JPH02115134A - Production of aromatic hydrocarbon - Google Patents

Production of aromatic hydrocarbon

Info

Publication number
JPH02115134A
JPH02115134A JP63268148A JP26814888A JPH02115134A JP H02115134 A JPH02115134 A JP H02115134A JP 63268148 A JP63268148 A JP 63268148A JP 26814888 A JP26814888 A JP 26814888A JP H02115134 A JPH02115134 A JP H02115134A
Authority
JP
Japan
Prior art keywords
zinc
catalyst
alumina
mixture
crystalline aluminosilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63268148A
Other languages
Japanese (ja)
Other versions
JPH0729948B2 (en
Inventor
Takashi Tsunoda
隆 角田
Kazuyoshi Kiyama
木山 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Petrochemical Co Ltd
Original Assignee
Sanyo Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Petrochemical Co Ltd filed Critical Sanyo Petrochemical Co Ltd
Priority to JP63268148A priority Critical patent/JPH0729948B2/en
Publication of JPH02115134A publication Critical patent/JPH02115134A/en
Publication of JPH0729948B2 publication Critical patent/JPH0729948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To convert hydrocarbons containing paraffins, olefins, and/or naphthenes into aromatic hydrocarbons using, as a catalyst, a steam-treated mixture of crystalline aluminosilicate, zinc component and alumina. CONSTITUTION:In the conversion of hydrocarbons of 2 or more carbon atoms and lower than 190 deg.C of 90% distilling-off temperature into aromatic hydrocarbons, a steam-treated mixture of crystalline aluminosilicate, a zinc component and alumina, or a mixture of crystalline aluminosilicate with steam- treated the zinc component and the alumina mixture is used as a catalyst. The crystalline aluminosilicate is preferably a ZSM-5 type having pore of intermediate pore diameter of 5 to 6.5Angstrom , and the content of Zn in the catalyst is suitably 2 to 6wt.%. This catalyst can prevent the Zn component from evaporating off so that the yield of the objective compound is kept high.

Description

【発明の詳細な説明】 本発明は、パラフィン、オレフィンおよび/またはナフ
テンを含有する炭化水素原料より芳香族炭化水素を製造
する方法に関する。さらに詳しくは、結晶性アルミノシ
リケート、亜鉛およびアルミナの混合物を水蒸気中で熱
処理して得られた触媒、または亜鉛およびアルミナの混
合物を水蒸気中で熱処理した後、結晶性アルミノシリケ
ートと1昆合して得られた触媒を用いることにより、単
環芳香族炭化水素を効率よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aromatic hydrocarbons from hydrocarbon feedstocks containing paraffins, olefins and/or naphthenes. More specifically, a catalyst obtained by heat-treating a mixture of crystalline aluminosilicate, zinc and alumina in steam, or a catalyst obtained by heat-treating a mixture of zinc and alumina in steam and then combining it with crystalline aluminosilicate. The present invention relates to a method for efficiently producing monocyclic aromatic hydrocarbons by using the obtained catalyst.

(従来の技術) 結晶性アルミノシリケートを触媒として芳香族炭化水素
を製造する方法は公知である。特開昭54−24835
号はオレフィンを含有する熱分解ガソリンなどを、亜鉛
ならびにrb、■族の少なくとも1種の元素を含む制御
指数1〜12シリ力/アルミナ比12以上の多孔質結晶
性アルミノシリケートを用いて改質する方法を開示して
いる。
(Prior Art) A method for producing aromatic hydrocarbons using crystalline aluminosilicate as a catalyst is known. Japanese Patent Publication No. 54-24835
No. 1 is a method for modifying pyrolyzed gasoline containing olefins using a porous crystalline aluminosilicate containing zinc and at least one element of the RB group and a control index of 1 to 12 and a silica/alumina ratio of 12 or more. discloses a method to do so.

特開昭60−25940号はプロパンを高含量で含む0
2〜C1□炭化水素を、亜鉛とガリウムを含有する制御
指数1〜12シリ力/アルミナ比12以上の結晶性ゼオ
ライトを用いて芳香族に転化する方法を開示している。
JP-A No. 60-25940 contains a high content of propane.
A method is disclosed for converting 2 to C1□ hydrocarbons to aromatics using a crystalline zeolite containing zinc and gallium and having a control index of 1 to 12 and a silica/alumina ratio of 12 or more.

(発明が解決しようとする課題) 上記従来技術による芳香族化合物の製造において、触媒
の結晶性アルミノシリケートに亜鉛を添加すると、芳香
族化合物の収率が向上することが知られているが、亜鉛
は反応条件下で還元され蒸発する性質があり、亜鉛の効
果は、次第に不可逆的に失われていく。さらに、亜鉛は
溶融状態でステンレス鋼や炭素鋼等を腐食し、いわゆる
液体金属脆化を発生させることが知られており、亜鉛の
7発の防止は、工業化の問題点となっている。この亜鉛
の蒸発損失を制御するために、パラジウムなどの■族貴
金属やガリウムを添加する方法が知られているが、■族
貴金属やガリウムは、資源的に稀少かつ高価である他に
、亜鉛の蒸発損失の制御効果が十分でないなどの問題点
がある。
(Problem to be Solved by the Invention) In the production of aromatic compounds using the above-mentioned conventional technology, it is known that adding zinc to crystalline aluminosilicate as a catalyst improves the yield of aromatic compounds. has the property of being reduced and evaporated under the reaction conditions, and the effect of zinc is gradually irreversibly lost. Furthermore, it is known that zinc corrodes stainless steel, carbon steel, etc. in a molten state, causing so-called liquid metal embrittlement, and prevention of zinc explosions has become a problem in industrialization. In order to control the evaporation loss of zinc, a method of adding group III noble metals such as palladium or gallium is known, but group III noble metals and gallium are rare and expensive resources, and they are There are problems such as insufficient control effect on evaporation loss.

(課題を解決するための手段) 本発明者らは、上記従来技術の問題点を克服して、触媒
からの亜鉛の蒸発損失が少ない安定な芳香族炭化水素の
製造法を開発するため研究を重ね、本発明を完成するに
至った。
(Means for Solving the Problem) The present inventors have conducted research in order to overcome the problems of the above-mentioned conventional technology and to develop a stable method for producing aromatic hydrocarbons with less evaporation loss of zinc from the catalyst. After repeated efforts, the present invention was completed.

すなわち、本発明は、パラフィン、オレフィンおよび/
またはナフテンを含有する炭化水素を、結晶性アルミノ
シリケートおよび亜鉛を含有する触媒の存在下に芳香族
炭化水素に添加する方法において、結晶性アルミノシリ
ケート、亜鉛成分およびアルミナの混合物を水蒸気中で
熱処理して得られた触媒、または亜鉛成分およびアルミ
ナの混合物を水蒸気中で熱処理した後、結晶性アルミノ
シリケートと混合して得られた触媒を用いることを特徴
とする芳香族炭化水素の製造方法に関する。
That is, the present invention provides paraffins, olefins and/or
or a method in which a naphthene-containing hydrocarbon is added to an aromatic hydrocarbon in the presence of a crystalline aluminosilicate and a zinc-containing catalyst, in which a mixture of the crystalline aluminosilicate, zinc component and alumina is heat treated in steam; or a catalyst obtained by heat-treating a mixture of a zinc component and alumina in steam, and then mixing the mixture with crystalline aluminosilicate.

本発明の方法における結晶性アルミノシリケートは、中
間細孔径を有するもの、すなわち、約5〜6.5人の有
効細孔径を存するものが挙げられる。たとえば、ZSM
−5、ZSM−8、ZSM−11、ZSM−12、ZS
M−35、ZSM−38などが挙げられるが、ZSM−
5、ZSM−8、ZSM−11などのZSM−5型結晶
性アルミノシリケートが好ましい。
The crystalline aluminosilicates used in the method of the present invention include those having intermediate pore sizes, ie, those having an effective pore size of about 5 to 6.5 people. For example, ZSM
-5, ZSM-8, ZSM-11, ZSM-12, ZS
Examples include M-35, ZSM-38, etc., but ZSM-
ZSM-5 type crystalline aluminosilicates such as 5, ZSM-8 and ZSM-11 are preferred.

本発明の方法における亜鉛含有率は、亜鉛金属として全
触媒に対し1〜10重量%、好ましくは1〜6重量%で
ある。亜鉛の含量が1重量%未満では、芳香族の収率が
低く、10重量%を越えて亜鉛を加えても、芳香族の収
率はそれ以上向上しない。
The zinc content in the process of the invention is from 1 to 10% by weight, preferably from 1 to 6% by weight, based on the total catalyst as zinc metal. When the zinc content is less than 1% by weight, the aromatic yield is low, and even if zinc is added in excess of 10% by weight, the aromatic yield does not improve any further.

本発明の方法において触媒に亜鉛を含有させる方法とし
ては、結晶性アルミノシリケート、亜鉛成分およびアル
ミナの混合物を水蒸気処理する場合には、イオン交換法
、含浸法、混練性等公知の方法が用いられる。また、調
製の順序に特に制約はなく、結晶性アルミノシリケート
、亜鉛成分およびアルミナを同時に混合しても、先に任
意の2成分を混合した後、残る1成分を混合してもよい
が、いずれの場合にも、混合は十分に実施することが望
ましい。一方、亜鉛成分およびアルミナの混合物を水蒸
気処理する場合には、通常、含浸法、混練法等の公知の
方法により、亜鉛成分とアルミナを十分に混合させるこ
とが望ましい。
In the method of the present invention, when a mixture of crystalline aluminosilicate, zinc component, and alumina is treated with steam, known methods such as ion exchange method, impregnation method, and kneading method can be used to incorporate zinc into the catalyst. . Furthermore, there are no particular restrictions on the order of preparation, and the crystalline aluminosilicate, zinc component, and alumina may be mixed at the same time, or any two components may be mixed first, and then the remaining one component may be mixed. Even in this case, it is desirable to mix thoroughly. On the other hand, when a mixture of a zinc component and alumina is treated with steam, it is generally desirable to thoroughly mix the zinc component and alumina by a known method such as an impregnation method or a kneading method.

本発明の方法における亜鉛成分は、たとえば、亜鉛金属
、酸化亜鉛、水酸化亜鉛、あるいは硝酸亜鉛、炭酸亜鉛
、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、シュウ酸亜鉛などの
塩、あるいはアルキル亜鉛などの有機亜鉛化合物等が挙
げられる。
The zinc component in the method of the present invention is, for example, zinc metal, zinc oxide, zinc hydroxide, or salts such as zinc nitrate, zinc carbonate, zinc sulfate, zinc chloride, zinc acetate, zinc oxalate, or organic compounds such as alkyl zinc. Examples include zinc compounds.

本発明の方法におけるアルミナとしては、無水アルミナ
またはアルミナの水和物があるが、その他に、たとえば
、アルミニウム塩のように加水分解または加熱分解、酸
化などにより、無水アルミナまたはアルミナ水和物を生
成する原料を使用することもできる。
The alumina used in the method of the present invention includes anhydrous alumina or alumina hydrate, but in addition, for example, anhydrous alumina or alumina hydrate can be produced by hydrolysis, thermal decomposition, oxidation, etc., such as aluminum salts. It is also possible to use raw materials.

本発明の方法におけるアルミナ含有率は、1203とし
て全触媒に対し2〜50重量%、好ましくは5〜40重
量%であり、かつ、アルミナと亜鉛のモル比(Afz(
h / Zn )が1以上である。
The alumina content in the method of the present invention is 2 to 50% by weight, preferably 5 to 40% by weight based on the total catalyst as 1203, and the molar ratio of alumina to zinc (Afz (
h/Zn) is 1 or more.

アルミナ含有率が2重量%未満では、亜鉛蒸発防止の効
果が不充分であり、50重量%を越えてアルミナを加え
ても、亜鉛蒸発防止効果はそれ以上向上せず、触媒活性
が低下するため好ましくない。
If the alumina content is less than 2% by weight, the effect of preventing zinc evaporation is insufficient, and even if alumina is added in excess of 50% by weight, the effect of preventing zinc evaporation will not improve any further and the catalyst activity will decrease. Undesirable.

本発明においては、上記組成物を水蒸気中で熱処理した
後、触媒として使用しなければならない。
In the present invention, the above composition must be heat treated in steam before being used as a catalyst.

水蒸気中で熱処理することにより、亜鉛が安定化され、
反応条件下での亜鉛の蒸発損失を大幅に低下させること
ができる。亜鉛成分とアルミナの混合物を空気中で焼成
し、酸化亜鉛とアルミナの混合物にした後、水蒸気中で
熱処理したものの粉末X線回折を測定したところ、酸化
亜鉛とアルミナの反応物であるアルミン酸亜鉛の生成が
観察された。したがって、この亜鉛の安定化は、酸化亜
鉛がアルミン酸亜鉛に変化したことが原因と推定される
。ここで、水蒸気中での処理条件は、酸化亜鉛とアルミ
ナからアルミン酸亜鉛を生成し得る条件から選択される
が、通常は水蒸気分圧0.1〜10kg/cれ処理温度
500〜800°C1好ましくは550〜700°C1
処理時間0.1〜50時間である。水蒸気処理は通常、
水蒸気単独か、または窒素、空気等の希釈剤の存在下に
実施する。
Zinc is stabilized by heat treatment in steam,
The evaporation loss of zinc under reaction conditions can be significantly reduced. Powder X-ray diffraction measurements of the mixture of zinc component and alumina were calcined in air to form a mixture of zinc oxide and alumina, which was then heat treated in steam.Zinc aluminate, which is a reaction product of zinc oxide and alumina, was measured. was observed. Therefore, it is presumed that this stabilization of zinc is caused by the change of zinc oxide into zinc aluminate. Here, the treatment conditions in steam are selected from those that can produce zinc aluminate from zinc oxide and alumina, but usually the steam partial pressure is 0.1 to 10 kg/c and the treatment temperature is 500 to 800°C. Preferably 550-700°C1
Processing time is 0.1 to 50 hours. Steam treatment is usually
It is carried out with water vapor alone or in the presence of a diluent such as nitrogen or air.

本発明の方法におけるパラフィン、オレフィンおよび/
またはナフテンを含有する炭化水素とは、パラフィンま
たはオレフィンまたはナフテンまたはこれらの混合物を
実質的に含有する炭化水素であり、炭素数2以上、90
%留出温度190°C以下の炭化水素である。たとえば
、パラフィンとしては、エタン、プロパン、ブタン、ペ
ンタン、ヘキサン、ヘプタン、オクタン、ノナンであり
、オレフィンとしては、エチレン、プロピレン、ブテン
、ペンテン、ヘキセン、ヘプテン、オクテン、ノネンで
あり、ナフテンとしては、シクロペンタン、シクロペン
テン、メチルシクロペンクン、シクロヘキサン、メチル
シクロペンテン、シクロヘキセン、シクロへキサジエン
が挙げられる。混合物としては、上記のそれぞれの混合
物、あるいはナフサなどの熱分解生成物のC4留分、前
記C4留分よりブタジェンまたはブタジェンとi−ブテ
ンを除いた留分、ナフサなどの熱分解生成物のC3留分
、前記C5留分からジエン類を除いた留分、熱分解ガソ
リン、熱分解ガソリンよりBTX抽出を行ったラフィネ
ート、FCC分解ガス、FCC分解ガソリン、リフォメ
ートよりBTXを抽出したラフィネートが挙げられる。
Paraffins, olefins and/or
Alternatively, the naphthene-containing hydrocarbon is a hydrocarbon that substantially contains paraffin, olefin, naphthene, or a mixture thereof, and has a carbon number of 2 or more and 90
It is a hydrocarbon with a % distillation temperature of 190°C or less. For example, paraffins include ethane, propane, butane, pentane, hexane, heptane, octane, and nonane; olefins include ethylene, propylene, butene, pentene, hexene, heptene, octene, and nonene; and naphthenes include: Examples include cyclopentane, cyclopentene, methylcyclopenkune, cyclohexane, methylcyclopentene, cyclohexene, and cyclohexadiene. The mixture may be a mixture of each of the above, a C4 fraction of a thermal decomposition product such as naphtha, a fraction obtained by removing butadiene or butadiene and i-butene from the C4 fraction, or a C3 fraction of a thermal decomposition product such as naphtha. Examples include fractions, fractions obtained by removing dienes from the C5 fraction, pyrolyzed gasoline, raffinate obtained by extracting BTX from pyrolyzed gasoline, FCC cracked gas, FCC cracked gasoline, and raffinate obtained by extracting BTX from reformate.

本発明の方法における添加条件は、温度350〜600
°C1圧力大気圧〜30 kg/crM G、重量空間
速度(WHSV)0.1〜50hr−’が好まし・:、
さらに好ましくは、温度400〜560″C1圧力大気
圧〜’l Okg/alGSWHS V 0. 2〜2
0hr−1である。
The addition conditions in the method of the present invention are a temperature of 350 to 600
°C1 pressure atmospheric pressure to 30 kg/crM G, weight hourly space velocity (WHSV) 0.1 to 50 hr-' is preferable.
More preferably, temperature 400~560'' C1 pressure atmospheric pressure ~'l Okg/alGSWHS V 0.2~2
It is 0hr-1.

(発明の効果) 本発明によれば、実施例および比較例から分かるように
、触媒からの亜鉛の蒸発損失を防止し、芳香族炭化水素
の収率を高く維持することができる。
(Effects of the Invention) According to the present invention, as can be seen from the Examples and Comparative Examples, it is possible to prevent evaporation loss of zinc from the catalyst and maintain a high yield of aromatic hydrocarbons.

(実施例) 以下、実施例により本発明の方法をさらに詳しく説明す
る。
(Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 アンモニウムイオン型23M−5結晶アルミノシ’J 
’f  ) (Sing/ A l zoz モル比7
0)200gに対し、硝酸亜鉛(亜鉛金属として4.6
g)およびアルミナソ゛ル(八!20.として50g)
を加え、混練後、押出成型を実施し、直径1. 6mm
、長さ4〜6胴に成型した。次いで、120’C,4時
間乾燥後、500°C13時間焼成した。
Example 1 Ammonium ion type 23M-5 crystal aluminosi'J
'f) (Sing/A l zoz molar ratio 7
0) Zinc nitrate (4.6 as zinc metal) per 200g
g) and alumina sole (50g as 8!20.)
was added and after kneading, extrusion molding was performed to obtain a diameter of 1. 6mm
, and was molded into a length of 4 to 6 barrels. Then, after drying at 120°C for 4 hours, it was fired at 500°C for 13 hours.

次に、この押出成型品20gを内径12mmの石英ガラ
ス製反応器に充填し、水蒸気を80容量%含む水蒸気−
窒素混合ガス中で、大気圧下650°C11時間熱処理
して触媒を得た。この触媒の亜鉛濃度を蛍光X線分析に
より求めたところ、全触媒に対し1.8重量%であった
Next, 20 g of this extruded product was filled into a quartz glass reactor with an inner diameter of 12 mm, and a water vapor containing 80% by volume of water vapor was heated.
A catalyst was obtained by heat treatment at 650° C. for 11 hours under atmospheric pressure in a nitrogen mixed gas. The zinc concentration of this catalyst was determined by fluorescent X-ray analysis and was found to be 1.8% by weight based on the total catalyst.

次に、この触媒の反応条件下における安定性を短時間で
評価するため、550 ’Cl2O時間の水素還元処理
を実施し、その前後のn−へキサン転化反応結果および
触媒中の亜鉛濃度を測定した。
Next, in order to evaluate the stability of this catalyst under reaction conditions in a short time, hydrogen reduction treatment was performed for 550' Cl2O hours, and the n-hexane conversion reaction results and zinc concentration in the catalyst were measured before and after. did.

すなわち、この触媒10gを内径12mmの石英ガラス
製反応器に充填し、大気圧下530″C,WHSV(重
量空間速度) 1. 44hr”の条件で、n−ヘキサ
ンの反応を1.5時間実施した。次いで、n−ヘキサン
の供給を停止し、水素20 Nj2 /hrを大気圧下
550°Cl2O時間流した。次に、水素供給を停止し
、水素還元前と同条件で再びnヘキサンの転化反応を1
.5時間実施した。さらに、反応後の触媒を取り出し、
550″C12時間空気中で焼成して、触媒上の炭素質
を除去した後、蛍光X線分析により触媒中の亜鉛濃度を
測定した。
That is, 10 g of this catalyst was packed into a quartz glass reactor with an inner diameter of 12 mm, and the n-hexane reaction was carried out for 1.5 hours under atmospheric pressure at 530"C and WHSV (weight hourly space velocity) of 1.44 hours". did. Then, the supply of n-hexane was stopped, and 20 Nj2/hr of hydrogen was flowed under atmospheric pressure at 550 DEG C.Cl2O for an hour. Next, the hydrogen supply was stopped, and the conversion reaction of n-hexane was carried out again under the same conditions as before hydrogen reduction.
.. It was conducted for 5 hours. Furthermore, take out the catalyst after the reaction,
After firing in air at 550''C for 12 hours to remove carbon on the catalyst, the zinc concentration in the catalyst was measured by fluorescent X-ray analysis.

反応結果および触媒中の亜鉛濃度測定結果を表1に示す
。ただし、表1. 2中のn−ヘキサン転化率、C5〜
C,芳香族選択率、亜鉛飛散率は以下の式で計算した。
Table 1 shows the reaction results and the measurement results of zinc concentration in the catalyst. However, Table 1. n-hexane conversion rate in 2, C5~
C, aromatic selectivity, and zinc scattering rate were calculated using the following formulas.

n−ヘキサン転化率(χ) = 100− (生成物中
のC4非芳香族成分の濃度(重量%)) C1〜C7芳香族選択率(χ)=〔生成物中のC5〜C
7芳香族濃度の和(重量%)÷n−ヘキサン転化率)X
100 亜鉛飛散率(χ)−〔水素還元前後の亜鉛濃度の差(重
量%)÷水素還元前の亜鉛濃度〕×実施例2 硝酸亜鉛(亜鉛金属として9.9g)を使用した以外は
、実施例1と同一の方法により触媒を調製した。この触
媒の亜鉛濃度を蛍光X線分析により測定したところ、全
触媒に対し3.8重量%であった。
n-hexane conversion rate (χ) = 100- (concentration of C4 non-aromatic components in the product (wt%)) C1-C7 aromatic selectivity (χ) = [C5-C in the product
7 Sum of aromatic concentrations (wt%) ÷ n-hexane conversion rate)
100 Zinc scattering rate (χ) - [difference in zinc concentration before and after hydrogen reduction (wt%) ÷ zinc concentration before hydrogen reduction] x Example 2 Except for using zinc nitrate (9.9 g as zinc metal) A catalyst was prepared by the same method as in Example 1. The zinc concentration of this catalyst was measured by fluorescent X-ray analysis and was found to be 3.8% by weight based on the total catalyst.

実施例1と同一の方法により、この触媒の反応条件下に
おける安定性の評価を実施した。結果を表1に示す。
The stability of this catalyst under reaction conditions was evaluated by the same method as in Example 1. The results are shown in Table 1.

比較例1 実施例1と同一のアンモニウムイオン型23M−5結晶
性アルミノシリケー+−i o o gを7重量%硝酸
亜鉛水溶液中に浸し、蒸発乾固後、120”C4時間乾
燥、500°C3時間焼成し、亜鉛2゜0重量%を含有
する触媒を調製した。次いで、この触媒を圧縮成型後、
粉砕し、9〜20メツシユにそろえたちの20gを、内
径12mmの石英ガラス製反応器に充填し、水蒸気を8
0重量%含む水蒸気−窒素混合ガス中で、大気圧下65
0 ’C1時間熱処理した。引き続き、WH5Vを1,
8に変えた以外は、実施例1,2と同一の条件で触媒の
安定性評価を実施した。結果を表1に示す。
Comparative Example 1 The same ammonium ion type 23M-5 crystalline aluminosilicate +-i o o g as in Example 1 was immersed in a 7% by weight zinc nitrate aqueous solution, evaporated to dryness, and dried at 120"C for 4 hours at 500° C was calcined for 3 hours to prepare a catalyst containing 2.0% by weight of zinc.Next, after compression molding this catalyst,
20g of crushed and arranged into 9 to 20 meshes was packed into a quartz glass reactor with an inner diameter of 12mm, and water vapor was
65% under atmospheric pressure in a water vapor-nitrogen mixed gas containing 0% by weight.
Heat treatment was performed for 1 hour at 0'C. Continue to 1 WH5V,
The stability evaluation of the catalyst was carried out under the same conditions as in Examples 1 and 2, except that the temperature was changed to 8. The results are shown in Table 1.

実施例3 T−アルミナ50gに16゜4重量%硝酸亜鉛水溶液2
40gを加え、藩発乾固後、l 20 ’C4時間乾燥
し、500°C3時間焼成した。次いで、圧縮成型後、
粉砕し、9〜20メツシユにそろえたちの20gを、内
径12Mの石英ガラス製反応器に充填し、水蒸気を80
容量%含む水蒸気−窒素混合ガス中で、大気圧下650
°C5時間熱処理した。次に、この水蒸気処理を実施し
た亜鉛含有α−アルミナ5gに、プロトン型23M−5
結晶性アルミノシリケート(SiO□/Af203モル
比40)35gを加え、乳鉢により攪拌混合した後、圧
縮成型、粉砕し、9〜20メツシユの触媒を得た。続い
て、W)ISVを8.0に変え反応を2゜5時間実施し
た以外は、実施例1と同一の方法により、この触媒の反
応条件下における安定性を評価した。結果を表2に示す
Example 3 16° 4% by weight zinc nitrate aqueous solution 2 in 50g of T-alumina
40 g was added, dried to dryness at 120° C. for 4 hours, and calcined at 500° C. for 3 hours. Then, after compression molding,
20g of crushed and arranged into 9 to 20 meshes was packed into a quartz glass reactor with an inner diameter of 12M, and steam was added to 80g.
In water vapor-nitrogen mixed gas containing % by volume under atmospheric pressure 650
Heat treatment was performed at °C for 5 hours. Next, 5 g of zinc-containing α-alumina subjected to this steam treatment was added with proton type 23M-5
35 g of crystalline aluminosilicate (SiO□/Af203 molar ratio 40) was added, stirred and mixed in a mortar, then compression molded and pulverized to obtain a catalyst of 9 to 20 meshes. Subsequently, the stability of this catalyst under the reaction conditions was evaluated in the same manner as in Example 1, except that W) ISV was changed to 8.0 and the reaction was carried out for 2.5 hours. The results are shown in Table 2.

比較例2 T−アルミナ165.6gと酸化亜鉛34.4gにイオ
ン交換水100gを加え、室温で2時間混練後、120
’C6,5時間乾燥し、さらに、500°C2時間焼成
した。次いで、この粉末5gに実施例3と同一のプロト
ン型23M−5結晶性アルミノシリケート35gを加え
、乳鉢により攪拌混合した後、圧縮成型、粉砕し、9〜
20メツシユの触媒を得た。続いて、実施例3と同一の
条件で触媒の安定性評価を行った。結果を表2に示す。
Comparative Example 2 100 g of ion-exchanged water was added to 165.6 g of T-alumina and 34.4 g of zinc oxide, and after kneading at room temperature for 2 hours,
It was dried at 500°C for 5 hours and then fired at 500°C for 2 hours. Next, 35 g of the same proton type 23M-5 crystalline aluminosilicate as in Example 3 was added to 5 g of this powder, and after stirring and mixing in a mortar, compression molding and pulverization were carried out.
20 meshes of catalyst were obtained. Subsequently, the stability of the catalyst was evaluated under the same conditions as in Example 3. The results are shown in Table 2.

表1.2から、本発明の方法は、亜鉛の蒸発損失を防止
し、芳香族炭化水素の収率を高く維持するためにきわめ
て有効な方法であることが明らかである。
From Table 1.2, it is clear that the method of the present invention is a very effective method for preventing evaporation loss of zinc and maintaining a high yield of aromatic hydrocarbons.

表 ほか1名table 1 other person

Claims (1)

【特許請求の範囲】[Claims] パラフィン、オレフィンおよび/またはナフテンを含有
する炭化水素を、結晶性アルミノシリケートおよび亜鉛
を含有する触媒の存在下に芳香族炭化水素に転化する方
法において、結晶性アルミノシリケート、亜鉛成分およ
びアルミナの混合物を水蒸気中で熱処理して得られた触
媒、または亜鉛成分およびアルミナの混合物を水蒸気中
で熱処理した後、結晶性アルミノシリケートと混合して
得られた触媒を用いることを特徴とする芳香族炭化水素
の製造方法。
A process for converting hydrocarbons containing paraffins, olefins and/or naphthenes to aromatic hydrocarbons in the presence of a catalyst containing crystalline aluminosilicate and zinc, comprising: a mixture of crystalline aluminosilicate, zinc component and alumina; An aromatic hydrocarbon characterized by using a catalyst obtained by heat-treating a mixture of a zinc component and alumina in steam, or a catalyst obtained by heat-treating a mixture of a zinc component and alumina in steam, and then mixing the mixture with crystalline aluminosilicate. Production method.
JP63268148A 1988-10-26 1988-10-26 Aromatic hydrocarbon manufacturing method Expired - Lifetime JPH0729948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268148A JPH0729948B2 (en) 1988-10-26 1988-10-26 Aromatic hydrocarbon manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268148A JPH0729948B2 (en) 1988-10-26 1988-10-26 Aromatic hydrocarbon manufacturing method

Publications (2)

Publication Number Publication Date
JPH02115134A true JPH02115134A (en) 1990-04-27
JPH0729948B2 JPH0729948B2 (en) 1995-04-05

Family

ID=17454562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268148A Expired - Lifetime JPH0729948B2 (en) 1988-10-26 1988-10-26 Aromatic hydrocarbon manufacturing method

Country Status (1)

Country Link
JP (1) JPH0729948B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009050A1 (en) * 1993-09-30 1995-04-06 Sanyo Petrochemical Co., Ltd. Method of partial dealuminization of zeolitic catalyst
JP2011005488A (en) * 2009-06-25 2011-01-13 China Petroleum & Chemical Corp Catalytic cracking catalyst having higher selectivity, processing method and use thereof
JP5221149B2 (en) * 2006-01-16 2013-06-26 旭化成ケミカルズ株式会社 Propylene and aromatic hydrocarbon production method and production apparatus thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003949A1 (en) * 1997-07-15 1999-01-28 Phillips Petroleum Company High stability zeolite catalyst composition and hydrocarbon conversion process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009050A1 (en) * 1993-09-30 1995-04-06 Sanyo Petrochemical Co., Ltd. Method of partial dealuminization of zeolitic catalyst
JP5221149B2 (en) * 2006-01-16 2013-06-26 旭化成ケミカルズ株式会社 Propylene and aromatic hydrocarbon production method and production apparatus thereof
JP2011005488A (en) * 2009-06-25 2011-01-13 China Petroleum & Chemical Corp Catalytic cracking catalyst having higher selectivity, processing method and use thereof

Also Published As

Publication number Publication date
JPH0729948B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
EP1642641B1 (en) A catalyst and process for producing monocyclic aromatic hydrocarbons
US3926782A (en) Hydrocarbon conversion
US7164052B2 (en) Catalytic composition for the aromatization of hydrocarbons
KR101539784B1 (en) Aromatization of alkanes using a germanium-zeolite catalyst
US4309276A (en) Hydrocarbon conversion with low-sodium silicalite
EP0147111B1 (en) Production of aromatic hydrocarbons
JPS58134035A (en) Dehydrogenation cyclization for alkanes
JPH0258315B2 (en)
JPS6024772B2 (en) Xylene isomerization method
US4401555A (en) Hydrocarbon conversion with low-sodium crystalline silicates
Maftei et al. Conversion of industrial feedstock mainly with butanes and butenes over HZSM-5 and Zn/HZSM-5 (nitrate) catalysts
US3669903A (en) Catalytic cracking process
EP0021674A1 (en) Synthesis of large crystal zeolite ZSM-5 and zeolite so made
US20080221376A1 (en) Process for isomerizing aromatic c8 compounds in the presence of a catalyst comprising a modified euo zeolite
JPH02115134A (en) Production of aromatic hydrocarbon
JPH026323A (en) Noble metal-containing titanium silicate and aromatic hydrocarbon
JPS61289049A (en) Production of propylene
EP0309089B1 (en) Process for converting aliphatics to aromatics over a gallium-activated zeolite
JPH0253741A (en) Treatment of oil of by-product
JP3966429B2 (en) Aromatic hydrocarbon production catalyst
US6090272A (en) Process for converting a cracked gasoline using a zeolite-based catalyst material
EP0016495A1 (en) Process for the preparation of methane and ethane and methane and/or ethane so prepared
JP3068347B2 (en) Method for producing high octane gasoline base material
JP3043747B1 (en) How to handle light reformate
JPH0825921B2 (en) Method for producing aromatic hydrocarbon, catalyst and method for producing the catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14