JPH02116083A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH02116083A
JPH02116083A JP63268031A JP26803188A JPH02116083A JP H02116083 A JPH02116083 A JP H02116083A JP 63268031 A JP63268031 A JP 63268031A JP 26803188 A JP26803188 A JP 26803188A JP H02116083 A JPH02116083 A JP H02116083A
Authority
JP
Japan
Prior art keywords
data line
circuit
read
line pair
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63268031A
Other languages
Japanese (ja)
Inventor
Goro Kitsukawa
橘川 五郎
Yoshiki Kawajiri
良樹 川尻
Kazumasa Yanagisawa
一正 柳沢
Yoshitaka Kinoshita
木下 嘉隆
Kiyoo Ito
清男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63268031A priority Critical patent/JPH02116083A/en
Publication of JPH02116083A publication Critical patent/JPH02116083A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate an access time to a memory by varying the value of a bias current permitted to flow on a pair of common readout data lines separately from that from a differential amplifier for readout corresponding to the operating timing of the memory. CONSTITUTION:At the load circuit 4 of the pair of readout common data lines RD and RD', the bias currents IE and IE'(IE=IE') are permitted to flow on bipo lar transistors Q1 and Q1', and those bias currents are varied corresponding to the operating timing of the memory. Therefore, when an amplifier 2 for readout is operated, the potential of the RD and the RD' can almost be kept constant. In such a way, it is possible to prevent readout speed from being lowered and to accelerate readout time even when a large number of the read out amplifiers 2 are connected and incidental capacitance is increased in a large cale of memory array.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体メモリに係り、特にその読出し回路の
高速化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor memories, and particularly to speeding up the readout circuit thereof.

〔従来の技術〕[Conventional technology]

従来、MOSスタティックメモリのアクセス時間の高速
化に関しては、アイイーイー、ジャーナル オフ ソリ
ッド ステート サーキツツ、ヴオリューム ニスシー
19.ナンバー5,545−551ページにおいて論じ
られている。
Conventionally, regarding speeding up the access time of MOS static memory, IEE, Journal Off Solid State Circuits, Volume Nisshi 19. No. 5, pages 545-551.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術によれば、そのメモリセルまわりの基本回
路構成は第2図に示すとうりである。その特長は複数の
メモリーセルが接続されたデータ線対り、D’毎に読出
し用MO8差動アンプ2と、書込み用転送回路3を設け
たことである。旧回路では2がなく、読出し時も書込み
時も、転送回路3を介しデータ線対と共通データ線対(
読出し。
According to the above-mentioned prior art, the basic circuit configuration around the memory cell is as shown in FIG. Its feature is that a read MO8 differential amplifier 2 and a write transfer circuit 3 are provided for each data line pair D' to which a plurality of memory cells are connected. 2 was not present in the old circuit, and the data line pair and the common data line pair (
reading.

書込み共通)とで情報の授受を行なっていた。第2図で
RD、RD’は読出し用の共通データ線対であり、複数
の読出し用MO5差動アンプの出力が接続される。一方
WD、WD’は書込み用の共通データ線対であり、複数
の書込み用転送回路が接続される。読出し時は選択され
たワード線Wに接続されたメモリセル1の情報に応じて
負荷MO5(M 1 # M 1 ’ )の一方からセ
ルにむかって電流が流れデータ線対り、D’に電位差を
生じる。読出し用MO8差動アンプ2は、読出し用列選
択信号線YSHの高電位で起動され、読出し用の共通デ
ータ線対RD、RD’に読出し信号電圧が現れる。書込
み時は書込み用列選択信号線YSWを高電位にし、書込
み用転送回路3をオンさせ、書込み用共通データ線対W
D、WD’上の書込みデータをデータ線対り、D’に送
り選択されたメモリセルへ所望の書込みを行なう、この
方式の利点は読出し時に書込み用転送回路3がオフであ
り、負荷駆動能力が小さなメモリセルはデータ線対と読
出し用MO8差動アンプのみを駆動すれば良く。
(common for writing) and exchanged information. In FIG. 2, RD and RD' are a pair of common data lines for reading, to which the outputs of a plurality of MO5 differential amplifiers for reading are connected. On the other hand, WD and WD' are a common data line pair for writing, to which a plurality of write transfer circuits are connected. At the time of reading, a current flows from one side of the load MO5 (M1 #M1') toward the cell according to the information of the memory cell 1 connected to the selected word line W, creating a potential difference between the data line and D'. occurs. The read MO8 differential amplifier 2 is activated by the high potential of the read column selection signal line YSH, and a read signal voltage appears on the read common data line pair RD, RD'. During writing, the write column selection signal line YSW is set to a high potential, the write transfer circuit 3 is turned on, and the write common data line pair W
The advantage of this method is that the write data on D and WD' is sent to the data line pair D' and the desired write is performed in the selected memory cell. For memory cells with a small size, it is sufficient to drive only the data line pair and the read MO8 differential amplifier.

読出し時間を高速化することができる。この回路方式は
ダイナミックメモリに用いると後述するように更に効果
が大きくなる。
Read time can be increased. When this circuit system is used in a dynamic memory, the effect becomes even greater as will be described later.

しかし大容量のスタティックメモリ(SRAM)やダイ
ナミックメモリ(DRAM)では多数の読出し差動アン
プが接続されまた配線長が長いので読出し共通データ線
対RD、RD’には大きな寄生容量が付きlMOSトラ
ンジスタによる負荷回路4で大きな信号振幅をとる第2
図の回路方式では高速性に限界があった。
However, in large-capacity static memory (SRAM) and dynamic memory (DRAM), many readout differential amplifiers are connected and the wiring length is long, so the readout common data line pair RD, RD' has a large parasitic capacitance and is made up of lMOS transistors. The second circuit that takes a large signal amplitude in the load circuit 4
The circuit system shown in the figure had a limit to its high speed.

本発明の目的はDRAM、SRAM等の半導体メモリの
アクセス時間の高速化にある。
An object of the present invention is to speed up the access time of semiconductor memories such as DRAM and SRAM.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は大きな寄生容量が付随する読出し共通デー
タ線対RD、RD’の電位をバイポーラトランジスタで
クランプし、RD、RD’の′1パ0″読出しによる電
位変化を可能なかぎり小さく抑え、読出し情報を表現す
る信号電圧はバイポーラトランジスタのコレクタと負荷
抵抗の接続点よる取り出す、更にRD、RD′に流すバ
イアス電流をメモリの動作タイミングに連動して切り替
えることにより電源雑音に対しても読出し速度が劣化し
ないようにすることができる。またメモリの待機期間で
はバイアス電流を減らしメモリの待機期間での消費電流
を減少することができる。
The purpose of the above is to clamp the potential of the read common data line pair RD, RD', which has a large parasitic capacitance, with a bipolar transistor, suppress the potential change due to '1/0' reading of RD, RD' as small as possible, and read The signal voltage that represents information is taken out at the connection point between the collector of the bipolar transistor and the load resistor.Furthermore, by switching the bias current flowing through RD and RD' in conjunction with the memory operation timing, the readout speed can be increased even against power supply noise. In addition, the bias current can be reduced during the standby period of the memory, and the current consumption during the standby period of the memory can be reduced.

〔作用〕[Effect]

本構成において、RD、RD’ にバイアス電流を流す
と、“1″  ′0′と異なった情報を読出した場合の
読出し電流差による読出し共通データ線対RD、RD”
の電位変化は小さく抑えられ、一方後段回路を動作させ
るための信号電圧はコレクタ側から読出し電流差とコレ
クタ負荷抵抗との積で表わされる差動電圧が取り出され
る。読出し共通データ線対の等価的な負荷抵抗はバイポ
ーラトランジスタのエミッタ側から見た内部抵抗raで
あり、バイアス電流IEとすると、rp=kT/qIε
と表わされ、コレクタ側の実際の負荷抵抗より小さな値
に設定できる(kはボルツマン定数、Tは温度、qは電
子の電荷量)。rEはIHにより、100Ω以下に抑え
ることができるので、読出し共通データ線対にたとえ大
きな寄生容量が付いてもその時定数(寄生容量と等価抵
抗の積)は比較的小さく抑えることができる。更にバイ
ポーラトランジスタのバイアス電流を動作タイミングに
応じて変化させれば、メモリの待機期間はバイアス電流
を小さくし消費電流を抑え、動作期間は大きくしてrE
を下げ、更に電源に他の周辺回路の動作による雑音が生
じても動作期間のバイアス電流の調整により電源雑音の
読出し速度に与える影響を小さく抑えることができる。
In this configuration, when a bias current is passed through RD and RD', the read common data line pair RD and RD' due to the read current difference when information different from "1" and '0' is read.
On the other hand, as a signal voltage for operating the subsequent stage circuit, a differential voltage represented by the product of the read current difference and the collector load resistance is taken out from the collector side. The equivalent load resistance of the read common data line pair is the internal resistance ra seen from the emitter side of the bipolar transistor, and assuming the bias current IE, rp=kT/qIε
It can be set to a value smaller than the actual load resistance on the collector side (k is Boltzmann's constant, T is temperature, and q is the amount of electron charge). Since rE can be suppressed to 100Ω or less by IH, even if a large parasitic capacitance is attached to the read common data line pair, its time constant (product of parasitic capacitance and equivalent resistance) can be suppressed to a relatively small value. Furthermore, if the bias current of the bipolar transistor is changed according to the operation timing, the bias current can be reduced during the memory standby period to suppress current consumption, and the operation period can be increased to reduce rE.
Furthermore, even if noise occurs in the power supply due to the operation of other peripheral circuits, the influence of power supply noise on the readout speed can be suppressed to a small level by adjusting the bias current during the operation period.

〔実施例〕〔Example〕

以下本発明を実施例を用いて詳しく説明する。 The present invention will be explained in detail below using examples.

なお実施例はDRAM回路で説明するが本発明はDRA
Mに限定されずその他のSRAM、ROMやバイポーラ
メモリにも用いることができる。
Although the embodiment will be explained using a DRAM circuit, the present invention is applicable to a DRAM circuit.
It is not limited to M, but can also be used in other SRAMs, ROMs, and bipolar memories.

第1図は本発明をDRAMに適用した実施例であり、第
3図はその動作タイミング図である。回路1は1MO8
,1キヤパシタよりなるダイナミック形メモリセルであ
る。回路5はプリチャージ回路であり、メモリの待機期
間ではプリチャージ線PCを高電位にし、データ線り、
D’ をプリチャージ電圧HVC(例えば電源電圧vC
Cの1/2に設定)にプリチャージしておく。回路6は
再書込み用アンプであり、メモリセルの情報をり。
FIG. 1 shows an embodiment in which the present invention is applied to a DRAM, and FIG. 3 is an operation timing diagram thereof. Circuit 1 is 1MO8
, a dynamic memory cell consisting of one capacitor. Circuit 5 is a precharge circuit, and during the memory standby period, the precharge line PC is set to a high potential, and the data line is
D' is the precharge voltage HVC (e.g. power supply voltage vC
Precharge to 1/2 of C). The circuit 6 is a rewriting amplifier, which reads information from memory cells.

D′に読出した後、駆動線PPを高電位、PNを低電位
に変化することによりり、D’の高電位側をPPレベル
(電源電圧Vccまたは、電気リミッタを用いる場合は
Vccより低い一定電圧)に、低電位側をPNレベル(
GNDレベル)まで増幅し。
After reading data to D', by changing the drive line PP to a high potential and PN to a low potential, the high potential side of D' is set to the PP level (power supply voltage Vcc or a constant lower than Vcc when using an electric limiter). voltage), and the low potential side to PN level (
GND level).

メモリセルに読出し情報の再書込みをおこなう。The read information is rewritten into the memory cell.

回路2が読出し用アンプである。読出し時の列選択信号
YSRが入力されるMOS)−ランジスタをRD、RD
’側に、データ線対信号を受けるMOSをGND側にお
いている。この構成ではRD。
Circuit 2 is a read amplifier. MOS to which the column selection signal YSR is input during reading
A MOS for receiving data line pair signals is placed on the GND side. In this configuration, RD.

RD’には選択列のアンプ2のみが電気的に接続される
のでたとえデータ線対り、D’の一方の電位が再書き込
み動作によりVccレベルに上昇しても多数の非選択列
のデータ線とは電気的に分離されており、読出し共通デ
ータ線対RD、RD’の寄生容量に多数の非選択列デー
タ線容量が加算されることはない。なおデータ線対毎に
設けた多数の読出し用アンプ2のうち電流が流れるのは
YSRで選択されたアンプのみである。この電流および
Since only the amplifier 2 of the selected column is electrically connected to RD', even if the potential of one of the data line pairs D' rises to the Vcc level due to the rewriting operation, the data lines of many non-selected columns will be connected to RD'. The read common data line pair RD and RD' are electrically isolated from each other, and a large number of unselected column data line capacitances are not added to the parasitic capacitance of the read common data line pair RD, RD'. Note that among the large number of read amplifiers 2 provided for each data line pair, current flows only through the amplifier selected by YSR. This current and.

読出し共通データ線対RD、RD’のバイアス電流は回
路数が少ないので動作時の消費電流に対・する寄与は小
さく、また後述するように待機期間はこれらの電流を小
さく抑えることができる。回路3が書込み用転送回路で
ある。ゲート制御信号YSWは選択列でかつ書込み時の
みHighになる。
The bias current of the read common data line pair RD, RD' has a small number of circuits, so its contribution to the current consumption during operation is small, and as will be described later, these currents can be kept small during the standby period. Circuit 3 is a write transfer circuit. The gate control signal YSW becomes High only in the selected column and during writing.

読出し時はLowのままである。It remains Low during reading.

前述したように本構成では読出し共通データ線対RD、
RD’の負荷回路4において、2個のバイポーラトラン
ジスタQl、Ql’にバイアス電流Igt IE (I
E=Ip’ )を流しておきこのバイアス電流をメモリ
の動作タイミングに応じて変化させるものである。読出
し用アンプ2が動作する時、RD、RD’の電位は、Q
l、Ql’のベース電位をVaとすればVt5−Vts
eとほぼ一定になる。したがって、大規模メモリアレー
で多数の読出しアンプ2が接続されて寄生容量が大きく
なっても、読出し速度の劣化は少ない。信号電圧はQl
、Ql’のコレクタPI、PL’ から取り出す、PL
、PL’の寄生容量はRD、REI’の寄生容量に比べ
はるかに小さく、PL、PL’の時定数は小さい。PL
、PL’での必要な信号振幅は後段回路の構成によって
も異なり、後段回路にバイポーラ差動アンプを用いれば
感度が良いのでPL、PL’での信号振幅も低減できる
一層高速化に有効である。
As mentioned above, in this configuration, the read common data line pair RD,
In the load circuit 4 of RD', bias current Igt IE (I
E=Ip') is caused to flow and this bias current is changed in accordance with the operation timing of the memory. When the read amplifier 2 operates, the potentials of RD and RD' are Q
If the base potential of l and Ql' is Va, then Vt5-Vts
It becomes almost constant at e. Therefore, even if a large number of read amplifiers 2 are connected in a large-scale memory array and the parasitic capacitance increases, there is little deterioration in read speed. The signal voltage is Ql
, the collector PI of Ql', taken out from PL', PL
, PL' are much smaller than those of RD and REI', and the time constants of PL and PL' are small. P.L.
The required signal amplitude at PL and PL' differs depending on the configuration of the subsequent circuit, and if a bipolar differential amplifier is used in the subsequent circuit, the sensitivity is good, so the signal amplitude at PL and PL' can be reduced, which is effective for further speeding up. .

次にメモリの動作タイミングに応じてバイアス電流の変
化が必要な理由を述べる。第4図は第3図の動作タイミ
ング図と対応し、更にチップ内電源雑音をみたものであ
る。CEが低電位になると多数のアドレスバッファやデ
コーダ回路群が一斉に動作を開始するので負荷回路4の
付近のVccやGNDラインも第4図に示すような約0
.5vの揺れを生じる。このためQl、Ql’のベース
電位VBは約0.5v下がり、一方エミッタ電位はRD
、RD’ の寄生容量が大きく下がりにくいので、カッ
トオフの期間(第4図のt1〜ta)が長くなる。この
カットオフの状態でワード線信号W。
Next, we will explain why it is necessary to change the bias current depending on the memory operation timing. FIG. 4 corresponds to the operation timing diagram of FIG. 3, and also shows the power supply noise within the chip. When CE becomes a low potential, many address buffers and decoder circuits start operating all at once, so the Vcc and GND lines near the load circuit 4 also drop to about 0 as shown in Figure 4.
.. It causes a 5v vibration. Therefore, the base potential VB of Ql and Ql' drops by about 0.5v, while the emitter potential is RD
, RD' is difficult to reduce significantly, so the cutoff period (t1 to ta in FIG. 4) becomes longer. In this cutoff state, the word line signal W.

列選択信号YSRが高電位の選択状態になると(tz)
、D、D’の信号に応じて読みだしアンプ2が動作しR
D、RD’ に電流差が生じる。しかしこの電流はコレ
クタには現れずRD、RD’の電位が下がりQl、Ql
’ が再びオンするまでPL、PL’に信号電圧を生じ
ない、このようにチップ内電源雑音のため本来の電流セ
ンス方式の高速性が発揮出来ない、電源雑音はなかなか
小さくすることは難しい、特にDRAM、SRAMでは
外部クロック入力で一斉に多数の回路を起動すること、
信号増幅が電源電圧と同程度に大きいこと、DRAMで
の再書込み動作1等の理由で大きな電源雑音を生じる。
When the column selection signal YSR becomes a high potential selection state (tz)
, D, D', readout amplifier 2 operates according to the signals R
A current difference occurs between D and RD'. However, this current does not appear in the collector, and the potentials of RD and RD' decrease Ql and Ql.
A signal voltage is not generated at PL and PL' until ' is turned on again. In this way, the high speed of the original current sensing method cannot be achieved due to the power supply noise inside the chip. It is difficult to reduce power supply noise, especially when In DRAM and SRAM, it is possible to start up many circuits at once by inputting an external clock.
Signal amplification is as large as the power supply voltage, and large power supply noise is generated due to reasons such as rewriting operation 1 in the DRAM.

そこで本発明ではチップが動作状態に入ってからW、Y
SRが選択されるまでの期間(はぼ1.〜tz)はバイ
アス電流を特に増加させることにより破線の様にQl、
Ql’のオン回復を速め(ta=6ta’ ) 、W、
YSRが選択されるや否やQl、Ql’のコレクタ側に
信号電圧が現れるようにする。第5図はこのためのバイ
アス電流の制御の原理的な実施例である。第5図でIB
I〜Igsw Igx’〜I Ell’は値の異なるバ
イアス電流(但しII!t= IEI’ )で、SI!
1〜SE8、SEX’〜Sga’はスイッチであり、0
1〜Caiよスイッチ制御信号である。第6図はその時
の電圧、電流波形である。待機期間(G E : Hi
gh)ではCzのみがHighであり各バイアス電流の
和ICEは微小電流IE!のみである。動作期間(百E
 : Low)になると01がHighになりバイアス
電流はIanに増える。特にYSRが選択されるまでの
期間はC8もHighになりバイアス電流はIEt+I
ssに増加するのでRD、RD’ を急速に放電しQl
、Ql’のオン回復を速める。YSRが選択されるや否
やQl、Ql’のコレクタ側に信号電位差が現れるよう
にする。ここではC3はYSRが選択される前にLo%
Iに戻すことが望ましい、これは読みだしアンプ2がオ
ンすると、バイアス電流に更に読みだしアンプ2の電流
が加わりR1,R1’の電位降下が大きくなりすぎ、設
計が難しくなるからである。なおI El、 I 1!
x’は電流が小さいのでSet。
Therefore, in the present invention, after the chip enters the operating state, W, Y
During the period (approximately 1. to tz) until SR is selected, by particularly increasing the bias current, Ql,
Speed up the on-recovery of Ql'(ta=6ta'), W,
As soon as YSR is selected, a signal voltage appears on the collector side of Ql and Ql'. FIG. 5 shows a principle example of bias current control for this purpose. IB in Figure 5
I~Igsw Igx'~I Ell' are bias currents with different values (however, II!t=IEI'), and SI!
1 to SE8, SEX' to Sga' are switches, and 0
1 to Cai are switch control signals. FIG. 6 shows the voltage and current waveforms at that time. Waiting period (GE: Hi
In gh), only Cz is High, and the sum ICE of each bias current is a minute current IE! Only. Operating period (100E
: Low), 01 becomes High and the bias current increases to Ian. Especially during the period until YSR is selected, C8 also becomes High and the bias current is IEt+I
ss, so RD and RD' are rapidly discharged and Ql
, speeds up recovery of Ql'. As soon as YSR is selected, a signal potential difference appears on the collector sides of Ql and Ql'. Here C3 is Lo% before YSR is selected
It is desirable to return to I, because when the read amplifier 2 is turned on, the current of the read amplifier 2 is further added to the bias current, and the potential drop of R1 and R1' becomes too large, making the design difficult. Furthermore, I El, I 1!
Set x' because the current is small.

Set’スイッチを廃止し全期間にわたって流しても良
い。第7図は第6図とは異なるバイアス電流の制御方法
である。これは第5図でI ex、 I I!xを廃止
しI Ele I ex’ を常時流すことに相当する
The Set' switch may be abolished and the signal may be applied for the entire period. FIG. 7 shows a bias current control method different from that shown in FIG. 6. This is shown in Figure 5 as I ex, I I! This corresponds to abolishing x and constantly streaming I Ele I ex'.

バイアス電流は動作期間(CE : Low)になって
からYSRが選択されるまでの期間だけIE1+Ipa
に増加させ、待機期間(CE : High)を含むそ
の他の期間は一定電流rEtにするので待機時の消費電
流は増加するが1回路は簡単になる。
The bias current is IE1+Ipa only during the period from the operation period (CE: Low) until YSR is selected.
Since the current rEt is increased to a constant value during other periods including the standby period (CE: High), the current consumption during standby increases, but one circuit becomes simpler.

第5図の機能と第6図のタイミングを実際のトランジス
タ接続で実現したのが第8図の実施例である。この図は
スイッチと電流源をMOSトランジスタを用いて構成し
ている。第6図での制御信号C8に相当するものはC1
と遅延回路(Delay)とインバータを用いて作って
いる。VaはMOSトランジスタによる電流源のゲート
制御電圧である。電流値はVaとMOSトランジスタの
ゲート幅、ゲート長で調整する。電流源IazとI e
x’IE8とI 1!s’は共通化している。これはこ
れらの電流が流れるときはり、D’にはまだ読出し信号
が現れていないのでRD、RD’ を等電位イビするの
と素子数を低減するために効果的である。R1゜R1’
 に並列にクランプ用ダイオードDi、Di’を置いて
いる。これはQl、Ql’の飽和防止のためであるII
VBはダイオードD2でVccよりVBEだけレベルシ
フトした電位にしている。後段回路に対する駆動能力を
高めるため出力so、so’はPL、PL’ をベース
入力とするエミッタフォロワーの出力である。エミッタ
フォロワー電流もC1とインバータによる電流制御を行
い動作期間のみ大電流としている。この回路を用いれば
チップ内電源雑音が生じても本来の電流センス方式の高
速性が発揮出来るうえ、待機時の消費電流を抑えられる
The embodiment shown in FIG. 8 realizes the functions shown in FIG. 5 and the timing shown in FIG. 6 using actual transistor connections. In this figure, the switch and current source are constructed using MOS transistors. The control signal C8 in FIG. 6 corresponds to C1.
It is made using a delay circuit (Delay) and an inverter. Va is a gate control voltage of a current source using a MOS transistor. The current value is adjusted by Va and the gate width and gate length of the MOS transistor. Current sources Iaz and Ie
x'IE8 and I1! s' has become common. This is effective in reducing the number of elements as well as in equipotentially setting RD and RD' since no read signal has yet appeared in D' when these currents flow. R1゜R1'
Clamping diodes Di and Di' are placed in parallel with. This is to prevent saturation of Ql and Ql'.II
VB is set to a potential level shifted by VBE from Vcc by a diode D2. In order to increase the driving ability for the subsequent circuit, the outputs so and so' are outputs of an emitter follower whose base inputs are PL and PL'. The emitter follower current is also controlled by C1 and an inverter to maintain a large current only during the operation period. By using this circuit, the original high-speed current sensing method can be achieved even when power supply noise occurs within the chip, and current consumption during standby can be suppressed.

また本発明の電流センス方式でのバイアス電流変化の考
え方は、第1図の様に読出し差動アンプ2にMOSトラ
ンジスタを用いたちの以外にバイポーラの差動アンプを
用いた場合にも適用できる。
Furthermore, the concept of bias current change in the current sensing method of the present invention can be applied to the case where a bipolar differential amplifier is used in addition to the case where a MOS transistor is used as the read differential amplifier 2 as shown in FIG.

この時複数の差動アンプのコレクタを接続したものが読
出し共通データ線になりそのバイアス電流を制御する。
At this time, a line connecting the collectors of a plurality of differential amplifiers becomes a read common data line and controls its bias current.

またデータ線対に設けた差!!11アンプ以外に、共通
データ線対に差動アンプを設けた場合にその出力線のバ
イアス電流を制御するという様に適用できる。
Also, there is a difference between the data line pairs! ! In addition to the No. 11 amplifier, the present invention can be applied to control the bias current of the output line when a differential amplifier is provided in a common data line pair.

次に第1図、第2図における読出し用差動アンプ2の制
御信号YSRと書込み用転送回路3の制御信号YSWを
発生するためのYデコーダ回路の構成について述べる。
Next, the configuration of the Y decoder circuit for generating the control signal YSR for the read differential amplifier 2 and the control signal YSW for the write transfer circuit 3 in FIGS. 1 and 2 will be described.

第9図はその実施例回路図で、第10図はその動作タイ
ミング図である。
FIG. 9 is a circuit diagram of the embodiment, and FIG. 10 is an operation timing diagram thereof.

GE、WEは外部入力である。A Y nmはY系のア
ドレスバッファやプリデコーダを経て作られた部分デコ
ーダ信号である。WCL信号はWE大入力もとに作られ
、多数のYデコーダに等しく入力する。Yデコーダの複
数の入力AYnmが全て)Iighの時YSRはl(i
ghの選択状態となる。読出しくRead)サイクルで
はWCL信号がLowのままなのでYSWはM5.M6
を介してLowである。書込み(write)サイクル
ではWCL信号がHighの期間だけYSWがHigh
となる。nMOS,M5は主にyswの立ちあげに、p
MO81M6は主に立ち下げに寄与する。一方弁選択の
YデコーダではM4がオン、M5.M6がオフであるの
でWCL信号の如何に依らずYSR,YSWが共にLo
wである。−組のYSR,YSWは1列のデータ線対の
みを制御しても良いが一般にメモリセルの寸法がYデコ
ーダより小さいので複数の列を制御するのが良い。
GE and WE are external inputs. A Y nm is a partial decoder signal generated through a Y-system address buffer and predecoder. The WCL signal is generated based on the WE large input and equally inputs to many Y decoders. When multiple inputs AYnm of the Y decoder are all )Ihigh, YSR is l(i
gh is selected. In the read (Read) cycle, the WCL signal remains low, so YSW is set to M5. M6
It is Low via . In a write cycle, YSW is high only during the period when the WCL signal is high.
becomes. nMOS, M5 is mainly used for starting up ysw, p
MO81M6 mainly contributes to the shutdown. On the other hand, in the Y decoder for valve selection, M4 is on, M5. Since M6 is off, YSR and YSW are both Lo regardless of the WCL signal.
It is w. - pair YSR and YSW may control only one column of data line pair, but since the size of the memory cell is generally smaller than the Y decoder, it is better to control a plurality of columns.

以上、DRAMでの実施例を述べてきたが本発明の他の
SRAM、ROM、更に電流センス方式を用いるバイポ
ーラRAMにも容易に適用できる。
Although the embodiment of the present invention has been described above with respect to a DRAM, the present invention can be easily applied to other SRAMs, ROMs, and even bipolar RAMs using a current sensing method.

〔発明の効果〕〔Effect of the invention〕

本発明の共通データ線バイアス電流制御方式を用いれば
、チップ内電源雑音が生じてもその読出し速度に与える
影響を抑え、寄生容量の大きな共通データ線バイポーラ
で電圧クランプする電流センス方式本来の効果を活かす
ことができる。特にDRAMでは、データ線信号の再書
込み用アンプ(第1図の回路6)による増幅速度が遅い
ので増幅前にデータ線信号を読出し用差動アンプ(第1
図の回路2)により直接検出する読出し方式が高速化の
決め手となるがこの時の信号量が小さいうえ、電源雑音
が大きいので本発明の効果は特に大きい。また待機期間
の消費電流もバイアス電流制御により小さく抑えること
が出来る。
By using the common data line bias current control method of the present invention, even if power supply noise occurs within the chip, its influence on the readout speed can be suppressed, and the original effect of the current sensing method, which clamps the voltage using the bipolar common data line with large parasitic capacitance, can be maintained. You can take advantage of it. In particular, in DRAM, the amplification speed of the data line signal rewriting amplifier (circuit 6 in Figure 1) is slow;
The readout method in which direct detection is performed by circuit 2) in the figure is a decisive factor in increasing the speed, but since the signal amount at this time is small and the power supply noise is large, the effect of the present invention is particularly large. Furthermore, current consumption during the standby period can be kept small by bias current control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はDRAMでの実施例回路図、第2図は従来例回
路図、第3図は第1図の動作タイミング図、第4図は電
流センス回路の問題点を示す回。 第5図は本発明のバイアス電流制御方式、第6図と第7
図はその動作波形図、第8図はバイアス電流制御の具体
的な実施例回路図、第9図はYデコーダの実施例回路図
、第10図はその動作波形図である。 1・・・メモリセル、2・・・読出し用差動アンプ、3
・・・書込み用転送回路、4・・・共通データ線対負荷
回路、5・・・プリチャージ回路、6・・・再書込み用
アンプ、CE・・・チップイネーブル入力、WE・・・
ライトイネーブル入力、Xo”X−1Y o ” Y 
−−アドレス入力。 W・・・ワード線、D、D’ ・・・データ線、RD、
RD’・・・読出し用共通データ線、WD、WD’・・
・書込み用共通データ線、YSR・・・読出し用列選択
信号。
FIG. 1 is a circuit diagram of an embodiment in a DRAM, FIG. 2 is a circuit diagram of a conventional example, FIG. 3 is an operation timing diagram of FIG. 1, and FIG. 4 is a diagram showing problems in the current sensing circuit. Figure 5 shows the bias current control method of the present invention, Figures 6 and 7.
8 is a circuit diagram of a specific embodiment of bias current control, FIG. 9 is a circuit diagram of an embodiment of a Y decoder, and FIG. 10 is a diagram of its operation waveforms. 1...Memory cell, 2...Differential amplifier for reading, 3
...Write transfer circuit, 4...Common data line pair load circuit, 5...Precharge circuit, 6...Rewrite amplifier, CE...Chip enable input, WE...
Write enable input, Xo”X-1Y o ”Y
--Address input. W...word line, D, D'...data line, RD,
RD'...Common data line for reading, WD, WD'...
・Common data line for writing, YSR... Column selection signal for reading.

Claims (1)

【特許請求の範囲】 1、複数のメモリセルが接続されたデータ線対毎に、こ
のデータ線信号を入力信号とするMOSまたはバイポー
ラの読出し用差動アンプを設け、このドレインまたはコ
レクタを複数の列について接続し共通読出しデータ線対
とする半導体メモリにおいて、該共通読出しデータ線対
を各々バイポーラトランジスタのエミッタに接続し、ベ
ースに一定電圧を供給し、コレクタと正側電源との間に
負荷抵抗を設け、該共通読出しデータ線対に読出し用差
動アンプからの電流とは別に流すバイアス電流の値をメ
モリの動作タイミングに対応させて変化させることを特
徴とする半導体メモリ。 2、該共通読出しデータ線対に流すバイアス電流の値を
、メモリが待機期間から動作期間ヘの移行時点から、読
出し用差動アンプが選択され信号電流が流れ始めるまで
の期間は、他の待機期間または読出し用差動アンプがオ
ンしている期間よりも多く流すことを特徴とする半導体
メモリ。 3、複数のメモリセルが接続されたデータ線対毎に、こ
のデータ線信号を入力信号とするMOSまたはバイポー
ラの読出し用差動アンプと、書込み共通データ線対とデ
ータ線対との接続を制御する書込み転送回路とを有し、
該読出し用差動アンプの選択信号は前段回路出力を入力
とする他入力NAND回路とCMOSインバータの2段
構成で発生し、該書込み転送回路の選択信号はソースを
GNDに、ゲートを他入力NAND回路の出力に接続し
たnMOSのドレインと、ソースを共通書込み駆動線に
、ゲートを他入力NAND回路の出力に接続したpMO
Sのドレインと、ドレインを共通書込み駆動線に、ゲー
トを該読出し用差動アンプの制御信号線に接続したnM
OSのドレインとの3接続点から印加する列選択回路を
有することを特長とする半導体メモリ。
[Claims] 1. A MOS or bipolar reading differential amplifier that receives the data line signal as an input signal is provided for each data line pair to which a plurality of memory cells are connected, and the drain or collector is connected to the plurality of data line pairs. In a semiconductor memory in which columns are connected to form a common read data line pair, each common read data line pair is connected to the emitter of a bipolar transistor, a constant voltage is supplied to the base, and a load resistor is connected between the collector and the positive power supply. 1. A semiconductor memory characterized in that the value of a bias current flowing through the common read data line pair separately from the current from a read differential amplifier is changed in accordance with the operation timing of the memory. 2. The value of the bias current flowing through the common read data line pair is determined from the time when the memory transitions from the standby period to the operation period until the read differential amplifier is selected and the signal current begins to flow. A semiconductor memory characterized in that the current flows more than a period or a period in which a read differential amplifier is on. 3. For each data line pair to which a plurality of memory cells are connected, control the connection between the MOS or bipolar reading differential amplifier that uses this data line signal as an input signal, the write common data line pair, and the data line pair. has a write transfer circuit to
The selection signal for the read differential amplifier is generated by a two-stage configuration of a CMOS inverter and another input NAND circuit that takes the previous stage circuit output as input, and the selection signal for the write transfer circuit has its source connected to GND and its gate connected to the other input NAND circuit. The drain of the nMOS connected to the output of the circuit, the source of the pMOS connected to the common write drive line, and the gate connected to the output of the other input NAND circuit.
nM whose drain is connected to a common write drive line and whose gate is connected to the control signal line of the read differential amplifier.
A semiconductor memory characterized by having a column selection circuit that applies voltage from three connection points with the drain of an OS.
JP63268031A 1988-10-26 1988-10-26 Semiconductor memory Pending JPH02116083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268031A JPH02116083A (en) 1988-10-26 1988-10-26 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268031A JPH02116083A (en) 1988-10-26 1988-10-26 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH02116083A true JPH02116083A (en) 1990-04-27

Family

ID=17452921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268031A Pending JPH02116083A (en) 1988-10-26 1988-10-26 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH02116083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282988A (en) * 1992-12-31 1994-10-07 Hyundai Electron Ind Co Ltd Semiconductor memory device provided with improved data transmission circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282988A (en) * 1992-12-31 1994-10-07 Hyundai Electron Ind Co Ltd Semiconductor memory device provided with improved data transmission circuit

Similar Documents

Publication Publication Date Title
JPS62117190A (en) Semiconductor memory device
US5644548A (en) Dynamic random access memory having bipolar and C-MOS transistor
US4845676A (en) Non-clocked static memory cell
JPH07147090A (en) Semiconductor memory device
JPH04353698A (en) Differential amplifier, latch circuit using same, memory device using latch circuit and information readout operation thereof
US5808956A (en) Bus-line drive circuit and semiconductor storage device comprising the same
US5642314A (en) Semiconductor integrated circuit
US5229967A (en) BICMOS sense circuit for sensing data during a read cycle of a memory
JPH02116083A (en) Semiconductor memory
JP3580062B2 (en) Bus line driving circuit and semiconductor memory device having the same
JP2876799B2 (en) Semiconductor storage device
JP3064561B2 (en) Semiconductor storage device
JPH0263277B2 (en)
JP3085526B2 (en) Storage device
JPH02154393A (en) Semiconductor storage circuit
JPH01155589A (en) Semiconductor memory device
JP2953847B2 (en) Semiconductor memory
JPH04271090A (en) Semiconductor memory device
JPH07161187A (en) Semiconductor integrated circuit device
JP3369706B2 (en) Semiconductor storage device
JP2940127B2 (en) Semiconductor device
JPS62232795A (en) Mos type memory circuit
JPH10275473A (en) Semiconductor memory
JPS59186196A (en) Transversal ratioless rom
JPH0746497B2 (en) Semiconductor memory device