
02 level changes. Therefore, the level of the output contact N104 of the differential circuit section 12 is synchronized with the level of the power supply VSS.

第2−4.図に示す様に、VSS=−2,4V (Ty
p+20%)の時、次段BFLインバータの入力論理し
きい値は低下しているが、差動回路内DFET  Q1
22の能力か低下し、差動回路の低しJ\ル側の出力N
102のレベルはVSS=−2,0V(Typ)の時に
比へてざらに低下して、差動回路の出力振幅は増大し、
差動回路部12の出力接点N104のしJ\ルもVss
=−2,0(Typ)の時より低下しているので、十分
な低レベル(例えばQ117のしぎい値電圧なVTDと
すると(VSS−VTDI)以下)となるため、次段B
FLインバータのDFET  Q117を十分カットオ
フすることができ、電ri、VSSの電圧変動±20%
まで動作する。以上より、本発明の差動回路を用いたE
CL入力回路内の差動回路は、電源■SSの電圧変動に
よるB F Lインバータの人力論理しぎい値のレベル
変動に同期することができ、例えはVTD=−0,5V
とした時電源VSSと差動回路部12の出力N104の
低レベルの差をΔ■とずれは△V=1V以上とることか
でき、差動回路部120次段のBFLインバータを安定
に駆動することかできる。
Part 2-4. As shown in the figure, VSS=-2,4V (Ty
p+20%), the input logic threshold of the next stage BFL inverter is lower, but the DFET Q1 in the differential circuit
22 capacity decreases, and the output N on the low side of the differential circuit decreases.
The level of 102 drops drastically compared to when VSS=-2.0V (Typ), and the output amplitude of the differential circuit increases,
The output contact N104 of the differential circuit section 12 is also Vss.
Since it is lower than when = -2,0 (Typ), it is at a sufficiently low level (for example, if VTD is the threshold voltage of Q117, it is below (VSS - VTDI)), so the next stage B
It is possible to sufficiently cut off the DFET Q117 of the FL inverter, and the voltage fluctuation of RI and VSS is ±20%.
It works until. From the above, it is clear that E
The differential circuit in the CL input circuit can synchronize with the level fluctuation of the human logic threshold value of the BFL inverter due to the voltage fluctuation of the power supply SS.For example, VTD = -0,5V
When the difference between the low level of the power supply VSS and the output N104 of the differential circuit section 12 is Δ■, the deviation can be greater than ΔV=1V, and the differential circuit section 120 can stably drive the next stage BFL inverter. I can do it.

第5図は本発明の第2実施例の差動回路を用いたECL
入力回路の回銘図である。第1図の実施例に比へ、差動
回路部52内の差動回路の入力用トランジスタかDFE
Tからエンハンスメント型MES電界効果トランジスタ
Q509.Q51C](以下、エンハンスメント型ME
S電界効果l・ランジスタをEFETと称す)になって
いる。この実施例では差動回路の入力用トランジスタに
EFET  Q509.Q510を使用しているため、
入力信号INと参照電圧VREFとの差電圧が小さくて
も動作しやすいという利点がある。動作は第1図の実施
例とほとんど同一であり、ここでは動作説明を省略する
FIG. 5 shows an ECL using a differential circuit according to the second embodiment of the present invention.
FIG. 3 is a schematic diagram of the input circuit. Compared to the embodiment of FIG. 1, the differential circuit input transistor or DFE in the differential circuit section 52
T to enhancement type MES field effect transistor Q509. Q51C] (hereinafter referred to as enhancement type ME
A field effect transistor is called an EFET. In this embodiment, EFET Q509. is used as the input transistor of the differential circuit. Because I am using Q510,
It has the advantage of being easy to operate even if the voltage difference between the input signal IN and the reference voltage VREF is small. The operation is almost the same as the embodiment shown in FIG. 1, and the explanation of the operation will be omitted here.

以上説明したように本発明は、ECL入力回路内の差動
回路の相補出力端の間に電源VSSをゲートに接続ざイ
したDFETを接続することによって、差動回路部(1
2,52)の出力レベル(N104、N504.)を゛
電源VSSの電圧変動に同期させ、次段BFL回路部の
BFLインバータの人力論理しきい値の変動と同期させ
ることができ、差動回路部(12,52)の低レベル側
の出力(NiO2,N50/1−)を十分な低レベル信
号(例えは次段BFLインバータの駆動DFETのしき
い値電圧をVFDとスルと(VSS−I VTD以下)
にすることができる。例えはvrD=−o:5■とした
とき、電源VSSと差動回路部(12)の出力N104
の低レベル信号の差を△Vとすれば、△V=IV以上と
ることができ、差動回路部(12)の次段のBFLイン
バータを安定に駆動し、電源VSSの電圧変動±20%
まで動作可能であるという効果がある。
As explained above, the present invention provides a differential circuit section (1
The output level (N104, N504.) of 2, 52) can be synchronized with the voltage fluctuation of the power supply VSS, and can be synchronized with the fluctuation of the human logic threshold of the BFL inverter in the next stage BFL circuit section. The low level side output (NiO2, N50/1-) of the section (12, 52) is connected to a sufficiently low level signal (for example, the threshold voltage of the driving DFET of the next stage BFL inverter is set to VFD and (VSS-I). VTD or less)
It can be done. For example, when vrD=-o:5■, the power supply VSS and the output N104 of the differential circuit section (12)
If the difference between the low level signals is △V, then △V=IV or more can be taken, stably driving the BFL inverter in the next stage of the differential circuit section (12), and suppressing the voltage fluctuation of the power supply VSS by ±20%.
It has the advantage that it can operate up to

[発明の効果コ[Effects of invention

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る差動回路を用いたE
CL入力回路の回路図、第2−a図は本発明の差動回路
を用いたECL入力回路の■5S=−2,OV時のDC
伝達特性図、第2−b図は本発明の差動回路を用いたE
CL入力回路のVSS=−2,4V (Typ+20%
)時のDC伝達特性図、第2−c図は本発明の差動回路
を用いたECL入力回路のVSS=−1,6V (Ty
p−20%)時のDC伝達特性図、第3図は従来の差動
回路を用いたEECL入力回路の回路図、第4−a図は
従来の差動回路を用いたECL入力回路のVSS=−2
,OV (Typ)時のDC伝達特性図、第4−b図は
従来の差動回路を用いたECL入力回路(7)VSS=
−2,4V (Typ+20%)時のDC伝達特性図、
第4−c図は従来の差動回路を用いたECL入力回路の
VSS=−1゜6V (Typ−20%)時のDC伝達
特性図、第5図は本発明の第2実施例の差動回路を用い
たECL入力回路の回路図である。 1l− QIOI、  Q106〜Q112゜ Q115〜Q118.  Q121゜ Q122.  Q301.  Q306〜Q312゜Q
315〜Q318.’Q321.  Q501゜Q50
6〜Q508.  Q511.  Q512゜Q515
〜Q 518+  Qδ21.  Q522 ・ ・ 
・・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 
・ ・ ・ ・ ・ ・ D F E T。 Q509.  Q5]0 ・ D102〜D105゜ D 119.  D 1.20゜ D313.  D314゜ D502〜D 505゜ D519.  D520・ ・ ・ ・ ・ ・ ・ ・ ・ E F E T。 D113.D114゜ D302〜D 305゜ D319.  D320゜ D513.  D5]4゜ ・・・・・・・ダイオード、 N101〜N105.  N30]〜N305゜N50
1〜N505. 0UTI、  0UT3゜0UT5・
・ ・・・・・・・・・・・・・接点、IN ・ ・ 
・ VREF  ・ GND  ・ ・ vSS ・ ・ VEE  ・ ・ ・・・入力、 ・参照電圧、 ・第1の電源、 ・第3の電源、 ・第2の電源。
FIG. 1 shows an E using a differential circuit according to the first embodiment of the present invention.
The circuit diagram of the CL input circuit, Figure 2-a is the DC of the ECL input circuit using the differential circuit of the present invention when 5S=-2, OV.
The transfer characteristic diagram, Figure 2-b, shows E using the differential circuit of the present invention.
CL input circuit VSS=-2,4V (Typ+20%
), Figure 2-c shows the DC transfer characteristic diagram when VSS = -1,6V (Ty
p-20%), Figure 3 is a circuit diagram of an EECL input circuit using a conventional differential circuit, and Figure 4-a is a VSS diagram of an ECL input circuit using a conventional differential circuit. =-2
, OV (Typ) DC transfer characteristic diagram, Figure 4-b shows an ECL input circuit (7) using a conventional differential circuit (7) VSS=
DC transfer characteristic diagram at -2,4V (Typ+20%),
Figure 4-c is a DC transfer characteristic diagram when VSS = -1°6V (Typ-20%) of an ECL input circuit using a conventional differential circuit, and Figure 5 is a diagram showing the difference between the second embodiment of the present invention. FIG. 2 is a circuit diagram of an ECL input circuit using a dynamic circuit. 1l-QIOI, Q106~Q112°Q115~Q118. Q121゜Q122. Q301. Q306~Q312゜Q
315-Q318. 'Q321. Q501゜Q50
6~Q508. Q511. Q512゜Q515
~Q518+Qδ21. Q522 ・ ・
・・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ D F E T. Q509. Q5]0 ・D102~D105°D 119. D 1.20°D313. D314°D502~D505°D519. D520・ ・ ・ ・ ・ ・ ・ ・ E F E T. D113. D114°D302~D305°D319. D320°D513. D5] 4°...Diode, N101 to N105. N30] ~ N305°N50
1~N505. 0UTI, 0UT3゜0UT5・
・ ・・・・・・・・・・・・Contact, IN ・ ・
・ VREF ・ GND ・ ・ vSS ・ ・ VEE ・ ・ ...Input, ・Reference voltage, ・First power supply, ・Third power supply, ・Second power supply.

Claims (1)

【特許請求の範囲】[Claims] 第1のデプレッション型電界効果トランジスタのゲート
を第1の接点にドレインを第1の電源にソースを前記第
1の接点に接続し、第2のデプレッション型電界効果ト
ランジスタのゲートを第2の接点にドレインを前記第1
の電源にソースを前記第2の接点に接続し、第3の電界
効果トランジスタのゲートを第1の信号線にドレインを
前記第1の接点にソースを第3の接点に接続し、第4の
電界効果トランジスタのゲートを第2の信号線にドレイ
ンを前記第2の接点にソースを前記第3の接点の接続し
、第5のデプレッション型電界効果トランジスタのゲー
トを第2の電源にドレインを前記第3の接点にソースを
前記第2の電源に接続し、第6のデプレッション型電界
効果トランジスタのゲートを第3の電源にドレインを前
記第1の接点にソースを前記第2の接点に接続して構成
されることを特徴とする差動回路。
The gate of the first depression type field effect transistor is connected to the first contact, the drain is connected to the first power supply, and the source is connected to the first contact, and the gate of the second depression type field effect transistor is connected to the second contact. the drain to the first
A third field effect transistor has its gate connected to the first signal line, its drain connected to the first contact, and its source connected to the third contact; The gate of the field effect transistor is connected to the second signal line, the drain is connected to the second contact, and the source is connected to the third contact, and the gate of the fifth depletion type field effect transistor is connected to the second power supply, and the drain is connected to the third contact. A third contact has a source connected to the second power supply, a gate of a sixth depletion field effect transistor is connected to the third power supply, a drain is connected to the first contact, and a source is connected to the second contact. A differential circuit comprising:
JP27001988A 1988-10-25 1988-10-25 Differential circuit Pending JPH02116207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27001988A JPH02116207A (en) 1988-10-25 1988-10-25 Differential circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27001988A JPH02116207A (en) 1988-10-25 1988-10-25 Differential circuit

Publications (1)

Publication Number Publication Date
JPH02116207A true JPH02116207A (en) 1990-04-27

Family

ID=17480409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27001988A Pending JPH02116207A (en) 1988-10-25 1988-10-25 Differential circuit

Country Status (1)

Country Link
JP (1) JPH02116207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473365A2 (en) * 1990-08-31 1992-03-04 Nec Corporation Differential input circuit
JP2011040889A (en) * 2009-08-07 2011-02-24 Dainippon Printing Co Ltd Amplifier circuit device and comparator circuit device using thereof, and constant voltage output device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473365A2 (en) * 1990-08-31 1992-03-04 Nec Corporation Differential input circuit
JP2011040889A (en) * 2009-08-07 2011-02-24 Dainippon Printing Co Ltd Amplifier circuit device and comparator circuit device using thereof, and constant voltage output device

Similar Documents

Publication Publication Date Title
US7468615B1 (en) Voltage level shifter
US5406140A (en) Voltage translation and overvoltage protection
US5444396A (en) Level shifting circuit
US6400206B2 (en) Dual-level voltage shifters for low leakage power
US7061299B2 (en) Bidirectional level shifter
US5872464A (en) Input buffer with stabilized trip points
US5892381A (en) Fast start-up circuit
US20130214749A1 (en) Dc converter
KR101645041B1 (en) Voltage regulator
EP0614279A2 (en) Overvoltage tolerant output buffer circuit
US7893720B2 (en) Bus low voltage differential signaling (BLVDS) circuit
US4841175A (en) ECL-compatible input/output circuits in CMOS technology
JP2001175340A (en) Potential generation circuit
TWI495975B (en) Voltage regulator
JP2585599B2 (en) Output interface circuit
US6611157B2 (en) Differential signal output circuit
US6759873B2 (en) Reverse biasing logic circuit
JPS62203416A (en) Power-on resetting circuit for logic circuit of mos technology especially for peripheries of microprocessor
US7560971B2 (en) Level shift circuit with power sequence control
JPH02116207A (en) Differential circuit
JP2585067B2 (en) ECL signal converter
US8664925B2 (en) Voltage regulator
EP0840454B1 (en) Level shift circuit
JP2953006B2 (en) Compound semiconductor integrated circuit differential circuit
US10541676B2 (en) Symmetrical dual voltage level input-output circuitry