JPH02115155A - Production of 2,5-dimethylhexanedinitrile - Google Patents

Production of 2,5-dimethylhexanedinitrile

Info

Publication number
JPH02115155A
JPH02115155A JP26703688A JP26703688A JPH02115155A JP H02115155 A JPH02115155 A JP H02115155A JP 26703688 A JP26703688 A JP 26703688A JP 26703688 A JP26703688 A JP 26703688A JP H02115155 A JPH02115155 A JP H02115155A
Authority
JP
Japan
Prior art keywords
concentration
oil phase
formula
electrolyte
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26703688A
Other languages
Japanese (ja)
Inventor
Yukito Nagamori
永守 幸人
Kazunori Yamataka
山高 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP26703688A priority Critical patent/JPH02115155A/en
Publication of JPH02115155A publication Critical patent/JPH02115155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title compound in high current efficiency and in high efficiency by using an electroconductive substance containing an inorganic salt and a quaternary ammonium salt as a supporting electrolyte and dimerizing methacrylonitrile through electrolytic reduction in an emulsion base having a specific composition by a single electrolytic cell. CONSTITUTION:Methacrylonitrile is electrolytically reduced in an emulsion base having 0.05-0.30, especially 0.10-0.2 volume ratio of oil phase, 20-90wt.%, especially 30-80wt.% methacrylonitrile concentration in the oil phase, 1.0-20.0wt.%, especially 2-10wt.% concentration of the compound shown by the formula in a water phase and pH5-10 in the water phase at 45-65 deg.C temperature of electrolyte and 5-40Angstrom current density per 1dm<2> cathode surface in the presence of an electroconductive substance comprising an inorganic salt containing a phosphate and a compound shown by the formula [R<1>-R<4> are alkyl or aralkyl (sum of carbons is 10-25); X is acid group; n is integer corresponding to ion valence of X] to give the aimed compound.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、メタクリロニトリル(以下、MANと略記す
る)の電解還元2量化による2、5−ジメチルヘキサン
ジニトリル(以下、DMADNと略記する)の製造方法
、特にこれを連続的に行なう方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to the production of 2,5-dimethylhexane dinitrile (hereinafter abbreviated as DMADN) by electroreductive dimerization of methacrylonitrile (hereinafter abbreviated as MAN). ), and in particular, a method for continuously carrying out the same.

DMADNは、農薬、医薬、合成繊維、合成樹脂などの
原料として重要であり、とりわけ、その水素添加生成物
でめる2、5−ジメチル−1,6−へキサ/ジアミンは
透明ナイロンの原料として、また、水素添加抜脱アンモ
ニアした透化生成物であるヘキサハイドロ−3,6−シ
メチルー1H−アゼピンはカーバメート系m薬の原料と
して、最近とくに重要性が増している。
DMADN is important as a raw material for agricultural chemicals, medicines, synthetic fibers, synthetic resins, etc. In particular, its hydrogenated product, 2,5-dimethyl-1,6-hexa/diamine, is used as a raw material for transparent nylon. In addition, hexahydro-3,6-dimethyl-1H-azepine, which is a permeation product obtained by hydrogenation, extraction, and ammonia, has recently become particularly important as a raw material for carbamate-based drugs.

(従来の技術) 従来、回分式のMANの電解還元2量化によるDMAD
Nの製造方法として次の方法が知られている。
(Prior art) Conventionally, DMAD by electrolytic reduction dimerization of batch-type MAN
The following method is known as a method for producing N.

は) 水酸化ナトリウムを電解支持塩とし、水溶液中で
、黒鉛、亜鉛、錫、銅を各々陰極として用い電解還元す
る方法。
) A method of electrolytic reduction using sodium hydroxide as an electrolytic supporting salt and graphite, zinc, tin, and copper as cathodes in an aqueous solution.

(A、、P、 Tom4xor 、 L、V、 Kaa
bak and S、L。
(A,,P,Tom4xor,L,V,Kaa
bak and S,L.

Varsharskii 、 Zh、 0bahch、
 Khjm−+ 33 (9)+(21yトラエチルア
ンモニウムパラトルエンスル電解質とし、水−ジメチル
ホルムアミド混合溶媒中、水銀を陰極として用いて電解
還元する方法。
Varsharskii, Zh, 0bahch,
Khjm-+ 33 (9) + (21y A method of electrolytic reduction using traethylammonium para-toluenesulfur electrolyte and mercury as a cathode in a water-dimethylformamide mixed solvent.

CM、M、 Ba1zer and J、D、 And
erson 、 J。
C.M., M., Ba1zer and J.D., and
erson, J.

Electrochemical Soc、+ 111
 (2) + 223−26(1964)、および米国
特許 第3,193.481号(1965))しかし、(I)
の方法は、最大収率の得られた黒鉛陰極下でも、12.
9%の選択率と0.6%の電流効率しか得られておらず
、錫、銅陰極ではDMADNは生成しなかった旨が上記
(1)の文献中に記載されているので、選択率および電
流効率が低いという点で大きな問題がある。(2)の方
法は、水銀を陰極として用いるため、工業的製法として
は公害防止の点できわめて問題がある。
Electrochemical Soc, +111
(2)+223-26 (1964), and U.S. Pat. No. 3,193.481 (1965)), but (I)
The method of 12. shows the maximum yield even under a graphite cathode.
Only 9% selectivity and 0.6% current efficiency were obtained, and it is stated in the document (1) above that DMADN was not generated with tin and copper cathodes. A major problem is low current efficiency. Since method (2) uses mercury as a cathode, it is extremely problematic in terms of pollution prevention as an industrial production method.

また、(1) 、 (21いずれの方法も回分式反応で
あり、ある程度以上の規模の工業的生産には適さないも
のである。そして、脚の電解還元2量化によるDMAD
Nの連続的製法は知られていなかった。
In addition, (1) and (21) both methods are batch reactions and are not suitable for industrial production on a certain scale.
A continuous method for producing N was unknown.

一方、MANの類似化合物であるアクリロニトリルの電
解還元2量化によるアジポニトリルの工業的製造方法と
しては、水銀陰極を用いない方法が一般に行なわれてい
る。しかし、同じ電解還元2薫化とはいっても、出発物
質のニトリルの構造によって、生成物の還元2を体の収
率は大きく異なり、単純な技術の転用はよい結果を与え
ない。すなわち、MANはそのメチル基の存在のため、
アクリロニトリルとは水に対する溶解度、電子状態、立
体障害の程度などが大きく異なるので、反応挙動はアク
リロニトリルとは異なつ之ものを示す。
On the other hand, as an industrial method for producing adiponitrile by electroreductive dimerization of acrylonitrile, which is a similar compound of MAN, a method that does not use a mercury cathode is generally carried out. However, even though electrolytic reduction is the same, the yield of the reduced 2 product differs greatly depending on the structure of the starting nitrile, and the conversion of simple techniques does not give good results. That is, due to the presence of its methyl group, MAN
Since it is significantly different from acrylonitrile in water solubility, electronic state, degree of steric hindrance, etc., its reaction behavior is different from that of acrylonitrile.

ちなみに、本発明者らが、アクリロニトリルの電解還元
2ft化として通常採用されている条件でMANの電解
を試みたところ、比較例6から明らかなように、DMA
DNはほとんど生成せず、実用には不適であることがわ
かった。
Incidentally, when the present inventors attempted electrolysis of MAN under the conditions normally adopted for electrolytic reduction of acrylonitrile to 2ft, as is clear from Comparative Example 6, DMA
It was found that almost no DN was generated, making it unsuitable for practical use.

更に、特開昭59−219485号公報、特開昭60−
50190号公報では上記のような問題点を解決し、工
業化可能な技術を提案している。
Furthermore, JP-A-59-219485, JP-A-60-
Publication No. 50190 solves the above-mentioned problems and proposes a technology that can be industrialized.

即ち、MAN′5c−能代 R1−痒R3yO(式中、R1、R2,R31R’lr
l炭素数4以下のアルキル基、ρはモノアルキル硫酸ア
ニオン、芳香族スルホン酸アニオン、へ口rンアニオン
、リン酸アニオンおよび過塩素酸アニオンの群から選ば
れた少なくとも一つの対アニオンを表わす。) で示される4級アンモニウム塩および水の存在する非プ
ロトン性極性溶媒中で、鉛、鋼、亜鉛、炭素、チタン、
および錫の群から選ばれた少なくとも一つの元素を主成
分とする陰極を用いて、電解還元2量化することを特徴
としており、目的物を選択率60%以上、電流効率50
%以上の高い反応成績を得ている。
That is, MAN'5c-NoshiroR1-itchR3yO (in the formula, R1, R2, R31R'lr
The alkyl group having 4 or less carbon atoms, ρ, represents at least one counter anion selected from the group consisting of a monoalkyl sulfate anion, an aromatic sulfonate anion, a hexafluoride anion, a phosphate anion, and a perchlorate anion. ) in an aprotic polar solvent in the presence of a quaternary ammonium salt represented by: lead, steel, zinc, carbon, titanium,
It is characterized by electrolytic reduction dimerization using a cathode whose main component is at least one element selected from the group of
We have obtained high reaction results of more than %.

この技術の特長は、工業化可能なレベルの選択率と電流
効率を達成するために、陰極液に非プロトン性溶媒とし
てのジメチルスルホキシドやジメチルホルムアミドを加
えてMAN 、水、第4級アンモニウム塩及び生成物を
均一にすると同時に顕著な溶媒効果を発揮させている。
The feature of this technology is that dimethyl sulfoxide or dimethyl formamide as an aprotic solvent is added to the catholyte to achieve selectivity and current efficiency at an industrial level. It makes things uniform and at the same time exhibits a remarkable solvent effect.

更に特開昭60−52587号公報では均一な陰極液か
ら出発原料、溶媒、第4級アンモニウム塩を回収率し、
且つ目的生取物を単離する方法が提案されている。
Furthermore, in JP-A No. 60-52587, the recovery rate of starting materials, solvents, and quaternary ammonium salts from a homogeneous catholyte is
In addition, a method for isolating the desired raw material has been proposed.

(発明が解決しようとする問題点) しかし、上記3件の特開昭公報で提案されたプロセスを
長時間連続的に運転すると、用いた非プロトン性溶媒が
少しづつ分解して蓄積し、しだいに電解反応の成績が悪
くなってくると同時に均一な陰極液から原料、溶媒、第
4級アンモニウム塩を回収し生成物を単離する操作がし
だいに困難になり、特に第4級アンモニウム塩の回収が
悪くなってくるという問題点が出てき九。
(Problems to be Solved by the Invention) However, if the processes proposed in the three JP-A-Sho publications mentioned above are operated continuously for a long time, the aprotic solvent used gradually decomposes and accumulates. At the same time, the performance of electrolytic reactions deteriorated, and at the same time, the operations of recovering raw materials, solvents, and quaternary ammonium salts from a homogeneous catholyte and isolating products became increasingly difficult, especially for quaternary ammonium salts. The problem has arisen that collection is getting worse.

(問題点を解決する九めの手段) 本発明者らは、上記のような問題点を解決し得る工業化
技術を鋭意検討した結果、無隔膜電解槽で、ある程度バ
ルキーな第4級アンモニウム塩を含む支持電解質を用い
、水系エマルジョン系で特定の電解液組成を設定するこ
とによって、工業化可能な!解反応成績を達成し且つ水
素発生を抑制しつつ長時間連続的に安定に運転し得るD
MADNの製造方法を見出した。
(Ninth Means to Solve the Problems) As a result of intensive study on industrialization technology that can solve the above problems, the inventors of the present invention have developed a method for producing quaternary ammonium salts, which are bulky to some extent, using a membraneless electrolytic cell. It can be industrialized by using a supporting electrolyte that contains it and setting a specific electrolyte composition in an aqueous emulsion system! D that can be operated continuously and stably for a long time while achieving good reaction results and suppressing hydrogen generation.
We have discovered a method for manufacturing MADN.

即ち、本発明は、MANを、陰極として鉛又、は鉛合金
、カドミウム、陽極として鉄又は鉄合金から成る単一1
1LM槽で、リン酸塩を含む無機塩と一般式 で示される第四級アンモニウムから成る電導性物質の存
在下、水性エマルジョン状態で、且該水性エマルジョン
中の油相の容量比’k 0.05〜0.60にし、油相
中のMANの濃度を20〜9 Q wt%に弘水相中の
第4級アンモニウム塩の濃度を1.0〜20、OWt係
にし、水相中の−を5〜10にして電解還元を行なうこ
とを特徴とするDMADNの製造方法である。
That is, the present invention uses a single MAN made of lead or a lead alloy, cadmium as a cathode, and iron or an iron alloy as an anode.
In a 1LM bath, in the presence of an electrically conductive substance consisting of an inorganic salt containing a phosphate and a quaternary ammonium represented by the general formula, in the state of an aqueous emulsion, and the volume ratio of the oil phase in the aqueous emulsion 'k0. 05 to 0.60, the concentration of MAN in the oil phase to 20 to 9 Q wt%, the concentration of quaternary ammonium salt in the water phase to 1.0 to 20, and the concentration of - This is a method for producing DMADN, characterized in that electrolytic reduction is carried out at a concentration of 5 to 10.

以下、本発明を説明する。The present invention will be explained below.

本発明は単一室電解槽で電解反応を行うことが本質であ
り、単に高電流効率及び高収率のみを実現するだけでは
目的は達成されず、水素発生を抑制し爆発性混合気体の
生成を防止し、且つ長時間連続的に安定に運転し得うる
ことではじめて達成できるのである。
The essence of the present invention is to perform the electrolytic reaction in a single-chamber electrolyzer, and the objective cannot be achieved simply by achieving high current efficiency and high yield; it suppresses hydrogen generation and generates an explosive mixed gas. This can only be achieved by preventing this and being able to operate continuously and stably for a long period of time.

そのためには、無機塩と第4級アンモニウム塩を含む電
導性物質を支持電解質として用い、水性エマルジョン状
態で、且つ水性エマルジョン中の油相、水相の割合、油
相中のMANの濃度及び水相中の第4級アンモニウム塩
の濃度と−を特定の値に設定することの6つの特徴を組
み合せることが必要である。
For this purpose, a conductive substance containing an inorganic salt and a quaternary ammonium salt is used as a supporting electrolyte, and in an aqueous emulsion state, the ratio of the oil phase and water phase in the aqueous emulsion, the concentration of MAN in the oil phase, and the water It is necessary to combine the six features of setting the concentration of the quaternary ammonium salt in the phase to a specific value.

本発明においては、この反応を水性エマルジョン状態す
なわち、水相と油相からなる不均一相中で行うことが必
要である。
In the present invention, it is necessary to carry out this reaction in an aqueous emulsion state, that is, in a heterogeneous phase consisting of an aqueous phase and an oil phase.

本発明方法に2ける電解液エマルジョンの油相容蓋比率
は、生成したDMADNの分離、回収、電解液組成の安
定維持という点から0.05〜0.60の範囲が好まし
く、更に好ましくは0.10〜0.2である。
The oil phase cap ratio of the electrolyte emulsion in method 2 of the present invention is preferably in the range of 0.05 to 0.60, more preferably 0.05 to 0.60 from the viewpoint of separation and recovery of the generated DMADN and stable maintenance of the electrolyte composition. .10 to 0.2.

水性エマルジョンの水相中には、リン酸塩及び第4級ア
ンモニウム塩を含む電導性物質が主に含まれ、これらが
−に影響を及ぼす、特にリン酸塩が影響を与える。水層
のF)1を5〜10にするためには、リン酸塩すなわち
リン酸のアルカリ金属塩t−pl(5〜10にする必要
がある。リン酸のアルカリ金属塩をpH5〜10にする
几めには、リン酸又はリン酸二水素塩をアルカリで中和
するか、アルカリ金属の水酸化物又はリン酸−水素塩を
リン酸で中和しなければならない。−が上記範囲をはず
れるとMANの副生物が増大してくる。
The aqueous phase of the aqueous emulsion mainly contains electrically conductive substances, including phosphates and quaternary ammonium salts, which influence -, especially phosphates. In order to adjust F)1 in the aqueous layer to 5-10, it is necessary to adjust the phosphate, that is, the alkali metal salt of phosphoric acid, t-pl (5 to 10). To do this, phosphoric acid or dihydrogen phosphate must be neutralized with alkali, or alkali metal hydroxide or phosphoric acid-hydrogen salt must be neutralized with phosphoric acid. If it comes off, the by-products of MAN will increase.

本発明に用いる無機塩としては、リン酸塩又はリン酸塩
とホウ酸塩の混合物を主体的に用いることが好ましい。
As the inorganic salt used in the present invention, it is preferable to mainly use a phosphate or a mixture of a phosphate and a borate.

特にリン酸塩とホウ酸塩の混合物が用いらCる場合には
電極の消耗が減少する。もちろん硫酸塩、炭酸塩が含ま
れていてもかまわず、p−1ルエンスルホン酸やエチル
硫酸などの有機残基を、アニオンとして併用する事もで
きる。
Electrode wear is reduced, especially when a mixture of phosphate and borate is used. Of course, sulfates and carbonates may be included, and organic residues such as p-1 luenesulfonic acid and ethyl sulfate can also be used together as anions.

本発明に用いる無機塩のカチオンとしては、例えばナト
リウム、カリウム、リチウム、セシウム及びルビジウム
のアルカリ金属カチオ/、及びアンモニウムイオンであ
って、経済的理由から好ましくはナトリウム及びカリウ
ムである。
The cations of the inorganic salt used in the present invention include, for example, alkali metal cations such as sodium, potassium, lithium, cesium and rubidium, and ammonium ions, with sodium and potassium being preferred for economical reasons.

無機塩の使用蓋については、エマルジョンの電気抵抗が
極端に犬きくなくて電解が円滑に行なえる量であれば特
に制限はなく通常水相中の濃度が1〜30重1ii%の
範囲になるように用いられる。
There are no particular restrictions on the amount of inorganic salt to be used as long as the electrical resistance of the emulsion is not extremely low and electrolysis can be carried out smoothly, and the concentration in the aqueous phase is usually in the range of 1 to 30% by weight. It is used like this.

本発明で用いる第四級アンモニウム塩はその糧類によっ
て効果の程度が違っている。後述する一般式中の炭素数
の総和が10以上25以下の第四級アンモニウム塩を用
いることが好ましい。10以下25以上では電流効率及
び反応収率が低下する。
The degree of effectiveness of the quaternary ammonium salt used in the present invention varies depending on the type of food. It is preferable to use a quaternary ammonium salt having a total number of carbon atoms of 10 or more and 25 or less in the general formula described below. When it is less than 10 and more than 25, current efficiency and reaction yield decrease.

前述し次第四級アンモニウム塩は一般式(式中のRA 
、 B2 、 R3及びR4はそれぞれ同−若しくは異
なるアルキル基又はアラルキル基であって、これらの基
の炭素数の総和は10〜25であり、又は酸基であり、
nは整数であってXのイオンの価数に対応する値である
。) で示される化合物である。この第四級アンモニウム塩と
しては一般的にRA 、 R2、R,3及びR′がメチ
ル基、エチル基、プロピル基、ブチル基、アミル基から
なる群から選ばれ次アルキル基であるものが好ましく、
なかでもR1、R2、R3及びR4のうち少なくとも6
個が炭素数6以上のアルキル基であるものがよシ好まし
い。このようなものとしては、例えばテトラ(n又は5
80)−プロピル、テトラ(n又はiso )−ブチル
、テトラ(n又は18o)−アミル、エチルトリプロピ
ル、エチルトリブチル、エチルプロピルジブチルのアン
モニウム塩などが挙げられる。
As mentioned above, the quaternary ammonium salt has the general formula (RA in the formula
, B2, R3 and R4 are the same or different alkyl groups or aralkyl groups, and the total number of carbon atoms in these groups is 10 to 25, or is an acid group,
n is an integer and corresponds to the valence of the ion of X. ) is a compound represented by As for this quaternary ammonium salt, it is generally preferable that RA, R2, R, 3 and R' are selected from the group consisting of methyl group, ethyl group, propyl group, butyl group, and amyl group and are alkyl groups. ,
Among them, at least 6 of R1, R2, R3 and R4
It is particularly preferable that each group is an alkyl group having 6 or more carbon atoms. As such, for example, tetra (n or 5
80)-propyl, tetra(n or iso)-butyl, tetra(n or 18o)-amyl, ethyltripropyl, ethyltributyl, ammonium salts of ethylpropyldibutyl, and the like.

第四級アンモニウム塩の対アニオンX(−能代中に示し
た又と同一)としては、例えばリン酸イオン、硫酸イオ
ン、ハロゲンイオンなどが用いられるが、これらのうち
、リン酸イオンが好ましい。
As the counter anion X (same as shown in -Noshiro) of the quaternary ammonium salt, for example, phosphate ion, sulfate ion, halogen ion, etc. are used, and among these, phosphate ion is preferable.

硫酸イオン、ハロゲンイオンなどは、反応収率や電流効
率が若干減少するCなかでもハロゲンイオンは電極の消
耗を増加させるという問題があり好ましくない。
Sulfate ions, halogen ions, and the like are undesirable because they cause a slight decrease in reaction yield and current efficiency, and halogen ions increase electrode wear.

水相中の第4級アンモニウム塩の量は電解反応M、績向
上、水素発生の抑制、電極の防食効果の向上の点からは
1重量%以上である。しかしあまりに多いと電解液の電
気抵抗が増し、ま友油相への溶解舊も増すため回収時の
損失が多くなる等の問題も出てくるため20 wt%以
下が好ましい。よシ好−ましくVi2〜i[1wt係で
ある。
The amount of quaternary ammonium salt in the aqueous phase is 1% by weight or more from the viewpoint of improving the electrolytic reaction M, performance, suppressing hydrogen generation, and improving the anticorrosion effect of the electrode. However, if the amount is too large, the electrical resistance of the electrolyte will increase and the amount of dissolution into the cocoon oil phase will also increase, leading to problems such as increased loss during recovery, so it is preferably 20 wt% or less. Preferably it's Vi2~i [1wt].

水性エマルジョンの油相中のMANの濃度は、特に電解
反応成績に影響を与え、工業化可能な高い電解反応成績
を達成するためには20〜9Qwt%の濃度が必要であ
り、好1しくは30〜80 wt%である。メタクリル
濃度が20 wt%以下では電解反応成績が悪くなるば
かりでなく水素の発生も激しくなり、また、9 Q w
t%以上では?リマー生成が増大する。
The concentration of MAN in the oil phase of the aqueous emulsion particularly affects the electrolytic reaction performance, and in order to achieve high electrolytic reaction performance that can be industrialized, a concentration of 20 to 9 Qwt% is required, preferably 30 Qwt%. ~80 wt%. If the methacrylic concentration is less than 20 wt%, not only will the electrolytic reaction result be poor, but hydrogen will also be generated intensely.
More than t%? Remer production increases.

本発明に用いる陰極材料としては、鉛又は鉛を主成分と
して含む合金、カドミウム等であるが、公害をひきおこ
す問題もなく、機械的強度も十分でるり、複極式のフィ
ルタープレス型の電槽に用いても長期安定した運転を続
けることが可能な鉛又は鉛を主成分として含む鉛合金が
好ましい。鉛合金としては、例えばアンチモンを含む硬
鉛、鉛−錫合金などを挙げることができる。
The cathode material used in the present invention is lead, an alloy containing lead as a main component, cadmium, etc., but it does not cause pollution problems, has sufficient mechanical strength, and can be used in a bipolar filter press type battery case. It is preferable to use lead or a lead alloy containing lead as a main component, which can continue stable operation for a long period of time even when used for. Examples of lead alloys include hard lead containing antimony and lead-tin alloys.

本発、明に用いる陽極材料としては、鉄又は鉄を主成分
として含む鉄合金である。鉄合金としては、例えば炭素
鋼、含ニツケル鋼、ステンレスなどである。
The anode material used in the present invention is iron or an iron alloy containing iron as a main component. Examples of the iron alloy include carbon steel, nickel-containing steel, and stainless steel.

本発明に用いる電解槽は、前述した陽極及び陰&を用い
た単一室電解槽である。単一電解槽としては、例えばフ
ィルタープレス型、タンク式などがあるが工業的にはフ
ィルタープレス型が好ましい。フィルタープレス型につ
いて詳しく述べると、陰極板と陽極板とを平行に対向さ
せ、両極の間に電極間隔を規定するポリプロピレンの板
が有り、このポリプロピレンの板の中央部には電解液が
流通する様に開孔部を有しており、電極の通電面積はこ
の開孔部の大きさにより、又電極間隔はこの板の厚みに
よって規定される%、電解槽ある。
The electrolytic cell used in the present invention is a single-chamber electrolytic cell using the anode and cathode described above. Examples of the single electrolytic cell include a filter press type and a tank type, but the filter press type is preferred from an industrial perspective. To explain in detail about the filter press type, a cathode plate and an anode plate are opposed in parallel, and there is a polypropylene plate between the two electrodes that defines the electrode spacing, and the electrolyte flows through the center of this polypropylene plate. The conductive area of the electrode is determined by the size of the opening, and the electrode spacing is determined by the thickness of the plate.

電解時の電解槽内の電解液温度は、アルカリ金属塩の析
出点以上でめれば良いが、通常20〜75℃、好ましく
は30〜70℃、更に好ましくは45〜65°Cである
The temperature of the electrolytic solution in the electrolytic cell during electrolysis may be at or above the precipitation point of the alkali metal salt, but is usually 20 to 75°C, preferably 30 to 70°C, and more preferably 45 to 65°C.

電解時における電流密度は、陰極表面i dm2当9通
常0.05〜70A1好ましくは1〜50A1更に好ま
しくは5〜40Aである。
The current density during electrolysis is usually 0.05 to 70 A1, preferably 1 to 50 A1, and more preferably 5 to 40 A1 per cathode surface i dm2.

本発明において、電解槽における陰極と陽極の間隔は、
通常0.1〜5nの距離、好ましくは1〜3關である。
In the present invention, the distance between the cathode and the anode in the electrolytic cell is
The distance is usually 0.1 to 5n, preferably 1 to 3 distances.

また、この電槽の電極間を電解液が通常0.1〜4扉/
秒、好ましくは0.5〜2.5m/秒の速度で通過する
In addition, the electrolyte is usually 0.1 to 4 times per electrode between the electrodes of this container.
sec, preferably at a speed of 0.5 to 2.5 m/sec.

本発明方法においては、陰極での水素発生を抑制するた
めに電解液を処理する必要がある。例えばエチレンジア
ミンテトラ酢酸塩などの遊離金属封鎖剤を電解液に包含
させて陰極表面に接触させる方法、トリエタノールアミ
ンを添加する方法、電解液を抜き出し、イオン交換樹脂
、キレート樹脂で処理する方法がおる。その中で好まし
い方法としては、電解液を抜き出し、イオン交換樹脂、
キレート樹脂で処理する方法であり、最も好ましくはキ
レート樹脂で処理する方法である。
In the method of the present invention, it is necessary to treat the electrolyte in order to suppress hydrogen generation at the cathode. For example, there are methods in which a free sequestering agent such as ethylenediaminetetraacetate is included in the electrolyte and brought into contact with the cathode surface, a method in which triethanolamine is added, and a method in which the electrolyte is extracted and treated with an ion exchange resin or a chelate resin. . Among these, a preferable method is to extract the electrolyte, use an ion exchange resin,
This is a method of treatment with a chelate resin, and the most preferred method is a method of treatment with a chelate resin.

本発明方法の一実施態様を図面に基づいて説明する。1
はフィルタープレス型の無隔膜電解槽であり、2は原料
MANの吸収塔であシ、3は電解液タンクである。電解
反応液は吸収塔2と電解槽1の間を循環しておジ、電解
槽1で電解還元2蓋化反応を受けた後、原料MAN 、
生成物のDMADNを含む油相及び第4級アンモニウム
塩及び無機塩を含む水相の水性エマルジョンと陽極で発
生した酸素とが吸収塔2へ戻ってくる。吸収塔2では上
部から精製処理を受けた水相が供給され原料のMANが
水相中に吸収され、MANを含まない酸素がAから外部
ヘバージされる。
An embodiment of the method of the present invention will be described based on the drawings. 1
is a filter press type non-diaphragm electrolytic cell, 2 is an absorption tower for raw material MAN, and 3 is an electrolyte tank. The electrolytic reaction solution is circulated between the absorption tower 2 and the electrolytic cell 1, and after undergoing an electrolytic reduction reaction in the electrolytic cell 1, it is converted into raw material MAN,
An aqueous emulsion of an oil phase containing the product DMADN and an aqueous phase containing quaternary ammonium salts and inorganic salts and oxygen generated at the anode return to the absorption tower 2. In the absorption tower 2, a purified aqueous phase is supplied from the upper part, MAN as a raw material is absorbed into the aqueous phase, and oxygen not containing MAN is barged from A to the outside.

吸収塔2から電解槽1へ供給される電解液は抜き出さn
て電解液タンク3と吸収塔2の間’(11’循環してい
る。更に吸収塔2から電解槽1へ供給さnる電解液の一
部は抜き出ちれて原料MANストリッパー塔4へ供給さ
れる。MANストリッパー塔4ではMAN 、副生物で
るるインブチロニトリル(以下、IBNと略記する)及
び水の一部が上部から抜き出され、残液が下部から抜き
出されエマルション破壊器8へ供給される。エマルジョ
ン破壊器8では水性エマルジョンが油相、水相に分離さ
γし、油相は次工程のDMADN精製工程Cへ送られD
MADNが単離される。水相はキレート樹脂塔9へ送ら
れ主に鉄を主成分とする重金属イオンが除去されて精製
され、電解液タンク2へO/i環される。その一部はM
AN吸収塔2の上部へ供給される。MANストリッパー
塔4塔部上部抜き出された混合液はデカンタ−5へ供給
され油水相に分離される。油相はIBNストリッパー6
に供給され、上部から原料MANが抜き出されてMAN
吸収塔2へ回収され、下部からは副生物のIBNが抜き
出される。デカンタ−5の下部の水相は水ストリッパー
7へ供給さf鴫上部からは原料MANが抜き出され、t
′M液タンク3へ回収され、下部からは水が抜き出され
る。消費される原料MAN及び生成物のDMADNの精
製工程、及び油相に一部溶解して抜は出ていく第4級ア
ンモニウム塩等はBから供給される。
The electrolyte supplied from the absorption tower 2 to the electrolytic cell 1 is extracted.
The electrolyte is circulated between the electrolyte tank 3 and the absorption tower 2 (11). Furthermore, a part of the electrolyte supplied from the absorption tower 2 to the electrolytic cell 1 is extracted and sent to the raw material MAN stripper tower 4. In the MAN stripper tower 4, MAN, by-product urinbutyronitrile (hereinafter abbreviated as IBN), and a part of water are extracted from the upper part, and the remaining liquid is extracted from the lower part and sent to an emulsion breaker. 8. In the emulsion breaker 8, the aqueous emulsion is separated into an oil phase and an aqueous phase, and the oil phase is sent to the next DMADN refining step C.
MADN is isolated. The aqueous phase is sent to the chelate resin tower 9, where heavy metal ions mainly consisting of iron are removed and purified, and then O/I-cycled into the electrolyte tank 2. Some of them are M
It is supplied to the upper part of the AN absorption tower 2. The mixed liquid extracted from the upper part of the MAN stripper column 4 is supplied to a decanter 5 and separated into an oil and water phase. Oil phase is IBN stripper 6
The raw material MAN is extracted from the upper part of the MAN
It is collected in the absorption tower 2, and the by-product IBN is extracted from the lower part. The aqueous phase in the lower part of the decanter 5 is supplied to the water stripper 7, and raw material MAN is extracted from the upper part of the decanter.
'The water is collected into the M liquid tank 3, and the water is extracted from the lower part. The refining process of the raw material MAN and the product DMADN to be consumed, and the quaternary ammonium salt etc. which are partially dissolved in the oil phase and extracted are supplied from B.

(発明の効果) 本発明の利点を列挙すれば以下の通りでおる。(Effect of the invention) The advantages of the present invention are listed below.

1)支st解質に特定の無機塩及び第4級アンモニウム
塩を用い、水性エマルジョン状態でw、解液組成を特定
の条件に設定し、且つ従来用いられてい友陰極室と陽極
室とに隔離された′電解槽及び陽極液を必要どしない設
備的に簡略化された単一室電解槽で、電解還元すること
によりDMADNを極めて高い電流効率及び優牡た選択
率で得ることができる。
1) Using specific inorganic salts and quaternary ammonium salts as supporting solutes, setting the solution composition to specific conditions in an aqueous emulsion state, and using conventionally used cathode chambers and anode chambers. DMADN can be obtained with extremely high current efficiency and excellent selectivity by electrolytic reduction in an equipment-simplified single-chamber electrolyzer that does not require a separate 'electrolytic cell and an anolyte.

2)生成物の分離が啄めて容易である。即ち、電解槽を
でたエマルジョンは静置するなどの簡単な操作だけで、
原料のMAN及び生成物のDMADNを主成分とする油
相と、水と電導性物質を主体とする水相とに容易に分割
できる。この油相のみを取り出し蒸留すれば生成物は容
易に単離精製できる。この蒸留において、均−系のよ゛
うに多葉の溶媒を蒸留回収する必要がなく、用役費は非
常に低くなる。電解液を2相分離したのち水相は若干の
処理後そのまま次の電解に供しうる。
2) Separation of the product is easy. In other words, the emulsion that has left the electrolytic tank can be easily removed by simply allowing it to stand still.
It can be easily divided into an oil phase mainly composed of MAN as a raw material and DMADN as a product, and an aqueous phase mainly composed of water and a conductive substance. The product can be easily isolated and purified by removing only this oil phase and distilling it. In this distillation, there is no need to distill and recover multiple solvents as in a homogeneous system, and the utility costs are extremely low. After the electrolytic solution is separated into two phases, the aqueous phase can be subjected to subsequent electrolysis as it is after some treatment.

3)支持電解質である電導性物lx會谷易に分離回収で
きる。即ち、前記2)で述べた様に、油相と水相は容易
に分離でき、この油相中の寛導性物質は、水で抽出すれ
ば極めて容易に分離回収できる。
3) The conductive material lx, which is the supporting electrolyte, can be easily separated and recovered. That is, as mentioned in 2) above, the oil phase and the water phase can be easily separated, and the permissive substance in this oil phase can be separated and recovered very easily by extraction with water.

4)長時間連続的に安定に運転が可能である。4) It is possible to operate continuously and stably for a long period of time.

このように、本発明は、MAN7fr:ll(解還元2
量化して、DMADNを製造するにお次って、非常に有
利な工業的製法を提供するという点で大きな意味を有す
るものである。
Thus, the present invention provides MAN7fr:ll (dereduction 2
This is of great significance in that it provides a very advantageous industrial production method for quantifying and producing DMADN.

(実施例) 以下、本発明をさらに具体的に説明するために実施例を
示す。ただし、11流効率は2フアラデイーの電気量に
よ#)1モルのDMADNまたはIBNが生成するとし
て、下記の式により求めた。
(Examples) Examples will be shown below to further specifically explain the present invention. However, the flow efficiency of 11 was determined by the following formula on the assumption that 1 mole of DMADN or IBN was generated based on the amount of electricity of 2 Faradays.

「LvJはt極面上での流通線速度を表わし、また、選
択率は以下の式によp求めた。
"LvJ represents the flow linear velocity on the pole surface, and the selectivity was determined by the following formula.

実施例1 単一室電解槽は1crn×90crILの通電面を有す
る鉛合金を陰極とし、同じ通電面を有する含ニツケル鋼
を陽極として使用し、陰極と陽極の間にスペーサーを置
き、2mlの間隔に保つ友。この単一室電解槽を2槽直
列に連結した。を熱液は10容鴛%の油相と90容′i
/に%の水相でエマルジョンをなしておシ、水相の組成
は、MAN約0.62iit係、エチルトリブチルアン
モニウム塩5.0!t%、リン酸カリウム約131童%
、ホウ酸カリウム約6重童宏DMADN O,6重量%
及び若干のIBNを含んだ水溶液であり、リン酸でp)
17.7に調整した。油相は該水溶液と溶解平衡をなし
ており、その組成は、MAR約75重′jt係、DMA
DN約15i蓋%、その他IBN水である。
Example 1 A single-chamber electrolyzer uses a lead alloy with a current-carrying surface of 1 crn x 90 crIL as the cathode, and uses nickel-containing steel with the same current-carrying surface as the anode, with a spacer placed between the cathode and the anode, with a gap of 2 ml. A friend to keep. Two of these single-chamber electrolytic cells were connected in series. The hot liquid contains 10 volumes of oil phase and 90 volumes of oil phase.
The composition of the aqueous phase is MAN approximately 0.62iit and ethyltributylammonium salt 5.0%. t%, potassium phosphate approximately 131%
, about 6% potassium borate DMADN O, 6% by weight
and an aqueous solution containing some IBN, p) with phosphoric acid.
Adjusted to 17.7. The oil phase is in solubility equilibrium with the aqueous solution, and its composition is approximately 75% MAR, DMA
Approximately 15i% DN and other IBN water.

このエマルジョンを電解液タンクから通電面で線速1.
577L/秒になるように単一室電解槽に供給循環し、
電流密度15A/dm255°Cで電解を行なった。通
電と同時に電解液タンクから電解液を連続的に一部抜き
出し、デカンタ−に送り、油相と水相とに分離し友。生
成したDMADN及び副生成物を、この油相としてデカ
ンタ−より抜き出し友。水相の一部を抜き出しキレート
樹脂を詰めた樹脂塔に通液し、通液した液は電解液タン
クにもどり、電解槽に循環される。通液量は約8cr−
/A・HRである。
This emulsion is transferred from the electrolyte tank to a current-carrying surface at a linear speed of 1.
Supply and circulation to a single chamber electrolytic cell at a rate of 577 L/sec,
Electrolysis was performed at a current density of 15 A/dm and 255°C. At the same time as electricity is turned on, a portion of the electrolyte is continuously drawn out from the electrolyte tank and sent to a decanter, where it is separated into an oil phase and an aqueous phase. The produced DMADN and by-products are extracted from the decanter as an oil phase. A portion of the aqueous phase is extracted and passed through a resin column filled with chelate resin, and the passed solution returns to the electrolyte tank and is circulated to the electrolytic cell. The amount of liquid passed is approximately 8 cr-
/A・HR.

上記X熱液組成を保つ様に、MAN、水を連続的に添加
し、油相に溶解して抜き出されたエチルトリブチルアン
モニウム塩を随時添加した。
MAN and water were continuously added so as to maintain the above-mentioned hot liquid composition X, and ethyltributylammonium salt dissolved in the oil phase and extracted was added at any time.

この様にして170時間電解を行なった結果、発生ガス
に含まれる水素は、を解終了時0.10vot%であシ
、陰極の消耗もあまシなく安定に運転できた。′IL流
効率は57%であシ、消費MANベースのDMADNの
選択系は69%で必つ几。
As a result of carrying out electrolysis in this manner for 170 hours, the hydrogen contained in the generated gas was 0.10 vot% at the end of the electrolysis, and stable operation was possible without any wear on the cathode. 'The IL flow efficiency is 57%, and the consumption MAN-based DMADN selection system is 69%.

実施例2〜9 単一室電解槽は1 cm X 90αの通電面を有する
鉛合金を陰極とし、同じ通電面を有する炭素鋼を陽極と
して使用し、陰極と陽極の間にスペーサーt装置き、1
.5mの間隔に保った。この単一室電解槽を2槽直列に
連結した。電解液は第1表に示し九油相と水相の組成で
エマルジョンをなしており、水相中のリン酸カリウム濃
度は約16=x%、ホウ酸カリウム濃度は約3重賞%で
あった。エチルトリブチルアンモニウム塩の濃度及び−
については第1表に示した。
Examples 2-9 A single-chamber electrolyzer uses a lead alloy with a 1 cm x 90α current-carrying surface as the cathode, a carbon steel with the same current-carrying surface as the anode, and a spacer T device between the cathode and the anode. 1
.. A distance of 5 m was maintained. Two of these single-chamber electrolytic cells were connected in series. The electrolytic solution forms an emulsion with the composition shown in Table 1, consisting of an oil phase and an aqueous phase, and the concentration of potassium phosphate in the aqueous phase is approximately 16=x%, and the concentration of potassium borate is approximately 3%. Ta. Concentration of ethyltributylammonium salt and -
The details are shown in Table 1.

このエマルジョンを電解液タンクから通電面で線速1.
5m/秒になるように単一室電解槽に供給循環し、電流
密度20 A / dm”  第1表に示した温度で電
解を行なった。通電と同時に電解液タンクから電解液を
連続的に一部抜き出し、デカンタ−に送り、油相と水相
とに分離した。生爪したDMADN及び副生成物を、こ
の油相としてデカンタ−より抜き出した。水相の一部を
抜き出しキレート樹脂を詰めた樹脂塔に通液し、通液し
几液は電解液タンクにもどジ、電槽に循環される。通液
童は約8cc、/A −HRテSル。
This emulsion is transferred from the electrolyte tank to a current-carrying surface at a linear speed of 1.
Electrolysis was carried out at the temperature shown in Table 1 with a current density of 20 A/dm by circulating the supply to a single-chamber electrolyzer at a current density of 5 m/sec. A portion was extracted and sent to a decanter to separate it into an oil phase and an aqueous phase.The raw DMADN and by-products were extracted from the decanter as this oil phase.A portion of the aqueous phase was extracted and packed with chelate resin. The liquid is passed through the resin tower, and the liquid is returned to the electrolyte tank and circulated to the battery tank.

上記電解液組成を保つ様に、MAN、水を連続的に添加
し、油相に溶解して抜き出きれ次エチルトリブチルアン
モニウム塩を随時添加した。
To maintain the above electrolyte composition, MAN and water were continuously added, and after being dissolved in the oil phase and extracted, ethyltributylammonium salt was added as needed.

この様にして50時間電解を行なつ友結果、発生ガスに
含まれる水素は、電解終了時0.10 vot係であり
、安定に運転できた。電流効率を第1表に示した。
As a result of performing electrolysis for 50 hours in this manner, the hydrogen contained in the generated gas was 0.10 volts at the end of electrolysis, and stable operation was possible. The current efficiency is shown in Table 1.

実施例10 実施例2において、陰極を鉛合金に変えてカドミウム板
を用いる以外は、全て同じにして電解を行なった。その
結果を第1表に示す。
Example 10 Electrolysis was carried out in the same manner as in Example 2, except that the cathode was replaced with a lead alloy and a cadmium plate was used. The results are shown in Table 1.

実施例11 単一室電解槽は通電面、tiv92 dm2を有する鉛
合金を陰極とし、同じ通電面積を有する脱炭素w4を陽
極として使用し、陰極と陽極の間にスペーサーを置き1
.5mの間隔に保った電槽2対を有するものを用い、図
面に示し次プロセスで連続電解を行なった。
Example 11 A single-chamber electrolyzer uses a conductive surface, a lead alloy with a tiv of 92 dm2 as the cathode, a decarbonized W4 with the same current-conducting area as the anode, and a spacer placed between the cathode and the anode.
.. Continuous electrolysis was carried out in the following process as shown in the drawings using a device having two pairs of battery containers kept at an interval of 5 m.

電解液組成は、電解反応を行なっている開法の範囲に維
持した。油相の容積比率は0.1〜0.15、油相中の
MAN濃度は40〜45重景%、IBM濃度は6〜8重
を係、水相中のエチルトjノブチルアンモニウム塩濃度
は4.5〜5.0〜i%、リン酸カリウムの濃度は12
〜13重量係、ホウ酸カリウムの濃度は2.5〜3.0
重i%、−は7.5〜8.0の範囲であった。
The electrolyte composition was maintained within the range of the open method in which the electrolytic reaction was carried out. The volume ratio of the oil phase is 0.1-0.15, the MAN concentration in the oil phase is 40-45%, the IBM concentration is 6-8%, and the ethylbutylammonium salt concentration in the water phase is 4.5-5.0-i%, the concentration of potassium phosphate is 12
~13 weight ratio, concentration of potassium borate is 2.5-3.0
Weight i%, - was in the range of 7.5 to 8.0.

を解反応条件は以下の通りであった。電槽内の線速は1
.5m/秒、電解槽の入圧U 1.3〜1.41V/G
% 当圧は0.2〜0.3kg/()、電流密度は20
A/dm2@、解液諦度は電槽の出口で55℃に維持し
た。′ai解液熱液環量に7 m” / Hrであり、
原料MANは供給fjk8に9/Hrで連続的に供給し
、不足する水及びエチルトリブチルアンモニウム塩は電
解液組成を分析しつつ上記範囲に保つよう随時添加した
The reaction conditions were as follows. The linear velocity inside the battery case is 1
.. 5 m/sec, electrolytic cell input pressure U 1.3 to 1.41 V/G
%Equivalent pressure is 0.2~0.3kg/(), current density is 20
A/dm2@, the solution temperature was maintained at 55° C. at the outlet of the cell. 'ai decomposition thermal liquid ring volume is 7 m''/Hr,
The raw material MAN was continuously supplied to the feed fjk8 at a rate of 9/Hr, and the insufficient water and ethyltributylammonium salt were added as needed to maintain the electrolyte composition within the above range while analyzing the electrolyte composition.

以上の様にして383時間連続的に電解を行なった結果
、発生ガス中に含まれる水素は0.1〜i、Qvot%
の範囲に維持でき、電解液水相中の鉄イオン濃度は15
〜25ppmz鉛イオン濃度に8〜15 ppmに維持
でき、電圧は8.4〜8.6vに維持でき、且つ陰極の
消耗もほとんどなく安定に運転できた。DMADNの全
時間の平均の電流効率は55%であり、消費MANペー
スの選択率は62%であった。
As a result of continuous electrolysis for 383 hours as described above, the hydrogen contained in the generated gas was 0.1 to i, Qvot%.
The iron ion concentration in the electrolyte aqueous phase can be maintained within the range of 15
The lead ion concentration could be maintained at 8 to 15 ppm, the voltage could be maintained at 8.4 to 8.6 V, and the cathode could be operated stably with almost no consumption. The average current efficiency over all time for DMADN was 55%, and the selectivity of consumed MAN pace was 62%.

比較例 陽極、陰極ともに通電面積2.23 dm” (25m
罵×892龍)の鉛を用い、厚さ1を蓬のジビニルベン
ゼン−スチレン−ブタジェン共1合ポリマーをスルホン
化して得られる陽イオン交換膜で陽極室と陰極室に仕切
シ、ポリエチレン製のスペーサーによって膜と電極の間
隔を2顕に保ったフィルタープレス型の電槽を用いた。
Comparative example: Current-carrying area of both anode and cathode was 2.23 dm” (25 m
The anode chamber and the cathode chamber are partitioned by a cation exchange membrane obtained by sulfonating divinylbenzene-styrene-butadiene copolymer with a thickness of 1, using lead from ``892 Dragon'', and a spacer made of polyethylene. A filter press type container was used in which the distance between the membrane and the electrode was maintained at 2 mm.

陽極液には10重量係硫酸水溶液600ロyを用い、通
電蓋1ファラデイー(F)あたり609程度の純水を連
続的に添加し、硫酸濃度を103に蓋%に保った。陽極
から発生する酸素は、冷却水を通じた長さ500s+m
のジムロートを経て大気中へ放散した。陰極液としては
、MAN 8.2 ]<量%、DMA、DN 11.8
 m世%、ナト2エチルアンモニウム#L酸塩8.71
℃m%、水69.2正貨%の混合物3,0 [10、!
l’を用いた。陰極液を50〜55℃の窟度に保って、
LVl、077L/secで循環攪拌し、陽極液もL 
V 1−Orn / secで#i環攪拌を行ないつつ
陰極液全体のMAN濃度を8±1mk%、テトラエチル
アンモニウム億hi m 濃度9±1重量%、陰極液全
体の水濃度’t70±51量%に維持するように、抜き
出し甘、フィード1ltlを調整し、電流密度を6OA
 / dm”とし、連続的に24時間運転した。DMA
DNの電流効率、選択率ともに10係以下であった。
For the anolyte, 600 roy of a 10% sulfuric acid aqueous solution was used, and approximately 609 y of pure water was continuously added per 1 Faraday (F) of the current-carrying lid to maintain the sulfuric acid concentration at 103 % of the lid. Oxygen generated from the anode passes through cooling water for a length of 500 s + m.
It was dissipated into the atmosphere through the Zimroth. As the catholyte, MAN 8.2 ]<% by volume, DMA, DN 11.8
m%, Nato2ethylammonium #L salt 8.71
℃m%, water 69.2 specie% mixture 3,0 [10,!
l' was used. Keep the catholyte at a temperature of 50-55℃,
Circulating stirring at LVl, 077L/sec, anolyte also at L
While performing #i ring stirring at V 1-Orn/sec, the MAN concentration of the entire catholyte was 8 ± 1 mk%, the tetraethylammonium concentration was 9 ± 1% by weight, and the water concentration of the entire catholyte was 70 ± 51% by mass. Adjust the extraction sweetness, feed 1ltl, and current density to 6OA to maintain
/ dm” and operated continuously for 24 hours. DMA
Both the current efficiency and selectivity of DN were below 10.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る連続式プロセスのブロックフローチ
ャートの一例である。 特許出願人 旭化成工業株式会社
The drawing is an example of a block flowchart of a continuous process according to the present invention. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 メタクリロニトリルを、陰極として鉛又は鉛合金、カド
ミウム、陽極として鉄又は鉄合金から成る単一電解槽で
、リン酸塩を含む無機塩と一般式 ▲数式、化学式、表等があります▼ 〔式中のR^1、R^2、R^3及びR^4はそれぞれ
同一もしくは異なるアルキル基又はアラルキル基であつ
て、これらの基の炭素数の総和が10〜25であり、X
は酸基であり、nは整数であつてXのイオン価数に対応
する値である。〕 で示される第四級アンモニウムから成る電導性物質の存
在下、水性エマルジョン状態で、且つ該水性エマルジョ
ン中の油相の容量比を0.05〜0.30にし、油相中
のメタクリロニトリルの濃度を20〜90wt%にし、
水相中の第4級アンモニウム塩の濃度を1.0〜20.
0wt%にし、水相中のpHを5〜10にして電解還元
を行なうことを特徴とする2,5−ジメチルヘキサンジ
ニトリルの製造方法
[Claims] Methacrylonitrile is used in a single electrolytic cell consisting of lead or a lead alloy, cadmium as a cathode, and iron or an iron alloy as an anode, and an inorganic salt containing a phosphate and a general formula ▲ mathematical formula, chemical formula, table. etc. ▼ [In the formula, R^1, R^2, R^3 and R^4 are the same or different alkyl groups or aralkyl groups, and the total number of carbon atoms in these groups is 10 to 25. Yes, X
is an acid group, and n is an integer corresponding to the ionic valence of X. ] In the presence of an electrically conductive substance consisting of quaternary ammonium represented by the formula, in an aqueous emulsion state, and the volume ratio of the oil phase in the aqueous emulsion is set to 0.05 to 0.30, methacrylonitrile in the oil phase is The concentration of is set to 20 to 90 wt%,
The concentration of quaternary ammonium salt in the aqueous phase was set to 1.0 to 20.
A method for producing 2,5-dimethylhexane dinitrile, which is characterized by carrying out electrolytic reduction at a pH of 5 to 10 in the aqueous phase.
JP26703688A 1988-10-25 1988-10-25 Production of 2,5-dimethylhexanedinitrile Pending JPH02115155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26703688A JPH02115155A (en) 1988-10-25 1988-10-25 Production of 2,5-dimethylhexanedinitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26703688A JPH02115155A (en) 1988-10-25 1988-10-25 Production of 2,5-dimethylhexanedinitrile

Publications (1)

Publication Number Publication Date
JPH02115155A true JPH02115155A (en) 1990-04-27

Family

ID=17439159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26703688A Pending JPH02115155A (en) 1988-10-25 1988-10-25 Production of 2,5-dimethylhexanedinitrile

Country Status (1)

Country Link
JP (1) JPH02115155A (en)

Similar Documents

Publication Publication Date Title
JP3793586B2 (en) Process for producing high purity hydroxides and alkoxides
EP0255756B1 (en) Method for producing high purity quaternary ammonium hydroxides
EP0532188A2 (en) Electrochemical process
EP0270390B1 (en) A method for producing adiponitrile
US4938854A (en) Method for purifying quaternary ammonium hydroxides
US3193481A (en) Electrolytic hydrodimerization alpha, beta-olefinic nitriles
KR19980032535A (en) Method for Purifying Hydroxide Compounds
EP0235908A2 (en) Method for the production of L-cysteine
JPS57155390A (en) Manufacture of organic ammonium hydroxide using ion exchange membrane
US3509031A (en) Electrochemical oxidation of phenol
JPH02115155A (en) Production of 2,5-dimethylhexanedinitrile
JP3806406B2 (en) Method for improving the purity of quaternary ammonium hydroxide by electrolysis
US4176020A (en) Process for electrolytic dimerization of N-substituted pyridinium salt
US3984294A (en) Electrochemical manufacture of pinacol
CN1985024B (en) Method for the production of primary amines comprising a primary amino group which is bound to an aliphatic or cycloaliphatic c-atom, and a cyclopropyl unit
US3871976A (en) Electrochemical adiponitrile process
EP4048828B1 (en) Production of adiponitrile
JPH07507556A (en) Method for simultaneously producing dicarboxylic acid and diamine from polyamide
US3193482A (en) Electrolysis of alpha, beta mono-olefinic carboxylates
US3390066A (en) Electrolytic hydrodimerization of certain allyl compounds
SU1235456A3 (en) Method of producing cebacic acid
JPH05139707A (en) Sulfuric acid recovery
KR810001286B1 (en) Process for electrolytic dimerization of alkyl pyridinium salt
KR890002864B1 (en) Process for the preparation of m-hydroxy benzyl alcohol
US3497429A (en) Electrolytic method of manufacturing hydrodimer of acrylonitrile