JPH02115885A - Operation training simulator device for power plant - Google Patents

Operation training simulator device for power plant

Info

Publication number
JPH02115885A
JPH02115885A JP26818988A JP26818988A JPH02115885A JP H02115885 A JPH02115885 A JP H02115885A JP 26818988 A JP26818988 A JP 26818988A JP 26818988 A JP26818988 A JP 26818988A JP H02115885 A JPH02115885 A JP H02115885A
Authority
JP
Japan
Prior art keywords
frequency
load
power generator
generator
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26818988A
Other languages
Japanese (ja)
Inventor
Takeo Sato
佐藤 孟生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26818988A priority Critical patent/JPH02115885A/en
Publication of JPH02115885A publication Critical patent/JPH02115885A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simulate power generator operation characteristics in a system insulation state by computing a load electric angle according to a system load, and selecting the load electric angle or power generator phase difference angle according to whether or not system isolation conditions are satisfied and computing the output of the power generator. CONSTITUTION:A machine input and a power generator output 2 are inputted to a subtracter 3 and an integrator 5 obtains the frequency 6 of the power generator from the signal of torque deviation 4. The power generator output 2, on the other hand, is inputted to a subtracter 14 together with the system load 13 and an unbalanced load 15 is inputted to a system coefficient setting means 16 to find variation 17 in system frequency. The system frequency variation 17 is added by an adder 19 to a reference frequency 18 to obtain a system frequency 7. A subtracter 8 outputs the frequency deviation 9 between the system frequency 7 and power generator frequency 6 and an integrator 10 inputs a power generator phase difference angle 11 to a power tidal current arithmetic part through a system isolation switching means 22 to compute the power generator output 2. A load electric angle arithmetic means 20 computes the load electric angle 21 according to the system load 13 and the system switching means 22 outputs the load electric angle 21 in system isolated operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、発電プラントにおける発電機の運転特性を
模擬する発電プラントの運転訓練シミュレータ装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power generation plant operation training simulator device that simulates the operating characteristics of a generator in a power generation plant.

〔従来の技術〕[Conventional technology]

第2図は従来の発電プラントの運転訓練シミュレータ装
置を示すブロック接続図であり、図において、1は発電
機を廻す機械入力、2は発電機出力、3は減算器で、機
械人力1と発電機出力2とのトルク偏差4を演算する。
Fig. 2 is a block connection diagram showing a conventional power generation plant operation training simulator device. Calculate torque deviation 4 from machine output 2.

5は積分器で、偏差トルク4から発電機周波数6を演算
する。7は系統周波数で、第2の演算手段としての減算
器8により発電機周波数6と系統周波数7との周波数偏
差9を演算する。10は積分器で、周波数偏差9から発
電機相差角11を演算する。12は第3の演算手段とし
ての電力潮流演算部で、発電機相差角11から発電機出
力2を演算する。13は系統負荷で、減算器14により
不平衡負荷15を演算する。16は系統系数設定手段で
不平衡負荷15から系統周波数変化17を演算設定する
。18は基準周波数で、第1の演算手段としての加算器
19により系統周波数変化1Tと基準周波数18とから
、系統周波数7を演算する。
5 is an integrator that calculates the generator frequency 6 from the deviation torque 4. 7 is a system frequency, and a frequency deviation 9 between the generator frequency 6 and the system frequency 7 is calculated by a subtracter 8 as a second calculation means. 10 is an integrator that calculates a generator phase difference angle 11 from the frequency deviation 9. Reference numeral 12 denotes a power flow calculation section as a third calculation means, which calculates the generator output 2 from the generator phase difference angle 11. 13 is a system load, and an unbalanced load 15 is calculated by a subtracter 14. Reference numeral 16 denotes a system number setting means which calculates and sets a system frequency change 17 from the unbalanced load 15. 18 is a reference frequency, and the system frequency 7 is calculated from the system frequency change 1T and the reference frequency 18 by an adder 19 as a first calculating means.

次に動作について説明する。Next, the operation will be explained.

いま、発電機を機械手段にて駆動し、このときの機械人
力1と発電機出力2とを減算器3に入力してトルク偏差
4を求め、このトルク偏差4の信号を積分器5にて積分
して発電機周波数6を得る。
Now, the generator is driven by mechanical means, the mechanical power 1 and the generator output 2 at this time are input to the subtracter 3 to obtain the torque deviation 4, and the signal of this torque deviation 4 is input to the integrator 5. Integrate to obtain generator frequency 6.

一方、発電機出力2は系統負荷13とともに減算器14
に入力されて、ここで不平衡負荷15が求められ、これ
かさらに系統系数設定手段16に入力されて、系統定数
に応じて系統周波数変化17いて加算されて系統周波数
7とされ、これが上記減算器8に入力されて、発電機周
波数6との周波数偏差9が求められる。積分器10はこ
の周波数入力し、発電機出力2を演算出力する。
On the other hand, the generator output 2 is output to the subtracter 14 along with the system load 13.
The unbalanced load 15 is determined here, and this is further input to the system number setting means 16, where the system frequency change 17 is added according to the system constant, and this is set as the system frequency 7. The frequency deviation 9 from the generator frequency 6 is determined. The integrator 10 inputs this frequency and calculates and outputs the generator output 2.

また、上記回路において、系統単独模擬は系統系数設定
手段16により系統系数を小さくすることによって、不
平衡負荷15により系統周波数変化17が大巾に変化し
、その結果、周波数偏差9゜発電機相差角111発電機
出力2が変化し、系統単独に近い応答が現われる。
In addition, in the above circuit, in the grid independent simulation, by reducing the grid number by the grid number setting means 16, the grid frequency change 17 changes greatly due to the unbalanced load 15, and as a result, the frequency deviation is 9 degrees, the generator phase difference is The corner 111 generator output 2 changes, and a response close to that of the system alone appears.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の発電プラントの運転訓練シミュレータ装置は以上
のように構成されているので、機械人力1の変化に対し
て発電機周波数6が変化し、これによって発電機出力2
も変化してしまい、系統単独状態の発電機運転特性が正
しく模擬できなくなるなどの問題点があった。
Since the conventional power plant operation training simulator device is configured as described above, the generator frequency 6 changes in response to a change in the mechanical power 1, and as a result, the generator output 2 changes.
There were problems such as the fact that the generator operating characteristics under isolated grid conditions could not be accurately simulated.

この発明は上記のような問題点を解消するためになされ
たもので、発電機周波数により発電機出力が影響されな
いように、系統単独運転状態の発電機運転特性を模擬す
ることができる発電プラントの運転訓練シミーレータ装
置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a power generation plant that can simulate the generator operating characteristics in grid islanding state so that the generator output is not affected by the generator frequency. The purpose is to obtain a driving training simulator device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る発電プラントの運転訓練シミュレータ装
置は、系統負荷にもとづいて負荷電気角を演算する負荷
電気角演算手段を設け、系統単独条件が成立するか否か
に応じて、系統単独切換手段により上記負荷電気角また
は発電機相差角を選択して、第3の演算手段へ出力する
ようにしたものである。
The power generation plant operation training simulator device according to the present invention is provided with a load electrical angle calculation means for calculating a load electrical angle based on the system load, and is configured to use a system-only switching means depending on whether or not a system-only condition is satisfied. The load electrical angle or the generator phase difference angle is selected and output to the third calculation means.

〔作 用〕[For production]

この発明における系統単独切換手段は、発電機が電力系
統に対し単独状態となる系統単独運転状態において、系
統負荷にもとづく負荷電気角を発電機周波数に関係なく
出力し、発電機出力が変化しない運転特性を模擬するよ
うに作用する。
The grid independent switching means in this invention outputs the load electrical angle based on the grid load regardless of the generator frequency in the grid isolated operation state where the generator is isolated from the power grid, and the generator output does not change. Acts to simulate characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、20は系統負荷13かも負荷電気角21を
演算する負荷電気角演算手段で、この負荷電気角関数の
演算式は下式の通りである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 20 is a load electrical angle calculation means for calculating the load electrical angle 21 of the system load 13, and the calculation formula for this load electrical angle function is as shown below.

θ=s+n  −L   ・・・・・・・・・・・・・
・・・・・■なお、この式において、θは負荷電気角、
■は発電機電圧、Xは発電機同期インピーダンス、Lは
系統負荷をそれぞれ表わす。22は系統単独条件更手段
で、系統単独条件の時には、負荷電気角21を発電機相
差角23として出力し、系統単独条件が成立しない時は
、発電機相差角11を発電機相差角23として出力する
。同様に24も系統単独切換手段部であり、系統単独条
件が成立している時は、発電機周波数6を系統周波数2
5として出力する。
θ=s+n −L ・・・・・・・・・・・・・・・
・・・・・・■ In this formula, θ is the load electrical angle,
3 represents the generator voltage, X represents the generator synchronous impedance, and L represents the system load. Reference numeral 22 denotes a system-only condition updating means, which outputs the load electrical angle 21 as the generator phase difference angle 23 when the system-only condition is met, and outputs the generator phase difference angle 11 as the generator phase difference angle 23 when the system-only condition does not hold. Output. Similarly, 24 is a grid independent switching means section, and when the grid independent condition is satisfied, the generator frequency 6 is switched to the grid frequency 2.
Output as 5.

なお、このほかの第2図に示したものと同一のブロック
および信号には同一符号を付して、その重複する説明を
省略する。
Note that other blocks and signals that are the same as those shown in FIG. 2 are given the same reference numerals, and redundant explanation thereof will be omitted.

次に動作について説明する。Next, the operation will be explained.

いま、発電機を機械手段にて駆動し、このときの機械人
力1と発電機出力2とを減算器3に入力してトルク偏差
4を求め、このトルク偏差4の信号を積分器5にて積分
して発電機周波数6を得る。
Now, the generator is driven by mechanical means, the mechanical power 1 and the generator output 2 at this time are input to the subtracter 3 to obtain the torque deviation 4, and the signal of this torque deviation 4 is input to the integrator 5. Integrate to obtain generator frequency 6.

一方、発電機出力2は系統負荷13とともに減算器14
に入力されて、ここで不平衡負荷15が求められ、この
不平衡負荷がさらに系統系数設定手段16に入力されて
、系統定数に応じて系統周波19において加算されて系
統周波数7とされ、この系統周波数7が上記減算器8に
入力されズ、発電機周波数6との周波数偏差9がとられ
る。積分器10はこの周波数偏差9にもとづいて発電様
相発電機出力2を演算出力する。
On the other hand, the generator output 2 is output to the subtracter 14 along with the system load 13.
The unbalanced load 15 is determined here, and this unbalanced load is further inputted to the grid system number setting means 16, where it is added at the system frequency 19 according to the system constant, and the system frequency 7 is obtained. The system frequency 7 is input to the subtracter 8, and a frequency deviation 9 from the generator frequency 6 is taken. The integrator 10 calculates and outputs the power generation mode generator output 2 based on this frequency deviation 9.

一方、負荷電気角演算手段20は系統負荷13にもとづ
いて上記演算式■に従って負荷電気角21を演算してお
り、系統単独運転時には系統単独切換手段22が上記負
荷電気角21を発電機相差角23として電力潮流演算部
12へ出力する。また、系統単独運転条件が成立してい
ない場合には、系統単独切換手段22によって発電機相
差角11を出力する。このため、機械人力1の変化およ
び発電機周波数6の変化に影響されないように、系統単
独状態での発電機運転特性を模擬できることになる。
On the other hand, the load electrical angle calculating means 20 calculates the load electrical angle 21 based on the system load 13 according to the above calculation formula (2), and when the system is operating independently, the system independent switching means 22 converts the load electrical angle 21 into the generator phase difference angle. 23 and is output to the power flow calculation unit 12. Moreover, when the system independent operation condition is not satisfied, the generator phase difference angle 11 is outputted by the system independent switching means 22. Therefore, it is possible to simulate the generator operating characteristics in an isolated state without being affected by changes in the mechanical power 1 and the generator frequency 6.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば系統負荷にもとづき負
荷電気角演算手段にょっ【負荷電気角を演算し、系統単
独条件の成立、不成立に応じて、系統単独切換手段によ
り上記負荷電気角または発電機相差角を選択して出方す
るように構成したので、機械入力を変化させても、発電
機周波数は変化するが発電機出力は変化しない運転特性
の模擬を任意に行えるものが得られる効果がある。
As described above, according to the present invention, the load electrical angle is calculated by the load electrical angle calculation means based on the system load, and depending on whether the system independent condition is satisfied or not, the system independent switching means Since the generator phase difference angle is configured to be output by selecting the generator phase difference angle, it is possible to arbitrarily simulate the operating characteristics in which even if the mechanical input changes, the generator frequency changes but the generator output does not change. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による発電プラントの運転
訓練シミュレータ装置を示すブロック接続図、第2図は
従来の発電プラントの運転訓練シミーレータ装置を示す
ブロック接続図である。 2は発電機出力、6は発電機周波数、7は系統周波数、
8は第2演算手段(減算器)、9は周波数偏差、11は
発電機相差角、12は第3演算手段(11!力潮流演算
部)、13は系統負荷、16は系統系数設定手段、1T
は系統周波数変化、19は第1演算手段(加算器)、2
0は負荷電気角演算手段、21は負荷電気角、22は系
統単独切換手段。 なお、図中、同一符号は同一 又は相当部分を示す。
FIG. 1 is a block connection diagram showing a power generation plant operation training simulator device according to an embodiment of the present invention, and FIG. 2 is a block connection diagram showing a conventional power generation plant operation training simulator device. 2 is the generator output, 6 is the generator frequency, 7 is the grid frequency,
8 is a second calculation means (subtractor), 9 is a frequency deviation, 11 is a generator phase difference angle, 12 is a third calculation means (11! power flow calculation section), 13 is a system load, 16 is a system system number setting means, 1T
is the system frequency change, 19 is the first calculation means (adder), 2
0 is a load electrical angle calculation means, 21 is a load electrical angle, and 22 is a system independent switching means. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 系統負荷と発電機出力とから得た不平衡負荷に応じて系
統周波数変化を設定する系統系数設定手段と、上記系統
周波数変化と予め設定した基準周波数とから系統周波数
を演算する第1の演算手段と、この演算した系統周波数
と発電機周波数との周波数偏差にもとづき発電機相差角
を演算する第2の演算手段と、上記発電機相差角にもと
づき上記発電機出力を演算する第3の演算手段とを備え
た発電プラントの運転訓練シミュレータ装置において、
上記系統負荷にもとづいて負荷電気角を演算する負荷電
気角演算手段と、系統単独条件が成立するか否かに応じ
て、上記負荷電気角または上記発電機相差角を選択的に
上記第3の演算手段へ出力する系統単独切換手段とを設
けたことを特徴とする発電プラントの運転訓練シミュレ
ータ装置。
A system frequency setting means for setting a system frequency change according to an unbalanced load obtained from a system load and a generator output, and a first calculation means for calculating a system frequency from the system frequency change and a preset reference frequency. a second calculation means for calculating a generator phase difference angle based on the frequency deviation between the calculated system frequency and the generator frequency; and a third calculation means for calculating the generator output based on the generator phase difference angle. In a power generation plant operation training simulator device equipped with
load electrical angle calculation means for calculating a load electrical angle based on the system load; A power generation plant operation training simulator device, characterized in that it is provided with system independent switching means for outputting to a calculation means.
JP26818988A 1988-10-26 1988-10-26 Operation training simulator device for power plant Pending JPH02115885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26818988A JPH02115885A (en) 1988-10-26 1988-10-26 Operation training simulator device for power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26818988A JPH02115885A (en) 1988-10-26 1988-10-26 Operation training simulator device for power plant

Publications (1)

Publication Number Publication Date
JPH02115885A true JPH02115885A (en) 1990-04-27

Family

ID=17455156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26818988A Pending JPH02115885A (en) 1988-10-26 1988-10-26 Operation training simulator device for power plant

Country Status (1)

Country Link
JP (1) JPH02115885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357054A (en) * 2001-05-30 2002-12-13 Okamura Corp Shielding structure for mobile panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357054A (en) * 2001-05-30 2002-12-13 Okamura Corp Shielding structure for mobile panel

Similar Documents

Publication Publication Date Title
Arellano-Padilla et al. Control of an AC dynamometer for dynamic emulation of mechanical loads with stiff and flexible shafts
Bose et al. A microcomputer-based control and simulation of an advanced IPM synchronous machine drive system for electric vehicle propulsion
JPH0799785A (en) Saturation-preventing circuit device of transformer in dc/ac converter with feedback control inverter
JPH02115885A (en) Operation training simulator device for power plant
CN107017666B (en) Small-sized single-phase synchronous generator paired running system finite element model method for building up
US4945508A (en) Process and device for simulating a synchronous electric machine
JPS5823589B2 (en) Device that detects non-periodic wave number power oscillations in power transmission systems
Detjen et al. Embedding DSP control algorithms in PSpice
Shi et al. Modelling and simulation of direct self-control systems
JPH11252796A (en) Power system higher harmonic real-time simulator
Newton et al. A dynamic dynamometer for testing variable speed drives
JP2843463B2 (en) Power system simulator
JP3178552B2 (en) Infinite bus model device for multi-machine connection
Othman et al. Modeling of impedance uncertainty in power system networks
JP2730383B2 (en) Parallel operation control device for AC output converter
Kinpara et al. Slip‐Frequency‐Type Vector Control Equivalent to Flux‐Feedback Vector Control Using Flux Observer
JPS62203518A (en) Propagation wave calculator
SU1617550A1 (en) Device for remote transmission of angle value with scaled effort
JP2006101647A (en) Cage-type induction machine simulating apparatus for analog simulator
JPH06237528A (en) Electric-power-system simulation apparatus
Demerdash et al. Characterization of induction motors in adjustable speed drives using a time-stepping coupled finite element state space method including experimental validation
RU2008642C1 (en) Test facility for fuel-control gear of gas-turbine engines
JP2005130671A (en) Inverter tester
SU1403323A1 (en) Device for determining coordinates of induction motor of controlled electric drive
JP2539484B2 (en) Simulated circuit of generator for analog simulator